FlexMeasures Documentation
Release 0.20.1.dev11

Seita B.\V.

Apr 27, 2024

CONTENTS

1 A quick glance 3
2 What FlexMeasures does 5
3 Use cases & Users 7
4 Where to start reading? 9
Python Module Index 361
HTTP Routing Table 363

Index 365

FlexMeasures Documentation, Release 0.20.1.dev11

FlexMeasures is an intelligent EMS to optimize behind-the-meter energy flexibility. Build your smart energy apps &
services with FlexMeasures as backend for real-time orchestration!

The problem FlexMeasures helps you to solve is: What are the best times to power flexible assets, such as batteries
or heat pumps?

In a nutshell, FlexMeasures turns data into optimized schedules for flexible assets. Why? Planning ahead allows flexible
assets to serve the whole system with their flexibility, e.g. by shifting energy consumption to more optimal times. For
the asset owners, this creates CO, savings but also monetary value (e.g. through self-consumption, dynamic tariffs and
grid incentives).

Timing

7 Nm

Sensors & APIs Flexible assets

FlexMeasures is written in Python, and runs on Flask and Postgres. We aim to create developer-friendly technology
that saves time in developing complex services. Read more on this in Why FlexMeasures adds value for software
developers.

FlexMeasures proudly is an incubation project at the Linux Energy Foundation.

CONTENTS 1

https://www.lfenergy.org/

FlexMeasures Documentation, Release 0.20.1.dev11

2 CONTENTS

CHAPTER
ONE

A QUICK GLANCE

The main purpose of FlexMeasures is to create optimized schedules. Let’s have a quick glance at what that looks like
in the UI and what a code implementation would be like:

Battery optimized by price
Same but constrained by solar

Code example

Day-ahead prices (EUR/MWh)

0
Fri 28 02:00 04:00 06:00

Power (MW)

0.4
0.2
0.0
-0.2+
-0.4
Fri28 02:00

04:00 06:00

Sensor

] doyfoheod{)rices (NL transmission zone)
it

production (toy-solar)
® discharging (toy-battery)

Day-ahead prices (EUR/MWh)

5
0 T ! 1
Fri 28 02:00 04:00 06:00
Power (MW)
0.4
0.2
0.0
-0.24
-0.4
Fri 28 02:00 04:00 06:00
Sensor
® day-ahead prices (NL transmission zone)
production {t]cy—so\ur)

® discharging (toy-battery)

08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat 29
08:00 10:00 12:.00 14:00 16:00 18:00 20:00 22:00 sat 29
Source
forecaster
scheduler k
other
08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat 29
08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat 29
Source
forecaster
scheduler
other

https://raw.githubusercontent.com/FlexMeasures/screenshots/main/tut/toy-schedule/asset-view-without-solar.png
https://raw.githubusercontent.com/FlexMeasures/screenshots/main/tut/toy-schedule/asset-view-with-solar.png

FlexMeasures Documentation, Release 0.20.1.dev11

A tiny, but complete example (corresponding to the left tab): Let’s install FlexMeasures from scratch. Then, using only
the terminal (FlexMeasures of course also has APIs for all of this), load hourly prices and optimize a 12h-schedule for
a battery that is half full at the beginning. Finally, we’ll display our new schedule in the terminal.

$ pip install flexmeasures # FlexMeasures can also be run via Docker
$ docker pull postgres; docker run --name pg-docker -e POSTGRES_PASSWORD=docker -e.
—POSTGRES_DB=flexmeasures-db -d -p 5433:5432 postgres:latest
$ export SQLALCHEMY_DATABASE_URI="postgresql://postgres:docker@127.0.0.1:5433/
—flexmeasures-db" && export SECRET_KEY=notsecret
$ flexmeasures db upgrade # create tables
$ flexmeasures add toy-account --kind battery # setup account incl. a user, battery (ID.
—2) and market (ID 1)
$ flexmeasures add beliefs --sensor 2 --source toy-user prices-tomorrow.csv --timezone..
—utc # load prices, also possible per API
$ flexmeasures add schedule for-storage --sensor 2 --consumption-price-sensor 1 \
--start TOMORROW }TO7:00+01:00 --duration PT12H \
--soc-at-start 50% --roundtrip-efficiency 90% # this is also possible per API
$ flexmeasures show beliefs --sensor 2 --start ${TOMORROW'TO7:00:00+01:00 --duration..
—PT12H # also visible per UI, of course

A short explanation of the optimization shown above: This battery is optimized to buy power cheaply and sell it at
expensive times - the red-dotted line is what FlexMeasures computed to be the best schedule, given all knowledge (in
this case, the prices shown in blue). However, in the example in the middle tab, the battery has to store local solar
power as well (orange line), which constrains how much it can do with its capacity (that’s why the schedule is limited
in capacity and thus cycling less energy overall than on the left).

Want to read more about the example case shown here? We discuss this in more depth at 7oy example I: Scheduling a
battery, from scratch and the tutorials that build on that.

4 Chapter 1. A quick glance

CHAPTER
TWO

WHAT FLEXMEASURES DOES

Main functionality

Interfacing with FlexMeasures

* Scheduling

The main purpose of FlexMeasures is to create optimized schedules. That’s also what the “quick glance”
section above focuses on. Everything else supports this main purpose. FlexMeasures provides in-built
schedulers for storage and processes. Schedulers solve optimization problems for you and are highly cus-
tomizable to the situation at hand. Read more at Scheduling and, for hands-on introductions, at 7oy example
I: Scheduling a battery, from scratch and Toy example I11: Computing schedules for processes.

* Reporting

FlexMeasures needs to give users an idea of its effects and outcomes. For instance, computing the energy
costs are an important use case. But also creating intermediate data for your scheduler can be a crucial
feature (e.g. the allowed headroom for a battery is the difference between the grid connection capacity and
the PV power). Read more at Reporting and Toy example IV: Computing reports.

* Forecasting

Optimizing the future (by scheduling) requires some predictions. Several predictions can be gotten from
third parties (e.g. weather conditions, for which we wrote a plugin), others need to be done manually.
FlexMeasures provides some support for this (read more at Forecasting and Forecasting & scheduling), but
you can also create predictions with one of the many excellent tools out there and feed them into FlexMea-
sures.

* Monitoring

* API

* CLI

As FlexMeasures is a real-time platform, processing data and computing new schedules continuously, host-
ing it requires to be notified when things go wrong. There is in-built Error monitoring for tracking con-
nection problems and tasks that did not finish correctly. Also, you can connect to Sentry. We have further
plans to monitor data quality.

FlexMeasures runs in the cloud (although it can also run on-premise if needed, for instance as Docker
container). Therefore, a well-supported REST-like API is crucial. You can add & retrieve data, trigger
schedule computations and even add and edit the structure (of assets and sensors). Read more at AP/
Introduction.

We built a user interface for FlexMeasures, so assets, data and schedules can be inspected by devs, hosters
and analysts. You can start with _dashboard to get an idea. We expect that real energy flexibility services
will come with their own UI, maybe as they are connecting FlexMeasures as a smart backend to an existing
user-facing ESCO platform. In these cases, the API is more useful. However, FlexMeasures can provide
its data plots and visualizations through the API in these cases, see Building custom Uls.

For the engineers hosting FlexMeasures, a command-line interface is crucial. We developed a range of

https://github.com/SeitaBV/flexmeasures-openweathermap
https://github.com/FlexMeasures/flexmeasures/projects/12
https://github.com/FlexMeasures/flexmeasures/projects/12

FlexMeasures Documentation, Release 0.20.1.dev11

CLI Commands based on the flexmeasures directive (see also the code example above), so that DevOps
personnel can administer accounts & users, load & review data and heck on computation jobs. The CLI is
also useful to automate calls to third party APIs (via CRON jobs for instance) — this is usually done when
plugins add their own flexmeasures commands.

* FlexMeasures Client
For automating the interaction with FlexMeasures from local sites (e.g. from a smart gateway - think Rasp-
berryPi or higher-level), we created the FlexMeasures Client. The Flexmeasures Client package provides
functionality for authentication, posting sensor data, triggering schedules and retrieving schedules from a
FlexMeasures instance through the API.

6 Chapter 2. What FlexMeasures does

https://github.com/FlexMeasures/flexmeasures-client

CHAPTER
THREE

USE CASES & USERS

Use cases

Users

Here are a few relevant areas in which FlexMeasures can help you:
* E-mobility (smart EV (Electric Vehicle) charging, V2G (Vehicle to Grid), V2H (Vehicle to Home))
* Heating (heat pump control, in combination with heat buffers)
* Industry (best running times for processes with buffering capacity)

You decide what to optimize for — prices, CO;, peaks.

It becomes even more interesting to use FlexMeasures in integrated scenarios with increased complexity. For example,
in modern domestic/office settings that combine solar panels, electric heating and EV charging, in industry settings
that optimize for self-consumption of local solar panels, or when consumers can engage with multiple markets simul-
taneously.

In these cases, our goal is that FlexMeasures helps you to achieve “value stacking”, which is often required to achieve
a positive business case. Multiple sources of value can combine with multiple types of assets.

As possible users, we see energy service companies (ESCOs) who want to build real-time apps & services around
energy flexibility for their customers, or medium/large industrials who are looking for support in their internal digital
tooling.

However, even small companies and hobby projects might find FlexMeasures useful! We are constantly improving the
ease of use.

Within these organizations, several kinds of engineers might be working with FlexMeasures: gateway installers, ESCO
data engineers and service developers.

FlexMeasures can be used as your EMS, but it can also integrate with existing systems as a smart backend — an add-on
to deal with energy flexibility specifically.

The image below shows the FlexMeasures eco-system and the users, where the server (this repository) is supported by
the FlexMeasures client and several plugins to implement many kinds of services with optimized schedules:

FlexMeasures Documentation, Release 0.20.1.dev11

develops—

ESCO
host (DevOps) data engineer
ESCO Dashboard / views FlexMeasures
ces CLI monitoring platform plots in ESCO app
end user
Gatewqy/EMS Home Assistant 52 uses API
installer Flexibility Protocol
flexmeasures_
y entsoe
sets up
extends Flexmeasures
Server extends—
(+base algorithms) 3rd party APls:
connects flexmeasures_ markets, OEM
openweathermap
X
Local Gateway / Jses. Flexmeasures
EMS Client . e
flexmeasures_plugin | creates :
_template siructure| | athers
writes e
simulation
scripts uses
] *
develops
Analyst Service
developer

This image should also make clear how to extend FlexMeasures on the edges to make it work for your exact use case

— by gateway integration, plugins and using FlexMeasures via its API.

Chapter 3. Use cases & Users

https://raw.githubusercontent.com/FlexMeasures/screenshots/main/architecture/FlexMeasures-IntegrationMap.drawio.png

CHAPTER
FOUR

WHERE TO START READING?

You (the reader) might be a user connecting with a FlexMeasures server or working on hosting FlexMeasures. Maybe
you are planning to develop a plugin or even core functionality. Maybe you are a CTO looking for a suitable open
source framework.

In Getting started, we have some helpful tips how to dive into this documentation!

4.1 Getting started

For a direct intro on running FlexMeasures, go to Installation & First steps. However, FlexMeasures is useful from
different perspectives. Below, we added helpful pointers to start reading.

» For organizations

e For Individuals

Using FlexMeasures

Hosting FlexMeasures

Plugin developers

Core developers

4.1.1 For organizations

We make FlexMeasures, so that your software developers are as productive with energy optimization as possible.
Because we are developers ourselves, we know that it takes a couple smaller steps to engage with new technology.

Your journey, from dipping your toes in the water towards being a productive energy optimization company, could look
like this:

1. Quickstart — Find an optimized schedule for your flexible asset, like a battery, with standard FlexMeasures
tooling. This is basically what we show in Toy example I: Scheduling a battery, from scratch. All you need are
10 minutes and a CSV file with prices to optimize against.

2. Automate — get the prices from an open API, for instance ENTSO-E (using a plugin like flexmeasures-entsoe),
and run the scheduler regularly in a cron job.

3. Integrate — Load the schedules via FlexMeasures’ API, so you can directly control your assets and/or show them
within your own frontend.

https://transparency.entsoe.eu/
https://github.com/SeitaBV/flexmeasures-entsoe

FlexMeasures Documentation, Release 0.20.1.dev11

4. Customize — Load other data (e.g. your solar production or weather forecasts via flexmeasures-
openweathermap). Adapt the algorithms, e.g. do your own forecasting or tweak the standard scheduling algo-
rithm so it optimizes what you care about. Or write a plugin for accessing a new kind of market. The opportunities
are endless!

4.1.2 For Individuals

Using FlexMeasures
You are connecting to a running FlexMeasures server, e.g. for sending data, getting schedules or administrate users
and assets.
First, you’ll need an account from the party running the server. Also, you probably want to:
* Look at the UI, e.g. pages for Dashboard and Administration.
* Read the API Introduction.

e Learn how to interact with the API in Posting data.

Hosting FlexMeasures

You want to run your own FlexMeasures instance, to offer services or for trying it out. You’ll want to:
» Have a first playful scheduling session, following 7oy example I: Scheduling a battery, from scratch.
* Get real with the tutorial on Installation & First steps.
* Discover the power of CLI Commands.

¢ Understand how to How to deploy FlexMeasures.

Plugin developers

You want to extend the functionality of FlexMeasures, e.g. a custom integration or a custom algorithm:
¢ Read the docs on Writing Plugins.
* See how some existing plugins are made flexmeasures-entsoe or flexmeasures-openweathermap

* Of course, some of the developers resources (see below) might be helpful to you, as well.

Core developers

You want to help develop FlexMeasures, e.g. to fix a bug. We provide a getting-started guide to becoming a developer
at Developing for FlexMeasures.

10 Chapter 4. Where to start reading?

https://github.com/SeitaBV/flexmeasures-openweathermap/
https://github.com/SeitaBV/flexmeasures-openweathermap/
https://github.com/SeitaBV/flexmeasures-entsoe
https://github.com/SeitaBV/flexmeasures-openweathermap

FlexMeasures Documentation, Release 0.20.1.dev11

4.2 Getin touch

We want you to succeed in using, hosting or extending FlexMeasures. For all your questions and ideas, you can join
the FlexMeasures community in the following ways:

* View the code and/or create a ticket on GitHub

* Join the #flexmeasures Slack channel over at https://Ifenergy.slack.com

» Write to us at flexmeasures @lists.Ifenergy.org (you can join this mailing list here)
¢ Follow @flexmeasures on Twitter

We’d love to hear from you!

4.3 FlexMeasures Changelog

4.3.1 v0.21.0 | April XX, 2024

New features

* Add asset/<id>/status page to view asset statuses [see PR #41 and PR #1035]

* Support start_date and end_date query parameters for the asset page [see PR #1030]
Bugfixes
Infrastructure / Support

¢ Include started, deferred and scheduled jobs in the overview printed by the CLI command flexmeasures jobs
show-queues [see PR #1036]

* Make it as convenient to clear deferred or scheduled jobs from a queue as it was to clear failed jobs from a queue
[see PR #1037]

4.3.2 v0.20.1 | April XX, 2024
Bugfixes

* Prevent **p**lay/**p**ause/**s**top of replays when editing a text field in the UI [see PR #1024]

4.3.3 v0.20.0 | March 26, 2024

Note: Read more on these features on the FlexMeasures blog.

Warning: From this version on, the config setting FLEXMEASURES_FORCE_HTTPS decides whether to en-
force HTTPS on requests - and it defaults to False. Previously, this was governed by Flask_ENV or FLEXMEA-
SURES_ENYV being set to something else than “documentation” or “development”. This new way is more clear,
but you might be in need of using this setting before upgrading.

4.2. Getin touch 11

https://github.com/FlexMeasures/flexmeasures
https://lfenergy.slack.com
mailto:flexmeasures@lists.lfenergy.org
https://lists.lfenergy.org/g/flexmeasures
https://twitter.com/flexmeasures
https://github.com/FlexMeasures/flexmeasures/pull/941/
https://github.com/FlexMeasures/flexmeasures/pull/1035/
https://github.com/FlexMeasures/flexmeasures/pull/1030/
https://github.com/FlexMeasures/flexmeasures/pull/1036/
https://github.com/FlexMeasures/flexmeasures/pull/1037/
https://github.com/FlexMeasures/flexmeasures/pull/1024
https://flexmeasures.io/020-faster-data-reads/

FlexMeasures Documentation, Release 0.20.1.dev11

New features

Add command flexmeasures edit transfer-ownership to transfer the ownership of an asset and its chil-
dren from one account to another[see PR #983]

Support defining the site-power-capacity, site-consumption-capacity and
site-production-capacity as a sensor in the API and CLI [see PR #985]

Support defining the soc-minima, soc-maxima and soc-targets as sensors in the API [see PR #996]
Support defining inflexible power sensors with arbitrary power and energy units [see PR #1007]
Support saving beliefs with a belief_horizon in the “~~PandasReporter "[see PR #1013]

Skip the check of the output event resolution in any Reporter with the field check_output_resolution [see
PR #1009]

Bugfixes

» Use minimum event resolution of the input (instead of the output) sensors for the belief search parameters [see

PR #1010]

Infrastructure / Support

Align map layers with custom asset types in the UI’s dashboard, also facilitating capturing asset types defined
within FlexMeasures plugins [see PR #1017]

Improve processing time for deleting beliefs via CLI [see PR #1005]
Support deleting beliefs via CLI for all offspring assets at once [see PR #1003]

Add setting FLEXMEASURES_FORCE_HTTPS to explicitly toggle if HTTPS should be used for all requests [see PR
#1008]

Make flexmeasures installable locally on macOS [see PR #1000]
Align API endpoint policy w.r.t. trailing slash [see PR #1014]

4.3.4 v0.19.2 | March 1, 2024

Note:

Optionally, run flexmeasures db upgrade after upgrading to this version for enhanced database perfor-

mance on time series queries.

» Upgrade timely-beliefs to enhance our main time series query and fix a database index on time series data, leading

to significantly better performance [see PR #992]

» Fix server error on loading the asset page for a public asset, due to a bug in the breadcrumb’s sibling navigation

[see PR #991]

* Restore compatibility with the flexmeasures-openweathermap plugin by fixing the query for the closest weather

sensor to a given asset [see PR #997]

12

Chapter 4. Where to start reading?

https://github.com/FlexMeasures/flexmeasures/pull/983
https://github.com/FlexMeasures/flexmeasures/pull/985
https://github.com/FlexMeasures/flexmeasures/pull/996
https://github.com/FlexMeasures/flexmeasures/pull/1007
https://github.com/FlexMeasures/flexmeasures/pull/1013
https://github.com/FlexMeasures/flexmeasures/pull/1009
https://github.com/FlexMeasures/flexmeasures/pull/1010
https://github.com/FlexMeasures/flexmeasures/pull/1017
https://github.com/FlexMeasures/flexmeasures/pull/1005
https://github.com/FlexMeasures/flexmeasures/pull/1003
https://github.com/FlexMeasures/flexmeasures/pull/1008
https://github.com/FlexMeasures/flexmeasures/pull/1008
https://github.com/FlexMeasures/flexmeasures/pull/1000
https://github.com/FlexMeasures/flexmeasures/pull/1014
https://github.com/FlexMeasures/flexmeasures/pull/992
https://github.com/FlexMeasures/flexmeasures/pull/991
https://github.com/SeitaBV/flexmeasures-openweathermap
https://github.com/FlexMeasures/flexmeasures/pull/997

FlexMeasures Documentation, Release 0.20.1.dev11

4.3.5 v0.19.1 | February 26, 2024

* Support defining the power-capacity as a sensor in the API and CLI [see PR #987]

4.3.6 v0.19.0 | February 18, 2024

Note: Read more on these features on the FlexMeasures blog.

Warning: This version replaces FLASK_ENV with FLEXMEASURES_ENV (FLASK_ENV will still be used
as a fallback).

New features

* List child assets on the asset page [see PR #967]

* Expand the UI’s breadcrumb functionality with the ability to navigate directly to sibling assets and sensors using
their child-parent relationship [see PR #977]

¢ Enable the use of QuantityOrSensor fields for the flexmeasures add schedule for-storage CLI com-
mand [see PR #966]

» CLI support for showing/savings time series data for a given type of source only, with the new --source-type
option of flexmeasures show beliefs, which let’s you filter out schedules, forecasts, or data POSTed by
users (through the API), which each have a different source type [see PR #976]

e New CLI command flexmeasures delete beliefs to delete all beliefs on a given sensor (or multiple sen-
sors) or on sensors of a given asset (or multiple assets) [see PR #975]

 Support for defining the storage efficiency as a sensor or quantity for the StorageScheduler [see PR #965]

» Support a less verbose way of setting the same SoC (state of charge) constraint for a given time window [see PR
#899]

Infrastructure / Support

* Deprecate use of flask’s FLASK_ENV variable and replace it with FLEXMEASURES_ENV [see PR #907]
* Streamline CLI option naming by favoring --<entity> over --<entity>-id [see PR #946]

* Documentation: improve index page, installation overview, feature overview incl. flex-model overview and Ul
screenshots [see PR #953]

* Faster database queries of time series data by upgrading SQLAlchemy and timely-beliefs [see PR #938]

4.3. FlexMeasures Changelog 13

https://github.com/FlexMeasures/flexmeasures/pull/987
https://flexmeasures.io/019-asset-nesting/
https://github.com/FlexMeasures/flexmeasures/pull/967
https://github.com/FlexMeasures/flexmeasures/pull/977
https://github.com/FlexMeasures/flexmeasures/pull/966
https://github.com/FlexMeasures/flexmeasures/pull/976
https://github.com/FlexMeasures/flexmeasures/pull/975
https://github.com/FlexMeasures/flexmeasures/pull/965
https://github.com/FlexMeasures/flexmeasures/pull/899
https://github.com/FlexMeasures/flexmeasures/pull/899
https://github.com/FlexMeasures/flexmeasures/pull/907
https://github.com/FlexMeasures/flexmeasures/pull/946
https://github.com/FlexMeasures/flexmeasures/pull/953
https://github.com/FlexMeasures/flexmeasures/pull/938

FlexMeasures Documentation, Release 0.20.1.dev11

4.3.7 v0.18.2 | February 26, 2024

» Convert unit of the power capacities to MW instead of that of the storage power sensor [see PR #979]

¢ Automatically update table navigation in the UI without requiring users to hard refresh their browser [see PR
#961]

» Updated documentation to enhance clarity for integrating plugins within the FlexMeasures Docker container [see
PR #958]

* Support defining the power-capacity as a sensor in the API [see PR #987]

4.3.8 v0.18.1 | January 15, 2024

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Bugfixes

* Fix database migrations meant to clean up deprecated tables [see PR #960]

* Allow showing beliefs (plot and file export) via the CLI for sensors with non-unique names [see PR #947]

Added Redis credentials to the Docker Compose configuration for the web server to ensure proper interaction
with the Redis queue [see PR #945]

* Fix API version listing (GET /api/v3_0) for hosts running on Python 3.8 [see PR #917 and PR #950]

Fix the validation of the option --parent-asset of command flexmeasures add asset [see PR #959]

4.3.9 v0.18.0 | December 23, 2023

Note: Read more on these features on the FlexMeasures blog.

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup
first with flexmeasures db-ops dump). If this fails, update to flexmeasures==0.18.1 first (and then run
flexmeasures db upgrade).

New features
 Better navigation experience through listings (sensors / assets / users / accounts) in the UI (user interface), by
heading to the selected entity upon a click (or CTRL + click) anywhere within a row [see PR #923]

¢ Introduce a breadcrumb to navigate through assets and sensor pages using its child-parent relationship [see PR
#930]

* Define device-level power constraints as sensors to create schedules with changing power limits [see PR #897]

* Allow to provide external storage usage or gain components using the soc-usage and soc-gain fields of the
flex-model [see PR #906]

14 Chapter 4. Where to start reading?

https://github.com/FlexMeasures/flexmeasures/pull/979
https://github.com/FlexMeasures/flexmeasures/pull/961
https://github.com/FlexMeasures/flexmeasures/pull/961
https://github.com/FlexMeasures/flexmeasures/pull/958
https://github.com/FlexMeasures/flexmeasures/pull/987
https://github.com/FlexMeasures/flexmeasures/pull/960
https://github.com/FlexMeasures/flexmeasures/pull/947
https://github.com/FlexMeasures/flexmeasures/pull/945
https://github.com/FlexMeasures/flexmeasures/pull/917
https://github.com/FlexMeasures/flexmeasures/pull/950
https://github.com/FlexMeasures/flexmeasures/pull/959
https://flexmeasures.io/018-better-use-of-future-knowledge/
https://github.com/FlexMeasures/flexmeasures/pull/923
https://github.com/FlexMeasures/flexmeasures/pull/930
https://github.com/FlexMeasures/flexmeasures/pull/930
https://github.com/FlexMeasures/flexmeasures/pull/897
https://github.com/FlexMeasures/flexmeasures/pull/906

FlexMeasures Documentation, Release 0.20.1.dev11

* Define time-varying charging and discharging efficiencies as sensors or as constant values which allows to define
the COP (coefficient of performance) [see PR #933]

Infrastructure / Support

Align database and models of annotations, data_sources, and timed_belief [see PR #929]
* New documentation section on constructing a flex model for V2G [see PR #885]
* Allow charts in plugins to show currency codes (such as EUR) as currency symbols (€) [see PR #922]

¢ Remove obsolete database tables price, power, market, market_type, weather, asset, and weather_sensor [see
PR #921]

* New flexmeasures configuration setting FLEXMEASURES_ENFORCE_SECURE_CONTENT_POLICY for up-
grading insecure http requests to secured requests https [see PR #920]

Bugfixes

¢ Give admin-reader role access to the RQ Scheduler dashboard [see PR #901]

» Assets without a geographical position (i.e. no lat/Ing coordinates) can be edited through the UI [see PR #924]

4.3.10 v0.17.1 | December 7, 2023
Bugfixes

» Show Assets, Users, Tasks and Accounts pages in the navigation bar for the admin-reader role [see PR #900]
* Reduce worker logs when datetime exceeds the end of the schedule [see PR #918]
* Fix infeasible problem due to incorrect estimation of the big-M value [see PR #905]

¢ [Incomplete fix; full fix in v0.18.1] Fix API version listing (GET /api/v3_0) for hosts running on Python 3.8 [see
PR #917]

4.3.11 v0.17.0 | November 8, 2023

Note: Read more on these features on the FlexMeasures blog.

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

4.3. FlexMeasures Changelog 15

https://github.com/FlexMeasures/flexmeasures/pull/933
https://github.com/FlexMeasures/flexmeasures/pull/929
https://github.com/FlexMeasures/flexmeasures/pull/885
https://github.com/FlexMeasures/flexmeasures/pull/922
https://github.com/FlexMeasures/flexmeasures/pull/921
https://github.com/FlexMeasures/flexmeasures/pull/920
https://github.com/FlexMeasures/flexmeasures/pull/901
https://github.com/FlexMeasures/flexmeasures/pull/924
https://github.com/FlexMeasures/flexmeasures/pull/900
https://github.com/FlexMeasures/flexmeasures/pull/918
https://github.com/FlexMeasures/flexmeasures/pull/905
https://github.com/FlexMeasures/flexmeasures/pull/917
https://flexmeasures.io/017-consultancy/

FlexMeasures Documentation, Release 0.20.1.dev11

New features

* Different site-level production and consumption limits can be defined for the storage scheduler via the API
(flex-context) or via asset attributes [see PR #884]

* Scheduling data better distinguishes (e.g. in chart tooltips) when a schedule was the result of a fallback mecha-
nism, by splitting off the fallback mechanism from the main scheduler (as a separate job) [see PR #846]

» New accounts can set a consultancy relationship with another account to give read access to external consultants
[see PR #877 and PR #892]

Infrastructure / Support
* Introduce a new one-to-many relation between assets, allowing the definition of an asset’s parent (which is also

an asset), which leads to a hierarchical relationship that enables assets to be related in a structured manner [see
PR #855 and PR #874]

¢ Introduce a new format for the output of Scheduler to prepare for multiple outputs [see PR #879]

4.3.12 v0.16.1 | October 2, 2023
Bugfixes

* Fix infeasible problem due to incorrect parsing of soc units of the soc-minima and soc-maxima fields within
the flex-model field [see PR #864]

4.3.13 v0.16.0 | September 27, 2023

Note: Read more on these features on the FlexMeasures blog.

New features
* Introduce new reporter to compute profit/loss due to electricity flows: ProfitOrLossReporter [see PR #808 and
PR #844]

* Charts visible in the Ul can be exported to PNG or SVG formats in a more automated fashion, using the new CLI
command flexmeasures show chart [see PR #833]

 Chart data visible in the Ul can be exported to CSV format [see PR #849]

 Sensor charts showing instantaneous observations can be interpolated by setting the interpolate sensor at-
tribute to one of the supported Vega-Lite interpolation methods [see PR #851]

* API users can ask for a schedule to take into account an explicit power-capacity (flex-model) and/or
site-power-capacity (flex-context), thereby overriding any existing defaults for their asset [see PR #850]

* API users (and hosts) are warned in case a fallback scheduling policy has been used to create their schedule (as
part of the the /sensors/<id>/schedules/<uuid> (GET) response message) [see PR #859]

16 Chapter 4. Where to start reading?

https://github.com/FlexMeasures/flexmeasures/pull/884
https://github.com/FlexMeasures/flexmeasures/pull/846
https://github.com/FlexMeasures/flexmeasures/pull/877
https://github.com/FlexMeasures/flexmeasures/pull/892
https://github.com/FlexMeasures/flexmeasures/pull/855
https://github.com/FlexMeasures/flexmeasures/pull/874
https://github.com/FlexMeasures/flexmeasures/pull/879
https://github.com/FlexMeasures/flexmeasures/pull/864
https://flexmeasures.io/016-profitloss-reporter/
https://github.com/FlexMeasures/flexmeasures/pull/808
https://github.com/FlexMeasures/flexmeasures/pull/844
https://github.com/FlexMeasures/flexmeasures/pull/833
https://github.com/FlexMeasures/flexmeasures/pull/849
https://vega.github.io/vega-lite/docs/area.html#properties
https://github.com/FlexMeasures/flexmeasures/pull/851
https://github.com/FlexMeasures/flexmeasures/pull/850
https://github.com/FlexMeasures/flexmeasures/pull/859

FlexMeasures Documentation, Release 0.20.1.dev11

Infrastructure / Support
» Allow additional datetime conversions to quantitative time units, specifically, from timezone-naive and/or dayfirst
datetimes, which can be useful when importing data [see PR #831]

* Add a new tutorial to explain the use of the AggregatorReporter to compute the headroom and the ProfitOrLoss-
Reporter to compute the cost of running a process [see PR #825 and PR #856]

» Updated admin dashboard for inspecting asynchronous tasks (scheduling, forecasting, reporting, etc.), and im-
proved performance and security of the server by upgrading Flask and Flask extensions [see PR #838]

* Script to update dependencies across supported Python versions [see PR #843]
¢ Test all supported Python versions in our CI pipeline (GitHub Actions) [see PR #847]
* Have our CI pipeline (GitHub Actions) build the Docker image and make a schedule [see PR #800]

» Updated documentation on the consequences of setting the FLEXMEASURES_MODE config setting [see PR
#857]

* Implement cache-busting to avoid the need for users to hard refresh the browser when new JavaScript function-
ality is added to the Ul in a new FlexMeasures version [see PR #860]

4.3.14 v0.15.2 | October 2, 2023
Bugfixes

* Fix infeasible problem due to incorrect parsing of soc units of the soc-minima and soc-maxima fields within
the flex-model field [see PR #864]

4.3.15 v0.15.1 | August 28, 2023
Bugfixes

* Fix infeasible problem due to floating point error in SoC targets [see PR #832]

» Use the source to filter beliefs in the AggregatorReporter and fix the case of having multiple sources [see PR
#819]

 Disable HiGHS logs on the standard output when LOGGING_LEVEL=INFO [see PR #824 and PR #820]

* Fix showing sensor data on the asset page of public assets, and searching for annotations on public assets [see
PR #830]

* Make the command flexmeasures add schedule for-storage to pass the soc-target timestamp to the flex model as
strings instead of pd.Timestamp [see PR #834]

4.3. FlexMeasures Changelog 17

https://github.com/FlexMeasures/flexmeasures/pull/831
https://github.com/FlexMeasures/flexmeasures/pull/825
https://github.com/FlexMeasures/flexmeasures/pull/856
https://github.com/FlexMeasures/flexmeasures/pull/838
https://github.com/FlexMeasures/flexmeasures/pull/843
https://github.com/FlexMeasures/flexmeasures/pull/847
https://github.com/FlexMeasures/flexmeasures/pull/800
https://github.com/FlexMeasures/flexmeasures/pull/857
https://github.com/FlexMeasures/flexmeasures/pull/857
https://github.com/FlexMeasures/flexmeasures/pull/860
https://github.com/FlexMeasures/flexmeasures/pull/864
https://github.com/FlexMeasures/flexmeasures/pull/832
https://github.com/FlexMeasures/flexmeasures/pull/819
https://github.com/FlexMeasures/flexmeasures/pull/819
https://github.com/FlexMeasures/flexmeasures/pull/824
https://github.com/FlexMeasures/flexmeasures/pull/826
https://github.com/FlexMeasures/flexmeasures/pull/830
https://github.com/FlexMeasures/flexmeasures/pull/834

FlexMeasures Documentation, Release 0.20.1.dev11

4.3.16 v0.15.0 | August 9, 2023

Note: Read more on these features on the FlexMeasures blog.

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Warning: Upgrading to this version requires installing the LP/MILP solver HiGHS using pip install
highspy.

Warning: If your server is running in play mode (FLEXMEASURES_MODE = "play"), users will be able to see
sensor data from any account [see PR #740].

New features

Add ProcessScheduler class to optimize the starting time of processes one of the policies developed (INFLEXI-
BLE, SHIFTABLE and BREAKABLE), accessible via the CLI command flexmeasures add schedule for-process
[see PR #729 and PR #768]

Users can select a new chart type (daily heatmap) on the sensor page of the UI, showing how sensor values are
distributed over the time of day [see PR #715]

Added API endpoints /sensors/<id> (GET) for fetching a single sensor, /sensors (POST) for adding a sensor,
/sensors/<id> (PATCH) for updating a sensor and /sensors/<id> (DELETE) for deleting a sensor [see PR #759]
and [see PR #767] and [see PR #773] and [see PR #784]

Users are warned in the UI on when the data they are seeing includes one or more Daylight Saving Time (DST)
transitions, and heatmaps (see previous feature) visualize these transitions intuitively [see PR #723]

Allow deleting multiple sensors with a single call to flexmeasures delete sensor by passing the --id
option multiple times [see PR #734]

Make it a lot easier to read off the color legend on the asset page, especially when showing many sensors, as
they will now be ordered from top to bottom in the same order as they appear in the chart (as defined in the
sensors_to_show attribute), rather than alphabetically [see PR #742]

Users on FlexMeasures servers in play mode (FLEXMEASURES_MODE = "play")can use the sensors_to_show
attribute to show any sensor on their asset pages, rather than only sensors registered to assets in their own account
or to public assets [see PR #740]

Having percentages within the [0, 100] domain is such a common use case that we now always include it in
sensor charts with % units, making it easier to read off individual charts and also to compare across charts [see
PR #739]

DataSource table now allows storing arbitrary attributes as a JSON (without content validation), similar to the
Sensor and GenericAsset tables [see PR #750]

Users will be able to see (e.g. in the UlI) exactly which reporter created the report (saved as sensor data), and
hosts will be able to identify exactly which configuration was used to create a given report [see PR #751 and PR
#788]

18

Chapter 4. Where to start reading?

https://flexmeasures.io/015-process-scheduling-heatmap/
https://www.github.com/FlexMeasures/flexmeasures/pull/740
https://www.github.com/FlexMeasures/flexmeasures/pull/729
https://www.github.com/FlexMeasures/flexmeasures/pull/768
https://www.github.com/FlexMeasures/flexmeasures/pull/715
https://www.github.com/FlexMeasures/flexmeasures/pull/759
https://www.github.com/FlexMeasures/flexmeasures/pull/767
https://www.github.com/FlexMeasures/flexmeasures/pull/773
https://www.github.com/FlexMeasures/flexmeasures/pull/784
https://www.github.com/FlexMeasures/flexmeasures/pull/723
https://www.github.com/FlexMeasures/flexmeasures/pull/734
https://www.github.com/FlexMeasures/flexmeasures/pull/742
https://www.github.com/FlexMeasures/flexmeasures/pull/740
https://www.github.com/FlexMeasures/flexmeasures/pull/739
https://www.github.com/FlexMeasures/flexmeasures/pull/750
https://www.github.com/FlexMeasures/flexmeasures/pull/751
https://www.github.com/FlexMeasures/flexmeasures/pull/788
https://www.github.com/FlexMeasures/flexmeasures/pull/788

FlexMeasures Documentation, Release 0.20.1.dev11

* The CLI flexmeasures add report now allows passing config and parameters in YAML format as files or editable
via the system’s default editor [see PR #752 and PR #788]

* The CLI now allows to set lists and dicts as asset & sensor attributes (formerly only single values) [see PR #762]

Bugfixes

* Add binary constraint to avoid energy leakages during periods with negative prices [see PR #770]

Infrastructure / Support

* Add support for profiling Flask API calls using pyinstrument (if installed). Can be enabled by setting the
environment variable FLEXMEASURES_PROFILE_REQUESTS to True [see PR #722]

* The endpoint [POST] /health/ready returns the status of the Redis connection, if configured [see PR #699]
* Document the device_scheduler linear program [see PR #764]

* Add support for HIGHS solver [see PR #766]

* Add support for installing FlexMeasures under Python 3.11 [see PR #771]

« Start keeping sets of pinned requirements per supported Python version, which also fixes recent Docker build
problem [see PR #776]

* Removed obsolete code dealing with deprecated data models (e.g. assets, markets and weather sensors), and
sunset the fmO scheme for entity addresses [see PR #695 and project 11]

4.3.17 v0.14.3 | October 2, 2023
Bugfixes

* Fix infeasible problem due to incorrect parsing of soc units of the soc-minima and soc-maxima fields within
the flex-model field [see PR #864]

4.3.18 v0.14.2 | July 25, 2023

Bugfixes

e The error handling for infeasible constraints in storage.py was given too many arguments, which caused the
response from the API to be unhelpful when a schedule was requested with infeasible constraints [see PR #758]

4.3.19 v0.14.1 | June 26, 2023
Bugfixes

* Relax constraint validation of StorageScheduler to accommodate violations caused by floating point precision
[see PR #731]

* Avoid saving any NaN (not a number) values to the database, when calling flexmeasures add report [see
PR #735]

* Fix browser console error when loading asset or sensor page with only a single data point [see PR #732]

4.3. FlexMeasures Changelog 19

https://www.github.com/FlexMeasures/flexmeasures/pull/752
https://www.github.com/FlexMeasures/flexmeasures/pull/788
https://www.github.com/FlexMeasures/flexmeasures/pull/762
https://www.github.com/FlexMeasures/flexmeasures/pull/770
https://www.github.com/FlexMeasures/flexmeasures/pull/722
api/v3_0.html#get--api-v3_0-health-ready
https://www.github.com/FlexMeasures/flexmeasures/pull/699
https://www.github.com/FlexMeasures/flexmeasures/pull/764
https://highs.dev/
https://www.github.com/FlexMeasures/flexmeasures/pull/766
https://www.github.com/FlexMeasures/flexmeasures/pull/771
https://www.github.com/FlexMeasures/flexmeasures/pull/776
https://www.github.com/FlexMeasures/flexmeasures/pull/695
https://www.github.com/FlexMeasures/flexmeasures/projects/11
https://github.com/FlexMeasures/flexmeasures/pull/864
https://github.com/FlexMeasures/flexmeasures/pull/758
https://www.github.com/FlexMeasures/flexmeasures/pull/731
https://www.github.com/FlexMeasures/flexmeasures/pull/735
https://www.github.com/FlexMeasures/flexmeasures/pull/732

FlexMeasures Documentation, Release 0.20.1.dev11

* Fix showing multiple sensors with bare 3-letter currency code as their units (e.g. EUR) in one chart [see PR
#738]

* Fix defaults for the --start-offset and --end-offset options to flexmeasures add report, which
weren’t being interpreted in the local timezone of the reporting sensor [see PR #744]

* Relax constraint for overlaying plot traces for sensors with various resolutions, making it possible to show e.g.
two price sensors in one chart, where one of them records hourly prices and the other records quarter-hourly
prices [see PR #743]

* Resolve bug where different page loads would potentially influence the time axis of each other’s charts, by avoid-
ing mutation of shared field definitions [see PR #746]

4.3.20 v0.14.0 | June 15, 2023

Note: Read more on these features on the FlexMeasures blog.

New features

e Allow setting a storage efficiency using the new storage-efficiency field when calling /sen-
sors/<id>/schedules/trigger (POST) through the API (within the flex-model field), or when calling
flexmeasures add schedule for-storage through the CLI [see PR #679]

e Allow setting multiple SoC maxima and minima constraints for the StorageScheduler, using the new
soc-minima and soc-maxima fields when calling /sensors/<id>/schedules/trigger (POST) through the API
(within the flex-model field) [see PR #680]

* New CLI command flexmeasures add report to calculate a custom report from sensor data and save the
results to the database, with the option to export them to a CSV or Excel file [see PR #659]

¢ New CLI commands flexmeasures show reporters and flexmeasures show schedulers to list avail-
able reporters and schedulers, respectively, including any defined in registered plugins [see PR #686 and PR
#708]

» Allow creating public assets through the CLI, which are available to all users [see PR #727]

Bugfixes

* Fix charts not always loading over https in secured scenarios [see PR #716]

Infrastructure / Support

¢ Introduction of the classes Reporter, PandasReporter and AggregatorReporter to help customize your own re-
porter functions (experimental) [see PR #641 and PR #712]

* The setting FLEXMEASURES_PLUGINS can be set as environment variable now (as a comma-separated list)
[see PR #660]

 Packaging was modernized to stop calling setup.py directly [see PR #671]

* Remove API versions 1.0, 1.1, 1.2, 1.3 and 2.0, while making sure that sunset endpoints keep returning HTTP
status 410 (Gone) responses [see PR #667 and PR #717]

* Support Pandas 2 [see PR #673]

20

Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/738
https://www.github.com/FlexMeasures/flexmeasures/pull/738
https://www.github.com/FlexMeasures/flexmeasures/pull/744
https://www.github.com/FlexMeasures/flexmeasures/pull/743
https://www.github.com/FlexMeasures/flexmeasures/pull/746
https://flexmeasures.io/014-reporting-power/
https://www.github.com/FlexMeasures/flexmeasures/pull/679
https://www.github.com/FlexMeasures/flexmeasures/pull/680
https://www.github.com/FlexMeasures/flexmeasures/pull/659
https://www.github.com/FlexMeasures/flexmeasures/pull/686
https://github.com/FlexMeasures/flexmeasures/pull/708
https://github.com/FlexMeasures/flexmeasures/pull/708
https://github.com/FlexMeasures/flexmeasures/pull/727
https://www.github.com/FlexMeasures/flexmeasures/pull/716
https://www.github.com/FlexMeasures/flexmeasures/pull/641
https://www.github.com/FlexMeasures/flexmeasures/pull/712
https://www.github.com/FlexMeasures/flexmeasures/pull/660
https://www.github.com/FlexMeasures/flexmeasures/pull/671
https://www.github.com/FlexMeasures/flexmeasures/pull/667
https://www.github.com/FlexMeasures/flexmeasures/pull/717
https://www.github.com/FlexMeasures/flexmeasures/pull/673

FlexMeasures Documentation, Release 0.20.1.dev11

* Add code documentation from package structure and docstrings to official docs [see PR #698]

Warning: The setting FLEXMFEASURES_PLUGIN_PATHS has been deprecated since v0.7. It has now been
sunset. Please replace it with FLEXMEASURES_PLUGINS.

4.3.21 v0.13.3 | June 10, 2023
Bugfixes

* Fix forwarding arguments in deprecated util function [see PR #719]

4.3.22 v0.13.2 | June 9, 2023
Bugfixes

« Fix failing to save results of scheduling and reporting on subsequent calls for the same time period [see PR #709]

4.3.23 v0.13.1 | May 12, 2023
Bugfixes

* @deprecated not returning the output of the decorated function [see PR #678]

4.3.24 v0.13.0 | May 1, 2023

Warning: Sunset notice for API versions 1.0, 1.1, 1.2, 1.3 and 2.0: after upgrading to flexmeasures==0.
13, users of these API versions may receive HTITP status 410 (Gone) responses. See the documentation for
deprecation and sunset. The relevant endpoints have been deprecated since flexmeasures==0.12.

Warning: The API endpoint ([POST] /sensors/(id)/schedules/trigger) to make new schedules sunsets the depre-
cated (since v0.12) storage flexibility parameters (they move to the flex-model parameter group), as well as the
parameters describing other sensors (they move to flex-context).

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Note: Read more on these features on the FlexMeasures blog.

4.3. FlexMeasures Changelog 21

https://www.github.com/FlexMeasures/flexmeasures/pull/698
https://github.com/FlexMeasures/flexmeasures/pull/719
https://github.com/FlexMeasures/flexmeasures/pull/709
https://www.github.com/FlexMeasures/flexmeasures/pull/678
https://flexmeasures.readthedocs.io/en/latest/api/introduction.html#deprecation-and-sunset
https://flexmeasures.readthedocs.io/en/latest/api/introduction.html#deprecation-and-sunset
api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
https://flexmeasures.io/013-overlay-charts/

FlexMeasures Documentation, Release 0.20.1.dev11

New features

» Keyboard control over replay [see PR #562]

 Overlay charts (e.g. power profiles) on the asset page using the sensors_to_show attribute, and distinguish plots

by source (different trace), sensor (different color) and source type (different stroke dash) [see PR #534]

e The FLEXMEASURES_MAX_PLANNING_HORIZON config setting can also be set as an integer number of planning

steps rather than just as a fixed duration, which makes it possible to schedule further ahead in coarser time steps
[see PR #583]

* Different text styles for CLI output for errors, warnings or success messages [see PR #609]

* Added API endpoints and webpages /accounts and /accounts/<id> to list accounts and show an overview of the
assets, users and account roles of an account [see PR #605]

* Avoid redundantly recomputing jobs that are triggered without a relevant state change, where the FLEXMEA-
SURES_JOB_CACHE_TTL config setting defines the time in which the jobs with the same arguments are not
being recomputed [see PR #616]

Bugfixes

* Fix copy button on tutorials and other documentation, so that only commands are copied and no output or com-
ments [see PR #636]

e GET /api/v3_0/assets/public should ask for token authentication and not forward to login page [see PR #649]

Infrastructure / Support

* Support blackout tests for sunset API versions [see PR #651]
Sunset API versions 1.0, 1.1, 1.2, 1.3 and 2.0 [see PR #650]

* Sunset several API fields for /sensors/<id>/schedules/trigger (POST) that have moved into the flex-model or
flex-context fields [see PR #580]

¢ Fix broken make show-data-model command [see PR #638]

* Bash script for a clean database to run toy-tutorial by using make clean-db db_name=database_name command
[see PR #640]

4.3.25 v0.12.3 | February 28, 2023

Bugfixes

* Fix premature deserialization of flex-context field for /sensors/<id>/schedules/trigger (POST) [see PR #593]

22

Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/562
https://www.github.com/FlexMeasures/flexmeasures/pull/534
https://www.github.com/FlexMeasures/flexmeasures/pull/583
https://www.github.com/FlexMeasures/flexmeasures/pull/609
https://github.com/FlexMeasures/flexmeasures/pull/605
https://www.github.com/FlexMeasures/flexmeasures/pull/616
https://www.github.com/FlexMeasures/flexmeasures/pull/636
https://www.github.com/FlexMeasures/flexmeasures/pull/649
https://www.github.com/FlexMeasures/flexmeasures/pull/651
https://www.github.com/FlexMeasures/flexmeasures/pull/650
https://www.github.com/FlexMeasures/flexmeasures/pull/580
https://www.github.com/FlexMeasures/flexmeasures/pull/638
https://github.com/FlexMeasures/flexmeasures/pull/640
https://www.github.com/FlexMeasures/flexmeasures/pull/593

FlexMeasures Documentation, Release 0.20.1.dev11

4.3.26 v0.12.2 | February 4, 2023

Bugfixes

Fix CLI command flexmeasures schedule for-storage without --as-job flag [see PR #589]

4.3.27 v0.12.1 | January 12, 2023

Bugfixes

Fix validation of (deprecated) API parameter roundtrip-efficiency [see PR #582]

4.3.28 v0.12.0 | January 4, 2023

Warning: After upgrading to flexmeasures==0.12, users of API versions 1.0, 1.1, 1.2, 1.3 and 2.0 will receive
"Deprecation" and "Sunset" response headers, and warnings are logged for FlexMeasures hosts whenever users
call API endpoints in these deprecated API versions. The relevant endpoints are planned to become unresponsive
in flexmeasures==0.13.

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Note: Read more on these features on the FlexMeasures blog.

New features

Hit the replay button to visually replay what happened, available on the sensor and asset pages [see PR #463 and
PR #560]

Ability to provide your own custom scheduling function [see PR #505]

Visually distinguish forecasts/schedules (dashed lines) from measurements (solid lines), and expand the tooltip
with timing info regarding the forecast/schedule horizon or measurement lag [see PR #503]

The asset page also allows to show sensor data from other assets that belong to the same account [see PR #500]

The CLI command flexmeasures monitor latest-login supports to check if (bot) users who are expected
to contact FlexMeasures regularly (e.g. to send data) fail to do so [see PR #541]

The CLI command flexmeasures show beliefs supports showing beliefs data in a custom resolution and/or
timezone, and also saving the shown beliefs data to a CSV file [see PR #519]

Improved import of time series data from CSV file: 1) drop duplicate records with warning, 2) allow configuring
which column contains explicit recording times for each data point (use case: import forecasts) [see PR #501],
3) localize timezone naive data, 4) support reading in datetime and timedelta values, 5) remove rows with NaN
values, and 6) filter by values in specific columns [see PR #521]

Filter data by source in the API endpoint /sensors/data (GET) [see PR #543]

4.3.

FlexMeasures Changelog 23

https://www.github.com/FlexMeasures/flexmeasures/pull/589
https://www.github.com/FlexMeasures/flexmeasures/pull/582
https://flexmeasures.io/012-replay-custom-scheduling/
https://www.github.com/FlexMeasures/flexmeasures/pull/463
https://www.github.com/FlexMeasures/flexmeasures/pull/560
https://www.github.com/FlexMeasures/flexmeasures/pull/505
https://www.github.com/FlexMeasures/flexmeasures/pull/503
https://www.github.com/FlexMeasures/flexmeasures/pull/500
https://www.github.com/FlexMeasures/flexmeasures/pull/541
https://www.github.com/FlexMeasures/flexmeasures/pull/519
https://www.github.com/FlexMeasures/flexmeasures/pull/501
https://www.github.com/FlexMeasures/flexmeasures/pull/521
https://www.github.com/FlexMeasures/flexmeasures/pull/543

FlexMeasures Documentation, Release 0.20.1.dev11

* Allow posting null values to /sensors/data (POST) to correctly space time series that include missing values

(the missing values are not stored) [see PR #549]

* Allow setting a custom planning horizon when calling /sensors/<id>/schedules/trigger (POST), using the new

duration field [see PR #568]

* New resampling functionality for instantaneous sensor data: 1) flexmeasures show beliefs can now handle

showing (and saving) instantaneous sensor data and non-instantaneous sensor data together, and 2) the API
endpoint /sensors/data (GET) now allows fetching instantaneous sensor data in a custom frequency, by using
the “resolution” field [see PR #542]

Bugfixes

The CLI command flexmeasures show beliefs now supports plotting time series data that includes NaN
values, and provides better support for plotting multiple sensors that do not share the same unit [see PR #516
and PR #539]

Fixed JSON wrapping of return message for /sensors/data (GET) [see PR #543]

Consistent CLI/UI support for asset lat/Ing positions up to 7 decimal places (previously the UI rounded to 4
decimal places, whereas the CLI allowed more than 4) [see PR #522]

Stop trimming the planning window in response to price availability, which is a problem when SoC targets occur
outside of the available price window, by making a simplistic assumption about future prices [see PR #538]

Faster loading of initial charts and calendar date selection [see PR #533]

Infrastructure / Support

Reduce size of Docker image (from 2GB to 1.4GB) [see PR #512]
Allow extra requirements to be freshly installed when running docker-compose up [see PR #528]
Remove bokeh dependency and obsolete Ul views [see PR #476]

Fix flexmeasures db-ops dump and flexmeasures db-ops restore not working in docker containers
[see PR #530] and incorrectly reporting a success when pg_dump and pg_restore are not installed [see PR #526]

Plugins can save BeliefsSeries, too, instead of just BeliefsDataFrames [see PR #523]

Improve documentation and code w.r.t. storage flexibility modelling — prepare for handling other schedulers &
merge battery and car charging schedulers [see PR #511, PR #537 and PR #566]

Revised strategy for removing unchanged beliefs when saving data: retain the oldest measurement (ex-post be-
lief), too [see PR #518]

Scheduling test for maximizing self-consumption, and improved time series db queries for fixed tariffs (and other
long-term constants) [see PR #532]

Clean up table formatting for flexmeasures show CLI commands [see PR #540]

Add "Deprecation” and "Sunset" response headers for API users of deprecated API versions, and log warn-
ings for FlexMeasures hosts when users still use them [see PR #554 and PR #565]

Explain how to avoid potential SMTPRecipientsRefused errors when using FlexMeasures in combination with
a mail server [see PR #558]

Set a limit to the allowed planning window for API users, using the FLEXMEASURES_MAX_PLANNING_HORIZON
setting [see PR #568]

24

Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/549
https://www.github.com/FlexMeasures/flexmeasures/pull/568
https://www.github.com/FlexMeasures/flexmeasures/pull/542
https://www.github.com/FlexMeasures/flexmeasures/pull/516
https://www.github.com/FlexMeasures/flexmeasures/pull/539
https://www.github.com/FlexMeasures/flexmeasures/pull/543
https://www.github.com/FlexMeasures/flexmeasures/pull/522
https://www.github.com/FlexMeasures/flexmeasures/pull/538
https://www.github.com/FlexMeasures/flexmeasures/pull/533
https://www.github.com/FlexMeasures/flexmeasures/pull/512
https://www.github.com/FlexMeasures/flexmeasures/pull/528
https://www.github.com/FlexMeasures/flexmeasures/pull/476
https://www.github.com/FlexMeasures/flexmeasures/pull/530
https://www.github.com/FlexMeasures/flexmeasures/pull/526
https://www.github.com/FlexMeasures/flexmeasures/pull/523
https://www.github.com/FlexMeasures/flexmeasures/pull/511
https://www.github.com/FlexMeasures/flexmeasures/pull/537
https://www.github.com/FlexMeasures/flexmeasures/pull/566
https://www.github.com/FlexMeasures/flexmeasures/pull/518
https://www.github.com/FlexMeasures/flexmeasures/pull/532
https://www.github.com/FlexMeasures/flexmeasures/pull/540
https://www.github.com/FlexMeasures/flexmeasures/pull/554
https://www.github.com/FlexMeasures/flexmeasures/pull/565
https://www.github.com/FlexMeasures/flexmeasures/pull/558
https://www.github.com/FlexMeasures/flexmeasures/pull/568

FlexMeasures Documentation, Release 0.20.1.dev11

Warning: The API endpoint ([POST] /sensors/(id)/schedules/trigger) to make new schedules will (in v0.13) sun-
set the storage flexibility parameters (they move to the flex-model parameter group), as well as the parameters
describing other sensors (they move to flex-context).

Warning: The CLI command flexmeasures monitor tasks has been deprecated (it’s being renamed to
flexmeasures monitor last-run). The old name will be sunset in version 0.13.

Warning: The CLI command flexmeasures add schedule has been renamed to flexmeasures add
schedule for-storage. The old name will be sunset in version 0.13.

4.3.29 v0.11.3 | November 2, 2022
Bugfixes

* Fix scheduling with imperfect efficiencies, which resulted in exceeding the device’s lower SoC limit [see PR
#520]

* Fix scheduler for Charge Points when taking into account inflexible devices [see PR #517]

* Prevent rounding asset lat/long positions to 4 decimal places when editing an asset in the UI [see PR #522]

4.3.30 v0.11.2 | September 6, 2022
Bugfixes

* Fix regression for sensors recording non-instantaneous values [see PR #498]

* Fix broken auth check for creating assets with CLI [see PR #497]

4.3.31 v0.11.1 | September 5, 2022
Bugfixes

* Do not fail asset page if none of the sensors has any data [see PR #493]

* Do not fail asset page if one of the shown sensors records instantaneous values [see PR #491]

4.3.32 v0.11.0 | August 28, 2022

New features

* The asset page now shows the most relevant sensor data for the asset [see PR #449]
¢ Individual sensor charts show available annotations [see PR #428]

* New API options to further customize the optimization context for scheduling, including the ability to use dif-
ferent prices for consumption and production (feed-in) [see PR #451]

4.3. FlexMeasures Changelog 25

api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
https://www.github.com/FlexMeasures/flexmeasures/pull/520
https://www.github.com/FlexMeasures/flexmeasures/pull/520
https://www.github.com/FlexMeasures/flexmeasures/pull/517
https://www.github.com/FlexMeasures/flexmeasures/pull/522
https://www.github.com/FlexMeasures/flexmeasures/pull/498
https://www.github.com/FlexMeasures/flexmeasures/pull/497
https://www.github.com/FlexMeasures/flexmeasures/pull/493
https://www.github.com/FlexMeasures/flexmeasures/pull/491
https://www.github.com/FlexMeasures/flexmeasures/pull/449
https://www.github.com/FlexMeasures/flexmeasures/pull/428
https://www.github.com/FlexMeasures/flexmeasures/pull/451

FlexMeasures Documentation, Release 0.20.1.dev11

* Admins can group assets by account on dashboard & assets page [see PR #461]

Collapsible side-panel (hover/swipe) used for date selection on sensor charts, and various styling improvements
[see PR #447 and PR #448]

Add CLI command flexmeasures jobs show-queues [see PR #455]
e Switched from 12-hour AM/PM to 24-hour clock notation for time series chart axis labels [see PR #446]

* Get data in a given resolution [see PR #458]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

* Do not fail asset page if entity addresses cannot be built [see PR #457]
* Asynchronous reloading of a chart’s dataset relies on that chart already having been embedded [see PR #472]

» Time scale axes in sensor data charts now match the requested date range, rather than stopping at the edge of the
available data [see PR #449]

¢ The docker-based tutorial now works with UI on all platforms (port 5000 did not expose on MacOS) [see PR
#465]

¢ Fix interpretation of scheduling results in toy tutorial [see PR #466 and PR #475]
* Avoid formatting datetime.timedelta durations as nominal ISO durations [see PR #459]

¢ Account admins cannot add assets to other accounts any more; and they are shown a button for asset creation in
UI [see PR #488]

Infrastructure / Support

* Docker compose stack now with Redis worker queue [see PR #455]

* Allow access tokens to be passed as env vars as well [see PR #443]

* Queue workers can get initialised without a custom name and name collisions are handled [see PR #455]
* New API endpoint to get public assets [see PR #461]

* Allow editing an asset’s JSON attributes through the UI [see PR #474]

* Allow a custom message when monitoring latest run of tasks [see PR #489]

4.3.33 v0.10.1 | August 12, 2022
Bugfixes

* Fix some UI styling regressions in e.g. color contrast and hover effects [see PR #441]

26 Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/461
https://www.github.com/FlexMeasures/flexmeasures/pull/447
https://www.github.com/FlexMeasures/flexmeasures/pull/448
https://www.github.com/FlexMeasures/flexmeasures/pull/455
https://www.github.com/FlexMeasures/flexmeasures/pull/446
https://www.github.com/FlexMeasures/flexmeasures/pull/458
https://flexmeasures.io/011-better-data-views/
https://www.github.com/FlexMeasures/flexmeasures/pull/457
https://www.github.com/FlexMeasures/flexmeasures/pull/472
https://www.github.com/FlexMeasures/flexmeasures/pull/449
https://www.github.com/FlexMeasures/flexmeasures/pull/465
https://www.github.com/FlexMeasures/flexmeasures/pull/465
https://www.github.com/FlexMeasures/flexmeasures/pull/466
https://www.github.com/FlexMeasures/flexmeasures/pull/475
https://www.github.com/FlexMeasures/flexmeasures/pull/459
https://www.github.com/FlexMeasures/flexmeasures/pull/488
https://www.github.com/FlexMeasures/flexmeasures/pull/455
https://www.github.com/FlexMeasures/flexmeasures/pull/443
https://www.github.com/FlexMeasures/flexmeasures/pull/455
https://www.github.com/FlexMeasures/flexmeasures/pull/461
https://www.github.com/FlexMeasures/flexmeasures/pull/474
https://www.github.com/FlexMeasures/flexmeasures/pull/489
https://www.github.com/FlexMeasures/flexmeasures/pull/441

FlexMeasures Documentation, Release 0.20.1.dev11

4.3.34 v0.10.0 | May 8, 2022
New features

* New design for FlexMeasures’ UI back office [see PR #425]
* Improve legibility of chart axes [see PR #413]
» API provides health readiness check at /api/v3_0/health/ready [see PR #416]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

* Fix small problems in support for the admin-reader role & role-based authorization [see PR #422]

Infrastructure / Support

* Dockerfile to run FlexMeasures in container; also docker-compose file [see PR #416]
» Unit conversion prefers shorter units in general [see PR #415]
* Shorter CI builds in Github Actions by caching Python environment [see PR #361]
* Allow to filter data by source using a tuple instead of a list [see PR #421]
4.3.35 v0.9.4 | April 28, 2022
Bugfixes

* Support checking validity of custom units (i.e. non-SI, non-currency units) [see PR #424]

4.3.36 v0.9.3 | April 15, 2022
Bugfixes

 Let registered plugins use CLI authorization [see PR #411]

4.3.37 v0.9.2 | April 10, 2022
Bugfixes

¢ Prefer unit conversions to short stock units [see PR #412]

« Fix filter for selecting one deterministic belief per event, which was duplicating index levels [see PR #414]

4.3. FlexMeasures Changelog 27

https://www.github.com/FlexMeasures/flexmeasures/pull/425
https://www.github.com/FlexMeasures/flexmeasures/pull/413
https://www.github.com/FlexMeasures/flexmeasures/pull/416
https://flexmeasures.io/010-docker-styling/
https://www.github.com/FlexMeasures/flexmeasures/pull/422
https://www.github.com/FlexMeasures/flexmeasures/pull/416
https://www.github.com/FlexMeasures/flexmeasures/pull/415
https://www.github.com/FlexMeasures/flexmeasures/pull/361
https://www.github.com/FlexMeasures/flexmeasures/pull/421
https://www.github.com/FlexMeasures/flexmeasures/pull/424
https://www.github.com/FlexMeasures/flexmeasures/pull/411
https://www.github.com/FlexMeasures/flexmeasures/pull/412
https://www.github.com/FlexMeasures/flexmeasures/pull/414

FlexMeasures Documentation, Release 0.20.1.dev11

4.3.38 v0.9.1 | March 31, 2022

Bugfixes

Fix auth bug not masking locations of inaccessible assets on map [see PR #409]
Fix CLI auth check [see PR #407]
Fix resampling of sensor data for scheduling [see PR #406]

4.3.39 v0.9.0 | March 25, 2022

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

New features

Three new CLI commands for cleaning up your database: delete 1) unchanged beliefs, 2) NaN values or 3) a
sensor and all of its time series data [see PR #328]

Add CLI option to pass a data unit when reading in time series data from CSV, so data can automatically be
converted to the sensor unit [see PR #341]

Add CLI option to specify custom strings that should be interpreted as NaN values when reading in time series
data from CSV [see PR #357]

Add CLI commands flexmeasures add sensor, flexmeasures add asset-type, flexmeasures add
beliefs (which were experimental features before) [see PR #337]

Add CLI commands for showing organisational structure [see PR #339]
Add CLI command for showing time series data [see PR #379]

Add CLI command for attaching annotations to assets: flexmeasures add holidays adds public holidays
[see PR #343]

Add CLI command for resampling existing sensor data to new resolution [see PR #360]
Add CLI command to delete an asset, with its sensors and data [see PR #395]

Add CLI command to edit/add an attribute on an asset or sensor [see PR #380]

Add CLI command to add a toy account for tutorials and trying things [see PR #368]
Add CLI command to create a charging schedule [see PR #372]

Support for percent (%) and permille (%o) sensor units [see PR #359]

Note:

Read more on these features on the FlexMeasures blog.

28

Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/409
https://www.github.com/FlexMeasures/flexmeasures/pull/407
https://www.github.com/FlexMeasures/flexmeasures/pull/406
https://www.github.com/FlexMeasures/flexmeasures/pull/328
https://www.github.com/FlexMeasures/flexmeasures/pull/341
https://www.github.com/FlexMeasures/flexmeasures/pull/357
https://www.github.com/FlexMeasures/flexmeasures/pull/337
https://www.github.com/FlexMeasures/flexmeasures/pull/339
https://www.github.com/FlexMeasures/flexmeasures/pull/379
https://www.github.com/FlexMeasures/flexmeasures/pull/343
https://www.github.com/FlexMeasures/flexmeasures/pull/360
https://www.github.com/FlexMeasures/flexmeasures/pull/395
https://www.github.com/FlexMeasures/flexmeasures/pull/380
https://www.github.com/FlexMeasures/flexmeasures/pull/368
https://www.github.com/FlexMeasures/flexmeasures/pull/372
https://www.github.com/FlexMeasures/flexmeasures/pull/359
https://flexmeasures.io/090-cli-developer-power/

FlexMeasures Documentation, Release 0.20.1.dev11

Bugfixes
Infrastructure / Support

¢ Plugins can import common FlexMeasures classes (like Asset and Sensor) from a central place, using from
flexmeasures import Asset, Sensor [see PR #354]

Adapt CLI command for entering some initial structure (flexmeasures add structure) to new datamodel
[see PR #349]

* Align documentation requirements with pip-tools [see PR #384]

* Beginning API v3.0 - more REST-like, supporting assets, users and sensor data [see PR #390 and PR #392]

4.3.40 v0.8.0 | January 24, 2022

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Warning: In case you use FlexMeasures for simulations using FLEXMEASURES_MODE = "play", al-
lowing to overwrite data is now set separately using FLEXMEASURES_ALLOW_DATA_OVERWRITE. Add
FLEXMEASURES_ALLOW_DATA_OVERWRITE = True to your config settings to keep the old behaviour.

Note: v0.8.0 is doing much of the work we need to do to move to the new data model (see
note_on_datamodel_transition). We hope to keep the migration steps for users very limited. One thing you’ll notice is
that we are copying over existing data to the new model (which will be kept in sync) with the db upgrade command
(see warning above), which can take a few minutes.

New features

 Bar charts of sensor data for individual sensors, that can be navigated using a calendar [see PR #99 and PR #290]

 Charts with sensor data can be requested in one of the supported [vega-lite themes] (incl. a dark theme) [see PR
#221]

* Mobile friendly (responsive) charts of sensor data, and such charts can be requested with a custom width and
height [see PR #313]

* Schedulers take into account round-trip efficiency if set [see PR #291]
* Schedulers take into account min/max state of charge if set [see PR #325]

* Fallback policies for charging schedules of batteries and Charge Points, in cases where the solver is presented
with an infeasible problem [see PR #267 and PR #270]

Note: Read more on these features on the FlexMeasures blog.

4.3. FlexMeasures Changelog 29

https://www.github.com/FlexMeasures/flexmeasures/pull/354
https://www.github.com/FlexMeasures/flexmeasures/pull/349
https://www.github.com/FlexMeasures/flexmeasures/pull/384
https://www.github.com/FlexMeasures/flexmeasures/pull/390
https://www.github.com/FlexMeasures/flexmeasures/pull/392
https://www.github.com/FlexMeasures/flexmeasures/pull/99
https://www.github.com/FlexMeasures/flexmeasures/pull/290
https://github.com/vega/vega-themes#included-themes
https://www.github.com/FlexMeasures/flexmeasures/pull/221
https://www.github.com/FlexMeasures/flexmeasures/pull/221
https://www.github.com/FlexMeasures/flexmeasures/pull/313
https://www.github.com/FlexMeasures/flexmeasures/pull/291
https://www.github.com/FlexMeasures/flexmeasures/pull/325
https://www.github.com/FlexMeasures/flexmeasures/pull/267
https://www.github.com/FlexMeasures/flexmeasures/pull/270
https://flexmeasures.io/080-better-scheduling-safer-data/

FlexMeasures Documentation, Release 0.20.1.dev11

Deprecations

* The Portfolio and Analytics views are deprecated [see PR #321]

Bugfixes

* Fix recording time of schedules triggered by UDI events [see PR #300]
¢ Set bar width of bar charts based on sensor resolution [see PR #310]

* Fix bug in sensor data charts where data from multiple sources would be stacked, which incorrectly suggested

that the data should be summed, whereas the data represents alternative beliefs [see PR #228]

Infrastructure / Support

Account-based authorization, incl. new decorators for endpoints [see PR #210]

Central authorization policy which lets database models codify who can do what (permission-based) and relieve
API endpoints from this [see PR #234]

Improve data specification for forecasting models using timely-beliefs data [see PR #154]
Properly attribute Mapbox and OpenStreetMap [see PR #292]

Allow plugins to register their custom config settings, so that FlexMeasures can check whether they are set up
correctly [see PR #230 and PR #237]

Add sensor method to obtain just its latest state (excl. forecasts) [see PR #235]
Migrate attributes of assets, markets and weather sensors to our new sensor model [see PR #254 and project 9]

Migrate all time series data to our new sensor data model based on the timely beliefs lib [see PR #286 and project
9]

Support the new asset model (which describes the organisational structure, rather than sensors and data) in Ul and
API - until the transition to our new data model is completed, the new API for assets is at /api/dev/generic_assets
[see PR #251 and PR #290]

Internal search methods return most recent beliefs by default, also for charts, which can make them load a lot
faster [see PR #307 and PR #312]

Support unit conversion for posting sensor data [see PR #283 and PR #293]

Improve the core device scheduler to support dealing with asymmetric efficiency losses of individual devices,
and with asymmetric up and down prices for deviating from previous commitments (such as a different feed-in
tariff) [see PR #291]

Stop automatically triggering forecasting jobs when API calls save nothing new to the database, thereby saving
redundant computation [see PR #303]

30

Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/321
https://www.github.com/FlexMeasures/flexmeasures/pull/300
https://www.github.com/FlexMeasures/flexmeasures/pull/310
https://www.github.com/FlexMeasures/flexmeasures/pull/228
https://www.github.com/FlexMeasures/flexmeasures/pull/210
https://www.github.com/FlexMeasures/flexmeasures/pull/234
https://www.github.com/FlexMeasures/flexmeasures/pull/154
https://www.github.com/FlexMeasures/flexmeasures/pull/292
https://www.github.com/FlexMeasures/flexmeasures/pull/230
https://www.github.com/FlexMeasures/flexmeasures/pull/237
https://www.github.com/FlexMeasures/flexmeasures/pull/235
https://www.github.com/FlexMeasures/flexmeasures/pull/254
https://www.github.com/FlexMeasures/flexmeasures/projects/9
https://github.com/SeitaBV/timely-beliefs
https://www.github.com/FlexMeasures/flexmeasures/pull/286
https://www.github.com/FlexMeasures/flexmeasures/projects/9
https://www.github.com/FlexMeasures/flexmeasures/projects/9
https://www.github.com/FlexMeasures/flexmeasures/pull/251
https://www.github.com/FlexMeasures/flexmeasures/pulls/290
https://www.github.com/FlexMeasures/flexmeasures/pull/307
https://www.github.com/FlexMeasures/flexmeasures/pull/312
https://www.github.com/FlexMeasures/flexmeasures/pull/283
https://www.github.com/FlexMeasures/flexmeasures/pull/293
https://www.github.com/FlexMeasures/flexmeasures/pull/291
https://www.github.com/FlexMeasures/flexmeasures/pull/303

FlexMeasures Documentation, Release 0.20.1.dev11

4.3.41 v0.7.1 | November 8, 2021
Bugfixes

* Fix device messages, which were mixing up older and more recent schedules [see PR #231]

4.3.42 v0.7.0 | October 26, 2021

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Warning: The config setting FLEXMEASURES_PLUGIN_PATHS has been renamed to FLEXMEASURES_PLUGINS.
The old name still works but is deprecated.

New features

¢ Set a logo for the top left corner with the new FLEXMEASURES_MENU_LOGO_PATH setting [see PR #184]

* Add an extra style-sheet which applies to all pages with the new FLEXMEASURES_EXTRA_CSS_PATH set-
ting [see PR #185]

» Data sources can be further distinguished by what model (and version) they ran [see PR #215]

* Enable plugins to automate tests with app context [see PR #220]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

* Fix users resetting their own password [see PR #195]

* Fix scheduling for heterogeneous settings, for instance, involving sensors with different time zones and/or reso-
lutions [see PR #207]

¢ Fix sensors/<id>/chart view [see PR #223]

Infrastructure / Support
» FlexMeasures plugins can be Python packages now, and we provide a cookie-cutter template for this approach
[see PR #182]
¢ Set default timezone for new users using the FLEXMEASURES_TIMEZONE config setting [see PR #190]

* To avoid databases from filling up with irrelevant information, only beliefs data representing changed beliefs are
saved, and unchanged beliefs are dropped [see PR #194]

* Monitored CLI tasks can get better names for identification [see PR #193]
¢ Less custom logfile location, document logging for devs [see PR #196]

» Keep forecasting and scheduling jobs in the queues for only up to one day [see PR #198]

4.3. FlexMeasures Changelog 31

https://www.github.com/FlexMeasures/flexmeasures/pull/231
https://www.github.com/FlexMeasures/flexmeasures/pull/184
https://www.github.com/FlexMeasures/flexmeasures/pull/185
https://www.github.com/FlexMeasures/flexmeasures/pull/215
https://www.github.com/FlexMeasures/flexmeasures/pull/220
https://flexmeasures.io/070-professional-plugins/
https://www.github.com/FlexMeasures/flexmeasures/pull/195
https://www.github.com/FlexMeasures/flexmeasures/pull/207
https://www.github.com/FlexMeasures/flexmeasures/pull/223
https://github.com/FlexMeasures/flexmeasures-plugin-template
https://www.github.com/FlexMeasures/flexmeasures/pull/182
https://www.github.com/FlexMeasures/flexmeasures/pull/190
https://www.github.com/FlexMeasures/flexmeasures/pull/194
https://www.github.com/FlexMeasures/flexmeasures/pull/193
https://www.github.com/FlexMeasures/flexmeasures/pull/196
https://www.github.com/FlexMeasures/flexmeasures/pull/198

FlexMeasures Documentation, Release 0.20.1.dev11

4.3.43 v0.6.1 | October 23, 2021

New features
Bugfixes

¢ Fix (dev) CLI command for adding a GenericAssetType [see PR #173]
* Fix (dev) CLI command for adding a Sensor [see PR #176]
* Fix missing conversion of data source names and ids to DataSource objects [see PR #178]

* Fix GetDeviceMessage to ensure chronological ordering of values [see PR #216]

Infrastructure / Support

4.3.44 v0.6.0 | September 3, 2021

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump). In case you are using experimental developer features and have previously
set up sensors, be sure to check out the upgrade instructions in PR #157. Furthermore, if you want to create custom
user/account relationships while upgrading (otherwise the upgrade script creates accounts based on email domains),
check out the upgrade instructions in PR #159. If you want to use both of these custom upgrade features, do the
upgrade in two steps. First, as described in PR 157 and upgrading up to revision b6d49ed7cceb, then as described
in PR 1509 for the rest.

Warning: The config setting FLEXMEASURES_LISTED_VIEWS has been renamed to
FLEXMEASURES_MENU_LISTED_VIEWS.

Warning: Plugins now need to set their version on their module rather than on their blueprint. See the documen-
tation for writing plugins.

New features
* Multi-tenancy: Supporting multiple customers per FlexMeasures server, by introducing the Account concept,
where accounts have users and assets associated [see PR #159 and PR #163]

¢ In the UI, the root view (“/”"), the platform name and the visible menu items can now be more tightly controlled
(per account roles of the current user) [see also PR #163]

* Analytics view offers grouping of all assets by location [see PR #148]

¢ Add (experimental) endpoint to post sensor data for any sensor. Also supports our ongoing integration with data
internally represented using the timely beliefs lib [see PR #147]

Note: Read more on these features on the FlexMeasures blog.

32 Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/173
https://www.github.com/FlexMeasures/flexmeasures/pull/176
https://www.github.com/FlexMeasures/flexmeasures/pull/178
https://www.github.com/FlexMeasures/flexmeasures/pull/216
https://github.com/FlexMeasures/flexmeasures/pull/157
https://github.com/FlexMeasures/flexmeasures/pull/159
https://flexmeasures.readthedocs.io/en/v0.6.0/dev/plugins.html
https://flexmeasures.readthedocs.io/en/v0.6.0/dev/plugins.html
https://www.github.com/FlexMeasures/flexmeasures/pull/159
https://www.github.com/FlexMeasures/flexmeasures/pull/163
https://www.github.com/FlexMeasures/flexmeasures/pull/163
https://www.github.com/FlexMeasures/flexmeasures/pull/148
https://github.com/SeitaBV/timely-beliefs
https://www.github.com/FlexMeasures/flexmeasures/pull/147
https://flexmeasures.io/v060-multi-tenancy-error-monitoring/

FlexMeasures Documentation, Release 0.20.1.dev11

Bugfixes
Infrastructure / Support

* Add possibility to send errors to Sentry [see PR #143]

* Add CLI task to monitor if tasks ran successfully and recently enough [see PR #146]

* Document how to use a custom favicon in plugins [see PR #152]

¢ Allow plugins to register multiple Flask blueprints [see PR #171]

» Continue experimental integration with timely beliefs lib: link multiple sensors to a single asset [see PR #157]

* The experimental parts of the data model can now be visualised, as well, via make show-data-model (add the
—dev option in Makefile) [also in PR #157]

4.3.45 v0.5.0 | June 7, 2021

Warning: If you retrieve weather forecasts through FlexMeasures: we had to switch to OpenWeatherMap, as Dark
Sky is closing. This requires an update to config variables — the new setting is called OPENWEATHERMAP_API_KEY.

New features

* Allow plugins to overwrite Ul routes and customise the teaser on the login form [see PR #106]
* Allow plugins to customise the copyright notice and credits in the UI footer [see PR #123]

* Display loaded plugins in footer and support plugin versioning [see PR #139]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

* Fix last login date display in user list [see PR #133]

* Choose better forecasting horizons when weather data is posted [see PR #131]

Infrastructure / Support

¢ Add tutorials on how to add and read data from FlexMeasures via its API [see PR #130]
* For weather forecasts, switch from Dark Sky (closed from Aug 1, 2021) to OpenWeatherMap API [see PR #113]

* Entity address improvements: add new id-based finl scheme, better documentation and more validation support
of entity addresses [see PR #81]

¢ Re-use the database between automated tests, if possible. This shaves 2/3rd off of the time it takes for the
FlexMeasures test suite to run [see PR #115]

* Make assets use MW as their default unit and enforce that in CLI, as well (API already did) [see PR #108]
e Let CLI package and plugins use Marshmallow Field definitions [see PR #125]

* add time_utils.get_recent_clock_time_window() function [see PR #135]

4.3. FlexMeasures Changelog 33

https://www.github.com/FlexMeasures/flexmeasures/pull/143
https://www.github.com/FlexMeasures/flexmeasures/pull/146
https://www.github.com/FlexMeasures/flexmeasures/pull/152
https://www.github.com/FlexMeasures/flexmeasures/pull/171
https://github.com/SeitaBV/timely-beliefs
https://github.com/FlexMeasures/flexmeasures/pull/157
https://github.com/FlexMeasures/flexmeasures/pull/157
https://www.github.com/FlexMeasures/flexmeasures/pull/106
https://www.github.com/FlexMeasures/flexmeasures/pull/123
https://www.github.com/FlexMeasures/flexmeasures/pull/139
https://flexmeasures.io/v050-openweathermap-plugin-customisation/
https://www.github.com/FlexMeasures/flexmeasures/pull/133
https://www.github.com/FlexMeasures/flexmeasures/pull/131
https://www.github.com/FlexMeasures/flexmeasures/pull/130
https://www.github.com/FlexMeasures/flexmeasures/pull/113
https://www.github.com/FlexMeasures/flexmeasures/pull/81
https://www.github.com/FlexMeasures/flexmeasures/pull/115
https://www.github.com/FlexMeasures/flexmeasures/pull/108
https://www.github.com/FlexMeasures/flexmeasures/pull/125
https://www.github.com/FlexMeasures/flexmeasures/pull/135

FlexMeasures Documentation, Release 0.20.1.dev11

4.3.46 v0.4.1 | May 7, 2021
Bugfixes

* Fix regression when editing assets in the UI [see PR #122]
* Fixed a regression that stopped asset, market and sensor selection from working [see PR #117]
 Prevent logging out user when clearing the session [see PR #112]

» Prevent user type data source to be created without setting a user [see PR #111]

4.3.47 v0.4.0 | April 29, 2021

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

New features

* Allow for views and CLI functions to come from plugins [see also PR #91]

* Configure the Ul menu with FLEXMEASURES_LISTED_VIEWS [see PR #91]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

¢ Asset edit form displayed wrong error message. Also enabled the asset edit form to display the invalid user input
back to the user [see PR #93]

Infrastructure / Support

» Updated dependencies, including Flask-Security-Too [see PR #82]
* Improved documentation after user feedback [see PR #97]
* Begin experimental integration with timely beliefs lib: Sensor data as TimedBeliefs [see PR #79 and PR #99]

* Add sensors with CLI command currently meant for developers only [see PR #83]

Add data (beliefs about sensor events) with CLI command currently meant for developers only [see PR #85 and
PR #103]

34 Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/122
https://www.github.com/FlexMeasures/flexmeasures/pull/117
https://www.github.com/FlexMeasures/flexmeasures/pull/112
https://github.com/FlexMeasures/flexmeasures/pull/111
https://github.com/FlexMeasures/flexmeasures/pull/91
https://github.com/FlexMeasures/flexmeasures/pull/91
https://flexmeasures.io/v040-plugin-support/
https://www.github.com/FlexMeasures/flexmeasures/pull/93
https://www.github.com/FlexMeasures/flexmeasures/pull/82
https://www.github.com/FlexMeasures/flexmeasures/pull/97
https://github.com/SeitaBV/timely-beliefs
https://www.github.com/FlexMeasures/flexmeasures/pull/79
https://github.com/FlexMeasures/flexmeasures/pull/99
https://github.com/FlexMeasures/flexmeasures/pull/83
https://github.com/FlexMeasures/flexmeasures/pull/85
https://github.com/FlexMeasures/flexmeasures/pull/103

FlexMeasures Documentation, Release 0.20.1.dev11

4.3.48 v0.3.1 | April 9, 2021
Bugfixes

* PostMeterData endpoint was broken in API v2.0 [see PR #95]

4.3.49 v0.3.0 | April 2, 2021

New features

* FlexMeasures can be installed with pip and its CLI commands can be run with flexmeasures [see PR #54]

* Optionally setting recording time when posting data [see PR #41]

¢ Add assets and weather sensors with CLI commands [see PR #74]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

» Show screenshots in documentation and add some missing content [see PR #60]
* Documentation listed 2.0 API endpoints twice [see PR #59]

* Better xrange and title if only schedules are plotted [see PR #67]

e User page did not list number of assets correctly [see PR #64]

* Missing postPrognosis endpoint for >1.0 API blueprints [part of PR #41]

Infrastructure / Support

* Added concept pages to documentation [see PR #65]

* Dump and restore postgres database as CLI commands [see PR #68]
 Improved installation tutorial as part of [PR #54]

* Moved developer docs from Readmes into the main documentation [see PR #73]

* Ensured unique sensor ids for all sensors [see PR #70 and (fix) PR #77]

4.3.50 v0.2.3 | February 27, 2021

New features

¢ Power charts available via the API [see PR #39]
» User management via the API [see PR #25]

» Better visibility of asset icons on maps [see PR #30]

Note: Read more on these features on the FlexMeasures blog.

4.3. FlexMeasures Changelog

35

https://www.github.com/FlexMeasures/flexmeasures/pull/95
https://www.github.com/FlexMeasures/flexmeasures/pull/54
https://www.github.com/FlexMeasures/flexmeasures/pull/41
https://github.com/FlexMeasures/flexmeasures/pull/74
https://flexmeasures.io/v030-pip-install-cli-commands-belief-time-api/
https://www.github.com/FlexMeasures/flexmeasures/pull/60
https://www.github.com/FlexMeasures/flexmeasures/pull/59
https://www.github.com/FlexMeasures/flexmeasures/pull/67
https://www.github.com/FlexMeasures/flexmeasures/pull/64
https://www.github.com/FlexMeasures/flexmeasures/pull/41
https://www.github.com/FlexMeasures/flexmeasures/pull/65
https://github.com/FlexMeasures/flexmeasures/pull/68
https://www.github.com/FlexMeasures/flexmeasures/pull/54
https://github.com/FlexMeasures/flexmeasures/pull/73
https://github.com/FlexMeasures/flexmeasures/pull/70
https://github.com/FlexMeasures/flexmeasures/pull/77
https://www.github.com/FlexMeasures/flexmeasures/pull/39
https://www.github.com/FlexMeasures/flexmeasures/pull/25
https://www.github.com/FlexMeasures/flexmeasures/pull/30
https://flexmeasures.io/v023-user-api-power-chart-api-better-icons/

FlexMeasures Documentation, Release 0.20.1.dev11

Bugfixes

» Fix maps on new asset page (update MapBox 1ib) [see PR #27]
¢ Some asset links were broken [see PR #20]

» Password reset link on account page was broken [see PR #23]

Infrastructure / Support

¢ CI via Github Actions [see PR #1]

* Integration with timely beliefs lib: Sensors [see PR #13]
* Apache 2.0 license [see PR #16]

* Load js & css from CDN [see PR #21]

* Start using marshmallow for input validation, also introducing HTTP status 422 (Unprocessable Entity)
in the API [see PR #25]

* Replace solarpy with pv1lib (due to license conflict) [see PR #16]

 Stop supporting the creation of new users on asset creation (to reduce complexity) [see PR #36]

4.4 Scheduling

Scheduling is the main value-drive of FlexMeasures. We have two major types of schedulers built-in, for storage devices
(usually batteries or hot water storage) and processes (usually in industry).

FlexMeasures computes schedules for energy systems that consist of multiple devices that consume and/or produce
electricity. We model a device as an asset with a power sensor, and compute schedules only for flexible devices, while
taking into account inflexible devices.

* Describing flexibility

* The flex-context

* The flex-models & corresponding schedulers
— Storage

— Shiftable loads (processes)

e Work on other schedulers

4.4.1 Describing flexibility

To compute a schedule, FlexMeasures first needs to assess the flexibility state of the system. This is described by:

¢ the flex-context — information about the system as a whole, in order to assess the value of activating flexi-
bility.

* the flex model — information about the state and possible actions of the flexible device. We will discuss these
per scheduled device type.

36 Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/27
https://www.github.com/FlexMeasures/flexmeasures/pull/20
https://www.github.com/FlexMeasures/flexmeasures/pull/23
https://www.github.com/FlexMeasures/flexmeasures/pull/1
https://github.com/SeitaBV/timely-beliefs
https://www.github.com/FlexMeasures/flexmeasures/pull/13
https://www.github.com/FlexMeasures/flexmeasures/pull/16
https://www.github.com/FlexMeasures/flexmeasures/pull/21
https://www.github.com/FlexMeasures/flexmeasures/pull/25
https://www.github.com/FlexMeasures/flexmeasures/pull/16
https://www.github.com/FlexMeasures/flexmeasures/pull/36

FlexMeasures Documentation, Release 0.20.1.dev11

This information goes beyond the usual time series recorded by an asset’s sensors. It’s being sent through the API when
triggering schedule computation. Some parts of it can be persisted on the asset & sensor model as attributes (that’s
design work in progress).

Let’s dive into the details — what can you tell FlexMeasures about your optimization problem?

4.4.2 The flex-context

The flex-context is independent of the type of flexible device that is optimized. With the flexibility context, we aim
to describe the system in which the flexible assets operate:

Field Example value Description

inflexible-d [3,4] Power sensors that are relevant, but not flexible, such as a sensor recording
rooftop solar power connected behind the main meter, whose production falls
under the same contract as the flexible device(s) being scheduled.

consumption- 5 The sensor that defines the price of consuming energy. This sensor can be
recording market prices, but also CO, - whatever fits your optimization prob-
lem.

production-p 6 The sensor that defines the price of producing energy.

site-power-c "45kW" Maximum/minimum achievable power at the grid connection point' (de-
faults to the Asset attribute capacity_in_mw). A constant limit, or see®.

site-consump "45kW" Maximum consumption power at the grid connection point® (defaults to

the Asset attribute consumption_capacity_in_mw). A constant limit,
or see’. If site-power-capacity is defined, the minimum between the
site-power-capacity and site-consumption-capacity will be used.
site-product "OkW" Maximum production power at the grid connection point’ (defaults to
the Asset attribute production_capacity_in_mw). A constant limit, or
see’. If site-power-capacity is defined, the minimum between the
site-power-capacity and site-production-capacity will be used.

Note: If no (symmetric, consumption and production) site capacity is defined (also not as defaults), the scheduler will
not enforce any bound on the site power. The flexible device can still has its own power limit defined in its flex-model.

I site-consumption-capacity and site-production-capacity allow defining asymmetric contracted transport capacities for each direc-
tion (i.e. production and consumption).

4 For some fields, it is possible to supply a sensor instead of one fixed value ({"sensor": 51}), which allows for more dynamic contexts, for
instance power limits that change over time.

3 Example: with a connection capacity (site-power-capacity) of 1 MVA (apparent power) and a consumption capacity
(site-consumption-capacity) of 800 kW (active power), the scheduler will make sure that the grid outflow doesn’t exceed 800 kW.

2 Example: with a connection capacity (site-power-capacity) of 1 MVA (apparent power) and a production capacity
(site-production-capacity) of 400 kW (active power), the scheduler will make sure that the grid inflow doesn’t exceed 400 kW.

4.4. Scheduling 37

FlexMeasures Documentation, Release 0.20.1.dev11

4.4.3 The flex-models & corresponding schedulers

Storage

For storage devices, the FlexMeasures scheduler deals with the state of charge (SoC) for an optimal outcome. You can
do a lot with this — examples for storage devices are:

batteries

EV batteries connected to charge points

hot water storage (“heat batteries”, where the SoC relates to the water temperature)
pumped hydro storage (SoC is the water level)

water basins (here, SoC is supposed to be low, as water is being pumped out)

buffers of energy-intensive chemicals that are needed in other industry processes

The flex-model for storage describes to the scheduler what the flexible asset’s state is, and what constraints or pref-
erences should be taken into account.

38

Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

Field

Example value

Description

soc-at-start
soc-unit
soc-min

SOoC-max

soc-minima

Il3 . 1||

"kWh" or "MWh"
ll2 . 5"

Il7ll

[{"datetime":

The (estimated) state of charge at the beginning of the schedule (defaults to
0).

The unit in which all SoC related flex-model values are to be interpreted.

A constant lower boundary for all values in the schedule (defaults to 0).

A constant upper boundary for all values in the schedule (defaults to max
soc target, if provided)

Set point(s) that form lower boundaries, e.g. to target a full car battery in the

"2024-02-05T08:(morning. Can be single values or a range (defaults to NaN values).

value: 8.2}]
soc-maxima {"value": Set point(s) that form upper boundaries at certain times. Can be single values
51, "start": or a range (defaults to NaN values).
"2024-02-05T12:(
"end":

"2024-02-05T13::
[{"datetime":
"2024-02-05T0O8:(

soc-targets Exact set point(s) that the scheduler needs to realize (defaults to NaN values).

value: 3.2}]
soc-gain . 1kWh Encode SoC gain per time step. A constant gain every time step, or see*.
soc-usage {"sensor": Encode SoC reduction per time step. A constant loss every time step, or

23} seelee 37,4,

roundtrip-ef "90%" Below 100%, this represents roundtrip losses (of charging & discharging),
usually used for batteries. Can be percent or ratio [0, 1] (defaults to 100%).
charging-eff ".9" Apply efficiency losses only at time of charging, not across roundtrip (de-
faults to 100%). A constant percentage at every step, or see’ 2 374,
discharging- "90%" Apply efficiency losses only at time of discharging, not across roundtrip (de-
faults to 100%). A constant percentage at every step, or see’ 2374,
storage-effi "99.9%" This can encode losses over time, so each time step the energy is held longer
leads to higher losses (defaults to 100%). A constant percentage at every
step, or see"2° 374 Also read’ about applying this value per time step across
longer time spans.
prefer-charg True Policy to apply if conditions are stable (defaults to True, which also signals
a preference to discharge later)
power-capaci 50kW Device-level power constraint. How much power can be applied to this asset
(defaults to the Sensor attribute capacity_in_mw). A constant limit, or
SeePagc 37, 4'
consumption- {"sensor": Device-level power constraint on consumption. How much power can be
563} drawn by this asset. A constant limit, or see™ 374,
production-c OkW (only con- Device-level power constraint on production. How much power can be sup-
sumption) plied by this asset. A constant limit, or see”¢ 37 %,

Usually, not the whole flexibility model is needed. FlexMeasures can infer missing values in the flex model, and even
get them (as default) from the sensor’s attributes.

You can add new storage schedules with the CLI command flexmeasures add schedule for-storage.

If you model devices that buffer energy (e.g. thermal energy storage systems connected to heat pumps), we can use
the same flexibility parameters described above for storage devices. However, here are some tips to model a buffer
correctly:

* Describe the thermal energy content in kWh or MWh.

3 The storage efficiency (e.g. 95% or 0.95) to use for the schedule is applied over each time step equal to the sensor resolution. For example, a
storage efficiency of 95 percent per (absolute) day, for scheduling a 1-hour resolution sensor, should be passed as a storage efficiency of 0.951/24 =
0.997865.

4.4. Scheduling 39

FlexMeasures Documentation, Release 0.20.1.dev11

* Set soc-minima to the accumulative usage forecast.
» Set charging-efficiency to the sensor describing the COP values.
* Set storage-efficiency to a value below 100% to model (heat) loss.

What happens if the flex model describes an infeasible problem for the storage scheduler? Excellent question! It is
highly important for a robust operation that these situations still lead to a somewhat good outcome. From our practical
experience, we derived a StorageFallbackScheduler. It simplifies an infeasible situation by just starting to charge,
discharge, or do neither, depending on the first target state of charge and the capabilities of the asset.

Of course, we also log a failure in the scheduling job, so it’s important to take note of these failures. Often, mis-
configured flex models are the reason.

For a hands-on tutorial on using some of the storage flex-model fields, head over to A flex-modeling tutorial for storage:
Vehicle-to-grid use case and the API documentation for triggering schedules.

Finally, are you interested in the linear programming details behind the storage scheduler? Then head over to Storage
device scheduler: Linear model! You can also review the current flex-model for storage in the code, at flexmeasures.
data.schemas.scheduling.storage.StorageFlexModelSchema.

Shiftable loads (processes)
For processes that can be shifted or interrupted, but have to happen at a constant rate (of consumption), FlexMeasures
provides the ShiftableLoad scheduler. Some examples from practice (usually industry) could be:

* A centrifuge’s daily work of combing through sludge water. Depends on amount of sludge present.

* Production processes with a target amount of output until the end of the current shift. The target usually comes
out of production planning.

* Application of coating under hot temperature, with fixed number of times it needs to happen before some dead-

line.

Field Example value Description

power 15kW Nominal power of the load.

duration PT4H Time that the load needs to lasts.

optimization MAX Objective of the scheduler, to maximize (MAX) or minimize (MIN).

time_restric [{"start": Time periods in which the load cannot be scheduled to run.
"2015-01-02T08:(
"duration":
"PT2H"}]

process_type INFLEXIBLE, Is the load inflexible? Or is there flexibility, to interrupt or shift it?
BREAKABLE or
SHIFTABLE

You can review the current flex-model for processes in the code, at flexmeasures.data.schemas.scheduling.
process.ProcessSchedulerFlexModelSchema.

You can add new shiftable-process schedules with the CLI command flexmeasures add schedule for-process.

40 Chapter 4. Where to start reading?

../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger

FlexMeasures Documentation, Release 0.20.1.dev11

4.4.4 Work on other schedulers

We believe the two schedulers (and their flex-models) we describe here are covering a lot of use cases already. Here
are some thoughts on further innovation:

* Writing your own scheduler. You can always write your own scheduler(see Plugin Customizations). You then
might want to add your own flex model, as well. FlexMeasures will let the scheduler decide which flexibility
model is relevant and how it should be validated.

* We also aim to model situations with more than one flexible asset, and that have different types of flexibility
(e.g. EV charging and smart heating in the same site). This is ongoing architecture design work, and therefore
happens in development settings, until we are happy with the outcomes. Thoughts welcome :)

» Aggregating flexibility of a group of assets (e.g. a neighborhood) and optimizing its aggregated usage (e.g. for
grid congestion support) is also an exciting direction for expansion.

4.5 Forecasting

Scheduling is about the future, and you need some knowledge / expectations about the future to do it.

Of course, the nicest forecasts are the one you don’t have to make yourself (it’s not an easy field), so do use price or
usage forecasts from third parties if available. There are even existing plugins for importing weather forecasts or market
data.

If you need to make your own predictions, forecasting algorithms can be used within FlexMeasures, for instance to
assess the expected profile of future consumption/production.

Warning: This feature is currently under development, we note future plans further below. Get in touch for latest
updates or if you want to help.

* Technical specs

* A use case: automating solar production prediction
* Rolling vs fixed-point

* Regressors

* Performance benchmarks

e Future work

4.5.1 Technical specs
In a nutshell, FlexMeasures uses linear regression and falls back to naive forecasting of the last known value if errors
happen.

Note that what might be even more important than the type of algorithm is the features handed to the model — lagged
values (e.g. value of the same time yesterday) and regressors (e.g. wind speed prediction to forecast wind power
production). Most assets have yearly seasonality (e.g. wind, solar) and therefore forecasts would benefit from >= 2
years of history.

Here are more details:

* The application uses an ordinary least squares auto-regressive model with external variables.

4.5. Forecasting 41

https://github.com/SeitaBV/flexmeasures-openweathermap
https://github.com/SeitaBV/flexmeasures-entsoe
https://github.com/SeitaBV/flexmeasures-entsoe

FlexMeasures Documentation, Release 0.20.1.dev11

» Lagged outcome variables are selected based on the periodicity of the asset (e.g. daily and/or weekly).
* Common external variables are weather forecasts of temperature, wind speed and irradiation.

» Timeseries data with frequent zero values are transformed using a customised Box-Cox transformation.
* To avoid over-fitting, cross-validation is used.

* Before fitting, explicit annotations of expert knowledge to the model (like the definition of asset-specific season-
ality and special time events) are possible.

* The model is currently fit each day for each asset and for each horizon.

4.5.2 A use case: automating solar production prediction

We’ll consider an example that FlexMeasures supports — forecasting an asset that represents solar panels. Here is how
you can ask for forecasts to be made in the CLI:

flexmeasures add forecasts --from-date 2024-02-02 --to-date 2024-02-02 --horizon 6 --
—.sensor 12 --as-job

Sensor 12 would represent the power readings of your solar power, and here you ask for forecasts for one day (2 February,
2024), with a forecast of 6 hours.

The --as-job parameter is optional. If given, the computation becomes a job which a worker needs to pick up. There
is some more information at How forecasting jobs are queued.

4.5.3 Rolling vs fixed-point

These forecasts are rolling forecasts — which means they all have the same horizon. This is useful mostly for analytics
and simulations.

We plan to work on fixed-point forecasts, which would forecast all values from one point in time, with a growing
horizon as the forecasted time is further away. This resembles the real-time situation better.

4.5.4 Regressors

If you want to take regressors into account, in addition to merely past measurements (e.g. weather forecasts, see above),
currently FlexMeasures supports only weather correlations.

The attribute sensor.weather_correlations can be used for this, e.g. for the solar example above you might want
to set this to ["irradiance"”, "temperature"]. FlexMeasures will then try to find an asset with asset type
“weather_station” that has a location near the asset your forecasted sensor belogs to. That weather station should
have sensors with the correlations you entered, and if they have data in a suitable range, the regressors can be used in
your forecasting.

In this weather forecast plugin, we enabled you to collect regressor data for ["temperature"”, "wind speed",
"cloud cover", "irradiance"], at a location you select.

42 Chapter 4. Where to start reading?

https://github.com/SeitaBV/flexmeasures-openweathermap

FlexMeasures Documentation, Release 0.20.1.dev11

4.5.5 Performance benchmarks
Above, we focused on technical ways to achieve forecasting within FlexMeasures. As we mentioned, the results differ,
based on what information you give to the model.

However, let’s discuss performance a little more — how can we measure it and what have we seen? The performance
of FlexMeasures’ forecasting algorithms is indicated by the mean absolute error (MAE) and the weighted absolute
percentage error (WAPE). Power profiles on an asset level often include zero values, such that the mean absolute
percentage error (MAPE), a common statistical measure of forecasting accuracy, is undefined. For such profiles, it is
more useful to report the WAPE, which is also known as the volume weighted MAPE. The MAE of a power profile
gives an indication of the size of the uncertainty in consumption and production. This allows the user to compare an
asset’s predictability to its flexibility, i.e. to the size of possible flexibility activations.

Example benchmarks per asset type are listed in the table below for various assets and forecasting horizons. Amongst
other factors, accuracy is influenced by:

¢ The chosen metric (see below)
* Resolution of the forecast
* Horizon of the forecast
* Asset type
* Location / Weather conditions
 Level of aggregation
Accuracies in the table are reported as 1 minus WAPE, which can be interpreted as follows:
* 100% accuracy denotes that all values are correct.
* 50% accuracy denotes that, on average, the values are wrong by half of the reference value.

* 0% accuracy denotes that, on average, the values are wrong by exactly the reference value (i.e. zeros or twice
the reference value).

* negative accuracy denotes that, on average, the values are off-the-chart wrong (by more than the reference value

itself).
Asset Building Charge Points Solar Wind (offshore) Day-ahead market
Average power per asset 204 W 75W 140 W 518 W
1 - WAPE (1 hour ahead) 93.4 % 87.6 % 952 % 81.6 % 88.0 %
1 - WAPE (6 hours ahead) 92.6 % 73.0 % 83.7% 73.8% 81.9 %
1 - WAPE (24 hours ahead) 92.4 % 65.2 % 46.1 % 60.1 % 81.4 %
1 - WAPE (48 hours ahead) 92.1 % 63.7 % 433 % 56.9 % 72.3 %

4.5.6 Future work

We have mentioned that forecasting within FlexMeasures can become more powerful. Here we summarize what is on
the roadmap for forecasting:

* Add fixed-point forecasting (see above)
* Make features easier to configure, especially regressors
* Add more types of forecasting algorithms, like random forest or even LSTM

* Possibly integrate with existing powerful forecasting tooling, for instance OpenStef or Quartz Solar OS.

4.5. Forecasting 43

https://lfenergy.org/projects/openstef
https://github.com/openclimatefix/Open-Source-Quartz-Solar-Forecast

FlexMeasures Documentation, Release 0.20.1.dev11

4.6 Reporting

FlexMeasures feeds upon raw measurement data (e.g. solar generation) and data from third parties (e.g. weather
forecasts).

However, there are use cases for enriching these raw data by combining them:

* Pre-calculations: For example, from a tariff and some tax rules we compute the real financial impact of price
data.

¢ Post-calculations: To be able to show the customer value, we regularly want to compute things like money or
CO, saved.

These calculations can be done with code, but there’ll be many repetitions.

We added an infrastructure that allows us to define computation pipelines and CLI commands for developers to list
available reporters and trigger their computations regularly:

e flexmeasures show reporters
e flexmeasures add report

The reporter classes we are designing are using pandas under the hood and can be sub-classed, allowing us to build
new reporters from stable simpler ones, and even pipelines. Remember: re-use is developer power!

We believe this infrastructure will become very powerful and enable FlexMeasures hosters and plugin developers to
implement exciting new features.

Below are two quick examples, but you can also dive deeper in Toy example IV: Computing reports.

4.6.1 Example: solar feed-in / self-consumption delta

So here is a glimpse into a reporter we made - it is based on the AggregatorReporter (which is for the combination of
any two sensors). This simplified example reporter basically calculates pv - consumption at grid connection point.
This tells us how much solar power we fed back to the grid (positive values) and/or the amount of grid power within
the overall consumption that did not come from local solar panels (negative values).

This is the configuration of how the computation works:

{
"method" : "sum",
"weights" : {
"pv" : 1.0,
"consumption" : -1.0
}
}

This parameterizes the computation (from which sensors does data come from, which range & where does it go):

{

"input": [

{
llnamell : llpvll ,
"sensor": 1,
"source" : 1,

By

{
"name" : "consumption",

(continues on next page)

44 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

"sensor": 1,
"source" : 2,
}
i
"output": [
{
"sensor": 3,
}
1,
"start" : "2023-01-01T00:00:00+00:00",
"end" : "2023-01-03T00:00:00+00:00",

4.6.2 Example: Profits & losses

A report that should cover a use case right off the shelf for almost everyone using FlexMeasures is the
ProfitOrLossReporter — a reporter to compute how profitable your operation has been. Showing the results of
your optimization is a crucial feature, and now easier than ever.

First, reporters can be stored as data sources, so they are easy to be used repeatedly and the data they generate can
reference them. Our data source has ProfitOrLossReporter as model attribute and these configuration information
stored on its attribute defines the reporter further (the least a ProfitOrLossReporter needs to know is a price):

{
"data_generator": {
"config": {
"consumption_price_sensor": 1
1
}
}

And here are more excerpts from the tutorial mentioned above. Here we configure the input and output:

$ echo
{
'input' : [{'sensor' : 4}],
'output' : [{'sensor' : 9}]

}" > profitorloss-parameters.json

The input sensor stores the power/energy flow, and the output sensor will store the report. Recall that we already
provided the price sensor to use in the reporter’s data source.

$ flexmeasures add report\
--source 6 \
--parameters profitorloss-parameters.json \
--start-offset DB, 1D --end-offset DB, 2D

Here, the ProfitOrLossReporter used as source (with Id 6) is the one we configured above. With the offsets, we
control the timing — we indicate that we want the new report to encompass the day of tomorrow (see Pandas offset
strings).

The report sensor will now store all costs which we know will be made tomorrow by the schedule.

4.6. Reporting 45

FlexMeasures Documentation, Release 0.20.1.dev11

4.7 Toy example: Introduction and setup

This page is a starting point of a series of tutorials that will help you get practical experience with FlexMeasures.
Let’s walk through an example from scratch! We'll ...

* install FlexMeasures

* create an account

* load hourly prices

What do you need? Your own computer, with one of two situations: either you have Docker or your computer supports
Python 3.8+, pip and PostgresDB. The former might be easier, see the installation step below. But you choose.

Below are the flexmeasures CLI commands we’ll run, and which we’ll explain step by step. There are some other
crucial steps for installation and setup, so this becomes a complete example from scratch, but this is the meat:

setup an account with a user and an energy market (ID 1)

$ flexmeasures add toy-account

load prices to optimise the schedule against

§ flexmeasures add beliefs --sensor 1 --source toy-user prices-tomorrow.csv --timezone.,
—Europe/Amsterdam

Okay, let’s get started!

Note: You can copy the commands by hovering on the top right corner of code examples. You'll copy only the
commands, not the output!

4.7.1 Install Flexmeasures and the database

Docker
On your PC
If docker is running on your system, you’re good to go. Otherwise, see here.

We start by installing the FlexMeasures platform, and then use Docker to run a postgres database and tell FlexMeasures
to create all tables.

$ docker pull lfenergy/flexmeasures:latest
$ docker pull postgres
$ docker network create flexmeasures_network

After running these commands, we can start the Postgres database and the FlexMeasures app with the following com-
mands:

$ docker run --rm --name flexmeasures-tutorial-db -e POSTGRES_PASSWORD=fm-db-passwd -e.

- POSTGRES_DB=flexmeasures-db -d --network=flexmeasures_network postgres:latest

$ docker run --rm --name flexmeasures-tutorial-fm --env SQLALCHEMY DATABASE_

- URI=postgresql://postgres: fm-db-passwd@flexmeasures-tutorial-db:5432/flexmeasures-db --
—env SECRET_KEY=notsecret --env FLEXMEASURES_ENV=development --env LOGGING_LEVEL=INFO -
—d --network=flexmeasures_network -p 5000:5000 lfenergy/flexmeasures

To establish the FlexMeasures database structure, execute:

46 Chapter 4. Where to start reading?

https://www.docker.com/
https://www.docker.com/
https://docs.docker.com/get-docker/

FlexMeasures Documentation, Release 0.20.1.dev11

[$ docker exec flexmeasures-tutorial-fm bash -c "flexmeasures db upgrade"

Note: A tip on Linux/macOS — You might have the docker command, but need sudo rights to execute it. alias
docker="sudo docker' enables you to still run this tutorial.

Now - what’s very important to remember is this: The rest of this tutorial will happen inside the
flexmeasures-tutorial-fm container! This is how you hop inside the container and run a terminal there:

[$ docker exec -it flexmeasures-tutorial-fm bash

To leave the container session, hold CTRL-D or type “exit”.

To stop the containers, you can type

$ docker stop flexmeasures-tutorial-db
$ docker stop flexmeasures-tutorial-fm

To start the containers again, do this (note that re-running the docker run commands above deletes and re-creates all
data!):

$ docker start flexmeasures-tutorial-db
$ docker start flexmeasures-tutorial-fm

Note: For newer versions of MacOS, port 5000 is in use by default by Control Center. You can turn this off by going
to System Preferences > Sharing and untick the “Airplay Receiver” box. If you don’t want to do this for some reason,
you can change the host port in the docker run command to some other port, for example 5001. To do this, change -p
5000: 5000 in the command to -p 5001:5000. If you do this, remember that you will have to go to localhost: 5001
in your browser when you want to inspect the FlexMeasures UI.

Note: Got docker-compose? You could run this tutorial with 5 containers :) — Go to Seeing it work: Running the toy
tutorial.

This example is from scratch, so we’ll assume you have nothing prepared but a (Unix) computer with Python (3.8+)
and two well-known developer tools, pip and postgres.

We’ll create a database for FlexMeasures:

$ sudo -i -u postgres
$ createdb -U postgres flexmeasures-db

$ createuser --pwprompt -U postgres flexmeasures-user # enter your password, we'll,,
—use "fm-db-passwd"
$ exit

Then, we can install FlexMeasures itself, set some variables and tell FlexMeasures to create all tables:

$ pip install flexmeasures

$ export SQLALCHEMY_DATABASE_URI="postgresql://flexmeasures-user: fm-db-
—passwd@localhost:5432/flexmeasures-db" SECRET_KEY=notsecret LOGGING_LEVEL="INFO".
—DEBUG=0

$ export FLEXMEASURES_ENV="development"

$ flexmeasures db upgrade

4.7. Toy example: Introduction and setup 47

https://pip.pypa.io
https://www.postgresql.org/download/

FlexMeasures Documentation, Release 0.20.1.dev11

Note: When installing with pip, on some platforms problems might come up (e.g. macOS, Windows). One reason
is that FlexMeasures requires some libraries with lots of C code support (e.g. Numpy). One way out is to use Docker,
which uses a prepared Linux image, so it’ll definitely work.

In case you want to re-run the tutorial, then it’s recommended to delete the old database and create a fresh one. Run
the following command to create a clean database with a new user, where it is optional. If you don’t provide the user,
then the default postgres user will be used to create the database.

[$ make clean-db db_name=flexmeasures-db [db_user=flexmeasures]

4.7.2 Add some structural data

The data we need for our example is both structural (e.g. a company account, a user, an asset) and numeric (we want
market prices to optimize against).

Let’s create the structural data first.

FlexMeasures offers a command to create a toy account with a battery:

$ flexmeasures add toy-account --kind battery

Generic asset type 'solar created successfully.

Generic asset type ‘wind created successfully.

Generic asset type one-way_evse created successfully.

Generic asset type " two-way_evse created successfully.

Generic asset type battery created successfully.

Generic asset type "building created successfully.

Generic asset type "process created successfully.

Creating account Toy Account ...

Toy account Toy Account with user toy-user@flexmeasures.io created successfully. You.
—might want to run ' flexmeasures show account --id 1°

Adding transmission zone type

Adding NL transmission zone ...

Created day-ahead prices

The sensor recording day-ahead prices is day-ahead prices (ID: 1).
Created <GenericAsset None: 'toy-battery' (battery)>

Created discharging

Created <GenericAsset None: 'toy-solar' (solar)>

Created production

The sensor recording battery discharging is discharging (ID: 2).
The sensor recording solar forecasts is production (ID: 3).

And with that, we’re done with the structural data for this tutorial!

If you want, you can inspect what you created:

§ flexmeasures show account --id 1

Account Toy Account (ID: 1)

(continues on next page)

48 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

Account has no roles.

(continued from previous page)

All users:

ID Name Email Last Login Last Seen Roles

| toy-user toy-user@flemeasures.io None None account-admin
All assets:

ID Name Type Location

2 toy-building building
3 toy-battery battery
4 toy-solar solar

(52.374, 4.88969)
(52.374, 4.88969)
(52.374, 4.88969)

$ flexmeasures show asset --id 2

Asset toy-building (ID: 2)

building (52.374, 4.88969)

Attributes

Child assets of toy-building (ID: 2)

Id Name
3 toy-battery
4 toy-solar

No sensors in asset ...

battery
solar

$ flexmeasures show asset --id 3

Asset toy-battery (ID: 3)

Child of asset toy-building (ID: 2)

battery (52.374, 4.88969)

Attributes

capacity_in mw: 0.5
min_soc_in_mwh: 0.05
max_soc_in_mwh: 0.45
sensors_to_show: [1, [3, 2]]

(continues on next page)

4.7. Toy example: Introduction and setup 49

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

Child assets of toy-battery (ID: 3)

No children assets
All sensors in asset:
ID Name Unit Resolution Timezone Attributes

2 discharging MW 15 minutes Europe/Amsterdam

Yes, that is quite a large battery :)

Note: Obviously, you can use the flexmeasures command to create your own, custom account and assets. See CLI
Commands. And to create, edit or read asset data via the API, see Version 3.0.

We can also look at the battery asset in the Ul of FlexMeasures (in Docker, the FlexMeasures web server al-
ready runs, on your PC you can start it with flexmeasures run). Visit http://localhost:5000/ (username is “toy-
user @flexmeasures.io”, password is “toy-password”):

CILPENERGY

A .
& Dashboard My Account a ?
»* FlexMeasures LA
m sl f e, [A10] Zunderdorp,
3 ndaal Soiag PO oy AMSTERDAN
e L 45]
Haarlem Haarlemmerliede] -
[Azo0] [as] e
Azaa] Hatfweg (N200) Haarlsmmierweg Schellingwoude
Zwanenburg, Ry CENYEL MMER IJmeer
Niclwebrug { i Amerdame
2BAMRSIES RETERH
& i :
Bogsingheliede % wwﬂ oo
N bt = e
Heemstede Vijfhuizen Lijnden 3 WATERGRAAFSMEER
& m W)
| Diemen
877 aidhoeveddipl OlyrhpicStadium Sl o N
2yD
(x1] ;
(o) mapiin o Duivendrecht V8) Muiden
Vi & m NIEUWE [Leaflet | & Mopbox & OpenStieetMap Improve this map
Renewables Solar Batteries
3
+ f==] @
My assets: 1 1 1

Note: You won’t see the map tiles, as we have not configured the MAPBOX_ACCESS_TOKEN. If you have one, you
can configure it via flexmeasures. cfg (for Docker, see Configuration and customization).

50 Chapter 4. Where to start reading?

http://localhost:5000/
mailto:toy-user@flexmeasures.io
mailto:toy-user@flexmeasures.io

FlexMeasures Documentation, Release 0.20.1.dev11

4.7.3 Add some price data

Now to add price data. First, we’ll create the CSV file with prices (EUR/MWh, see the setup for sensor 1 above) for
tomorrow.

TOMORROW=$(date --date="next day" '+%Y-%m-%d')
echo "Hour,Price
${TOMORROW }T00:00:00, 10
${TOMORROW}T01:00:00,11
${TOMORROW}T02:00:00,12
${TOMORROW}T®3:00:00, 15
${TOMORROW }T0®4:00:00, 18
${TOMORROW}T®5:00:00,17
${TOMORROW }T06:00:00,10.5
${TOMORROW }T®7:00:00,9
${TOMORROW }T0®8:00:00,9.5
${TOMORROW }T09:00:00,9
${TOMORROW}T10:00:00,8.5
${TOMORROW}T11:00:00,10
${TOMORROW}T12:00:00, 8
${TOMORROW}T13:00:00,5
${TOMORROW }T14:00:00,4
${TOMORROW }T15:00:00,4
${TOMORROW}T16:00:00,5.5
${TOMORROW}T17:00:00,8
${TOMORROW}T18:00:00,12
${TOMORROW}T19:00:00,13
${TOMORROW }T20:00:00, 14
${TOMORROW}T21:00:00,12.5
${TOMORROW }T22:00:00,10
${TOMORROW }T23:00:00,7" > prices-tomorrow.csv

R A A B R - - - A - s A L - R A A A e S AR G R BT

This is time series data, in FlexMeasures we call “beliefs . Beliefs can also be sent to FlexMeasures via API or imported
from open data hubs like ENTSO-E or OpenWeatherMap. However, in this tutorial we’ll show how you can read data
in from a CSV file. Sometimes that’s just what you need :)

$ flexmeasures add beliefs --sensor 1 --source toy-user prices-tomorrow.csv --timezone.,
—Europe/Amsterdam
Successfully created beliefs

In FlexMeasures, all beliefs have a data source. Here, we use the username of the user we created earlier. We could
also pass a user ID, or the name of a new data source we want to use for CLI scripts.

Note: Attention: We created and imported prices where the times have no time zone component! That happens a
lot. FlexMeasures can localize them for you to a given timezone. Here, we localized the data to the timezone of the
price sensor - Europe/Amsterdam - so the start time for the first price is 2022-03-03 00:00:00+01:00 (midnight in
Amsterdam).

Let’s look at the price data we just loaded:

$ flexmeasures show beliefs --sensor 1 --start ${TOMORROW}T00:00:00+01:00 --duration.
- PT24H

(continues on next page)

4.7. Toy example: Introduction and setup 51

https://github.com/SeitaBV/flexmeasures-entsoe
https://github.com/SeitaBV/flexmeasures-openweathermap

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)
Beliefs for Sensor 'day-ahead prices' (ID 1).
Data spans a day and starts at 2022-03-03 00:00:00+01:00.
The time resolution (x-axis) is an hour.

‘ 15EUR/Mith

| 10EUR/MWh

| SEUR/MWh

5 10 15 20
day-ahead prices

.

Again, we can also view these prices in the FlexMeasures Ul:

Day-ahead prices (EUR/MWh)
18

Fri28 02:00 04:00 06:00 08:00 10:00 12:00 14:00 18:00 20:00 22:00 Sat29

Source
m toy-user

Note: Technically, these prices for tomorrow may be forecasts (depending on whether you are running through this
tutorial before or after the day-ahead market’s gate closure). You can also use FlexMeasures to compute forecasts
yourself. See Forecasting & scheduling.

52 Chapter 4. Where to start reading?

http://localhost:5000/sensors/1/

FlexMeasures Documentation, Release 0.20.1.dev11

4.8 Toy example I: Scheduling a battery, from scratch

Let’s walk through an example from scratch! We’ll optimize a 12h-schedule for a battery that is half full.

Okay, let’s get started!

Note: You can copy the commands by hovering on the top right corner of code examples. You’ll copy only the
commands, not the output!

Note: If you haven’t run through Toy example: Introduction and setup yet, do that first. There, we added power prices
for a 24h window.

4.8.1 Make a schedule

After going through the setup, we can finally create the schedule, which is the main benefit of FlexMeasures (smart
real-time control).

We'll ask FlexMeasures for a schedule for our (dis)charging sensor (ID 2). We also need to specify what to optimize
against. Here we pass the 1d of our market price sensor (ID 1). To keep it short, we’ll only ask for a 12-hour window
starting at 7am. Finally, the scheduler should know what the state of charge of the battery is when the schedule starts
(50%) and what its roundtrip efficiency is (90%).

$ flexmeasures add schedule for-storage --sensor 2 --consumption-price-sensor 1 \
--start TOMORROW }TO7:00+01:00 --duration PT12H \
--soc-at-start 50% --roundtrip-efficiency 90%

New schedule is stored.

Great. Let’s see what we made:

§ flexmeasures show beliefs --sensor 2 --start ${TOMORROW;}T®7:00:00+01:00 --duration..
—PT12H

Beliefs for Sensor 'discharging' (ID 2).

Data spans 12 hours and starts at 2022-03-04 07:00:00+01:00.

The time resolution (x-axis) is 15 minutes.

| ©.5MW

0. oMW

(continues on next page)

4.8. Toy example I: Scheduling a battery, from scratch 53

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

| -0.5MW

20 30

discharging

10

40

Here, negative values denote output from the grid, so that’s when the battery gets charged.

We can also look at the charging schedule in the FlexMeasures UI (reachable via the asset page for the battery):

Discharging (MW)

0.5
0.4-
0.3+
0.2+
01
0.0
-0.14
-0.2
_0.3,
-0.4-

0.5

Fri 28 02:00 04:00 06:00 08:00 10:00 12:00

Source
w Seita

14:00 16:00 18:00 20:00 22:00 sat 29

*

Recall that we only asked for a 12 hour schedule here. We started our schedule after the high price peak (at 4am) and
it also had to end before the second price peak fully realized (at 8pm). Our scheduler didn’t have many opportunities
to optimize, but it found some. For instance, it does buy at the lowest price (at 2pm) and sells it off at the highest price

withi

n the given 12 hours (at 6pm).

The asset page for the battery shows both prices and the schedule.

Day-

Fi28 0200 04:00 06:00 08:00 10:00 12:00
Power (MW)
0af T
0.2
00, et L :
-0.2- i
-0.4- :
Frizs 0200 04:00 06:00 0800 | 10:00 12:00
Sensor Source
® day-ahead prices (NL transmission zone) - forecaster
® production {t)oy—solar) -+ scheduler
@ discharging (toy-battery) ~ other

ahead prices (EUR/MWh)

T

sat 2§

14:00 16:00 18:00 20:00 22:00
- i ——— | |
14:00 16:00 18:00 20:00 2200 sat29
x

54

Chapter 4. Where to start reading?

http://localhost:5000/sensors/2/
http://localhost:5000/assets/2/

FlexMeasures Documentation, Release 0.20.1.dev11

Note: The flexmeasures add schedule for-storage command also accepts state-of-charge targets, so the
schedule can be more sophisticated. And even more control over schedules is possible through the flex-model in
our API. But that is not the point of this tutorial. See flexmeasures add schedule for-storage --help for
available CLI options, Describing flexibility for all flex-model fields or check out the A flex-modeling tutorial for stor-
age: Vehicle-to-grid for a tangible example of modelling storage constraints.

This tutorial showed the fastest way to a schedule. In Toy example I1: Adding solar production and limited grid con-
nection, we’ll go further into settings with more realistic ingredients: solar panels and a limited grid connection.

4.9 Toy example lI: Adding solar production and limited grid connec-
tion

So far we haven’t taken into account any other devices that consume or produce electricity. The battery was free to use
all available capacity towards the grid.

What if other devices will be using some of that capacity? Our schedules need to reflect that, so we stay within given
limits.

Note: The capacity is given by capacity_in_mw, an attribute we placed on the battery asset earlier (see Toy example
I: Scheduling a battery, from scratch). We will tell FlexMeasures to take the solar production into account (using
--inflexible-device-sensor) for this capacity limit.

We’ll now add solar production forecast data and then ask for a new schedule, to see the effect of solar on the available
headroom for the battery.

4.9.1 Adding PV production forecasts

First, we’ll create a new CSV file with solar forecasts (MW, see the setup for sensor 3 in part I of this tutorial) for
tomorrow.

TOMORROW=$ (date --date="next day" '+%Y-%m-%d')
echo "Hour,Price

${TOMORROW }T00:00:
${TOMORROW}T01:00:
${TOMORROW }T02:00:
${TOMORROW }T0®3:00:
${TOMORROW }T04:00:
${TOMORROW }T®5:00:
${TOMORROW }T06:00:
${TOMORROW }T0®7:00:
${TOMORROW }T08:00:
${TOMORROW }T09:00:
${TOMORROW}T10:00:
${TOMORROW}T11:00:
${TOMORROW}T12:00:
${TOMORROW}T13:00:
${TOMORROW }T14:00:
${TOMORROW}T15:00:

(=]

(=]

(=]

(=4

(=]

(=]

(=]

(=]

(=4

(=]

(=]

(=) (=)
S DD DD
(= I R R R — R~ T~ R — R~ R~ R~ T~ R~ R I — R~]
=
N

(=]

(=4

I e A B R - - A R - - A L L A

(=]

(continues on next page)

4.9. Toy example ll: Adding solar production and limited grid connection 55

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

$ ${TOMORROW}T16:00:00,0.14

$ ${TOMORROW}T17:00:00,0.1

$ ${TOMORROW}T18:00:00,0.06

$ ${TOMORROW}T19:00:00,0.03

$ ${TOMORROW}T20:00:00,0.01

$ ${TOMORROW}T21:00:00,0.0

$ ${TOMORROW}T22:00:00,0.0

$ ${TOMORROW}T23:00:00,0.0" > solar-tomorrow.csv

Then, we read in the created CSV file as beliefs data. This time, different to above, we want to use a new data source
(not the user) — it represents whoever is making these solar production forecasts. We create that data source first, so we
can tell flexmeasures add beliefs to use it. Setting the data source type to “forecaster” helps FlexMeasures to visually
distinguish its data from e.g. schedules and measurements.

Note: The flexmeasures add source command also allows to set a model and version, so sources can be distin-
guished in more detail. But that is not the point of this tutorial. See flexmeasures add source --help.

$ flexmeasures add source --name "toy-forecaster" --type forecaster

Added source <Data source 4 (toy-forecaster)>

§ flexmeasures add beliefs --sensor 3 --source 4 solar-tomorrow.csv --timezone Europe/
—.Amsterdam

Successfully created beliefs

The one-hour CSV data is automatically resampled to the 15-minute resolution of the sensor that is recording solar
production. We can see solar production in the FlexMeasures Ul :

Production (MW)
0.22

0.20
018
016
014+
012+
010~

0.08-

0.06

0.04
0.02

00 T
Fri 28 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat 29

Source
u toy-forecaster

Note: The flexmeasures add beliefs command has many options to make sure the read-in data is correctly
interpreted (unit, timezone, delimiter, etc). But that is not the point of this tutorial. See flexmeasures add beliefs
--help.

56 Chapter 4. Where to start reading?

http://localhost:5000/sensors/3/

FlexMeasures Documentation, Release 0.20.1.dev11

4.9.2 Trigger an updated schedule

Now, we’ll reschedule the battery while taking into account the solar production. This will have an effect on the
available headroom for the battery, given the capacity_in_mw limit discussed earlier.

§ flexmeasures add schedule for-storage --sensor 2 --consumption-price-sensor 1 \

--inflexible-device-sensor 3 \
--start ${TOMORROW'T®7:00+02:00 --duration PT12H \
--soc-at-start 50% --roundtrip-efficiency 90%

New schedule is stored.

We can see the updated scheduling in the FlexMeasures Ul :

Discharging (MW)
0.5 |

0.4

0.3
0.2+
[AR

0.0
-0l
-0.24
-0.3-
-0.4-

18:00 20:00 22:00 Sat 29

0.5
Fri 28 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Source
m Seita

The asset page for the battery now shows the solar data, too:

Day-ahead prices (EUR/MWh)

:zjﬁ

Ofizs ozo0 | 0s00 0800 0800 10:00 12:00 14:00 16:00 1800 2000 2200 Sat29
Power (MW)
0.4
02 | | o —
0ol [s N B Y R A —
-02]
0.4 b
Fri28 0200 04:00 06:00 0800 1000 1200 400 1600 18:00 20.00 2200 sat29
Sensor Source
@ day-ahead prices (NL transmission zone) - forecaster
@ production {t)cyfsolnr) scheduler

@ discharging (toy-battery) ~ other

Though this schedule is quite similar, we can see that it has changed from the one we computed earlier (when we did
not take solar into account).

First, during the sunny hours of the day, when solar power is being send to the grid, the battery’s output (at around
9am and 11am) is now lower, as the battery shares capacity_in_mw with the solar production. In the evening (around

4.9. Toy example lI: Adding solar production and limited grid connection 57

http://localhost:5000/sensors/2/
http://localhost:5000/assets/1/
https://raw.githubusercontent.com/FlexMeasures/screenshots/main/tut/toy-schedule/asset-view-without-solar.png

FlexMeasures Documentation, Release 0.20.1.dev11

7pm), when solar power is basically not present anymore, battery discharging to the grid is still at its previous levels.
Second, charging of the battery is also changed a bit (around 10am), as less can be discharged later.

Moreover, we can use reporters to compute the capacity headroom (see Toy example IV: Computing reports for more
details). The image below shows that the scheduler is respecting the capacity limits.

Power (MW)
0.4
0.2
004 | seeesees meeesy ed beesemesesn gessesesseseacaeoond
-0.2
04 ' o
Thu2l 04:00 08:00 12:00 © 16:00 20:00 O Fi22
Sensor Source
@ day-ahead prices (NL transmission zone) - forecaster
production Eoy-solur) -- scheduler
@ discharging (toy-battery) — other
headroom toy-b<:|tt<=.\ry)y

In the case of the scheduler that we ran in the previous tutorial, which did not yet consider the PV, the discharge power
would have exceeded the headroom:

Power (MW)
0.4
0.2 E :
0-0 ”””’: :””: |-: I. ””””” : : ”””””””””” --I
-02 - :.:
-04 - o
Thu 21 04:00 08:00 12:00 " 18:00 ©20:00 Fri 22
Sensor Source
@ day-ahead prices (NL transmission zone) - forecaster
production {tjoy-solur) -- scheduler
@ discharging (toy-battery) — other
headroom toy—battery{

Note: You can add arbitrary sensors to a chart using the attribute sensors_to_show. See Assets & sensor data for
more.

A nice feature is that you can check the data connectivity status of your building asset. Now that we have made the
schedule, both lamps are green. You can also view it in FlexMeasures Ul :

58 Chapter 4. Where to start reading?

http://localhost:5000/assets/1/status

FlexMeasures Documentation, Release 0.20.1.dev11

Data connectivity for sensors of toy-building

Show 10 7 records Filter records:
Name Asset name Time of last value Status
discharging toy-battery 22 hours from now G
production toy-solar a day from now (<)

Showing 1to 2 out of 2 records

We hope this part of the tutorial shows how to incorporate a limited grid connection rather easily with FlexMeasures.
There are more ways to model such settings, but this is a straightforward one.

This tutorial showed a quick way to add an inflexible load (like solar power) and a grid connection. In A flex-modeling
tutorial for storage: Vehicle-to-grid, we will temporarily pause giving you tutorials you can follow step-by-step. We
feel it is time to pay more attention to the power of the flex-model, and illustrate its effects.

4.10 A flex-modeling tutorial for storage: Vehicle-to-grid

The most powerful concept of FlexMeasures is the flex-model. We feel it is time to pay more attention to it and illustrate
its effects.

As a demonstration of how to construct a suitable flex model for a given use case, let us for a moment consider a use
case where FlexMeasures is asked (through API calls) to compute V2G schedules. (For a more general introduction to
flex modeling, see Describing flexibility.)

In this example, the client is interested in the following:

1. Battery protection: Protect the battery from degradation by constraining any cycling between 25% and 85% of
its available storage capacity.

2. Car reservations: Ensure a minimum SoC of 95% based on a reservation calendar for the car.

3. Earning by cycling: Use the car battery to earn money (given some dynamic tariff) so long as the above constraints
are met.

The following chart visualizes how constraints 1 and 2 can be formulated within a flex model, such that the resulting
scheduling problem becomes feasible. A solid line shows a feasible solution, and a dashed line shows an infeasible
solution.

4.10. A flex-modeling tutorial for storage: Vehicle-to-grid 59

FlexMeasures Documentation, Release 0.20.1.dev11

Constraint
Relaxation
SoC (%) Window
100
l‘r ——————————————
;) ! SoC minima
SoC maxima (battery protection) /i (calendar target)
80
60
40
20 SoC minimum (battery protection)
0

Time —*

4.10.1 Battery protection

Let’s consider a car battery with a storage capacity of 60 kWh, to be scheduled in 5-minute intervals. Constraining
the cycling to occur within a static 25-85% SoC range can be modelled through the following soc-min and soc-max
fields of the flex model:

{

"flex-model": {
"soc-min": 15,
"soc-max": 51,
"soc-unit": "kWh"

}

}

A starting SoC below 15 kWh (25%) will lead to immediate charging to get within limits (as shown above). Likewise,
a starting SoC above 51 kWh (85%) would lead to immediate discharging. Setting a SoC target outside of the static
range leads to an infeasible problem and will be rejected by the FlexMeasures API.

The soc-min and soc-max settings are constant constraints. To enable a temporary target SoC of more than 85% (for
car reservations, see the next section), it is necessary to relax the soc-max field to 60 kWh (100%), and to instead use
the soc-maxima field to convey the desired upper limit for regular cycling:

60 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

{
"flex-model": {
"soc-min": 15,
"soc-max": 60,
"soc-maxima": [
{
"value": 51,
"start": "2024-02-04T10:35:00+01:00",
"end": "2024-02-05T04:25:00+01:00"
}
Ay
"soc-unit": "kWh"
}
}

The maxima constraints should be relaxed—or withheld entirely—within some time window before any SoC target (as
shown above). This time window should be at least wide enough to allow the target to be reached in time, and can be
made wider to allow the scheduler to take advantage of favourable market prices along the way.

4.10.2 Car reservations

Given a reservation for 8 AM on February 5th, constraint 2 can be modelled through the following (additional)
soc-minima constraint:

{
"flex-model": {
"soc-minima": [
{
"value": 57,
"datetime": '"2024-02-05T08:00:00+01:00"
}
]
3
}

This constraint also signals that if the car is not plugged out of the Charge Point at § AM, the scheduler is in principle
allowed to start discharging immediately afterwards. To make sure the car remains at 95% SoC for some time, additional
soc-minima constraints should be set accordingly, taking into account the scheduling resolution (here, 5 minutes). For
example, to keep it charged (nearly) fully until 8.15 AM:

{
"flex-model": {
"soc-minima": [
{
"value": 57,
"start": "2024-02-05T08:00:00+01:00",
"end": "2024-02-05T08:15:00+01:00"
}
]
1
}

4.10. A flex-modeling tutorial for storage: Vehicle-to-grid 61

FlexMeasures Documentation, Release 0.20.1.dev11

4.10.3 Earning by cycling

To provide an incentive for cycling the battery in response to market prices, the consumption-price-sensor and
production-price-sensor fields of the flex context may be used, which define the sensor IDs under which the price
data is stored that is relevant to the given site:

{

"flex-context": {
"consumption-price-sensor": 41,
"production-price-sensor": 42

3

}

We hope this demonstration helped to illustrate the flex-model of the storage scheduler. Until now, optimizing storage
(like batteries) has been the sole focus of these tutorial series. In Toy example I11: Computing schedules for processes,
we’ll turn to something different: the optimal timing of processes with fixed energy work and duration.

4.11 Toy example Ill: Computing schedules for processes

Until this point we’ve been using a static battery, one of the most flexible energy assets, to reduce electricity bills. A
battery can modulate rather freely, and both charge and discharge.

However, in some settings, we can reduce electricity bills by just smartly timing the necessary work that we know we
have to do. We call this work a “process”. In other words, if the process can be displaced, by breaking it into smaller
consumption periods or shifting its start time, the process run can match the lower price hours better.

For example, we could have a load that consumes energy at a constant rate (e.g. 200kW) for a fixed duration (e.g. 4h),
but there’s some flexibility in the start time. In that case, we could find the optimal start time in order to minimize the
energy cost.

Examples of flexible processes are:
» Water irrigation in agriculture
* Mechanical pulping in the paper industry
* Water pumping in waste water management
* Cooling for the food industry

For consumers under ToU (Time of Use) tariffs, FlexMeasures ProcessScheduler can plan the start time of the process
to minimize the overall cost of energy. Alternatively, it can create a consumption plan to minimize the CO, emissions.

In this tutorial, you’ll learn how to schedule processes using three different policies: INFLEXIBLE, BREAKABLE
and SHIFTABLE.

Moreover, we’ll touch upon the use of time restrictions to avoid scheduling a process in certain times of the day.

62 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.11.1 Setup

Before moving forward, we’ll add the process asset and three sensors to store the schedules resulting from following
three different policies.

$ flexmeasures add toy-account --kind process

Account '<Account Toy Account (ID:1)>' already exists. Skipping account creation..
—Use " flexmeasures delete account --id 1° if you need to remove it.

User with email toy-user@flexmeasures.io already exists in account Toy Account.

The sensor recording day-ahead prices is day-ahead prices (ID: 1).

Created <GenericAsset None: 'toy-process' (process)>

Created Power (INFLEXIBLE)

Created Power (BREAKABLE)

Created Power (SHIFTABLE)

The sensor recording the power of the INFLEXIBLE load is Power (INFLEXIBLE) (ID: 4).

The sensor recording the power of the BREAKABLE load is Power (BREAKABLE) (ID: 5).

The sensor recording the power of the SHIFTABLE load is Power (SHIFTABLE) (ID: 6).

Trigger an updated schedule

In this example, we are planning to consume at a 200kW constant power for a period of 4h.
This load is to be schedule for tomorrow, except from the period from 3pm to 4pm (imposed using the --forbid flag).

Now we are ready to schedule a process. Let’s start with the INFLEXIBLE policy, the simplest.

flexmeasures add schedule for-process --sensor 4 --consumption-price-sensor 1\
--start TOMORROW }T00:00:00+02:00 --duration PT24H --process-duration PT4H \
--process-power 0.2MW --process-type INFLEXIBLE \

—-forbid "{\"start\" : \"${TOMORROW}T15:00:00+02:00\", \"duration\" : \"PT1H\"}"

Under the INFLEXIBLE policy, the process starts as soon as possible, in this case, coinciding with the start of the
planning window.

Following the INFLEXIBLE policy, we’ll schedule the same 4h block using a BREAKABLE policy.

flexmeasures add schedule for-process --sensor 5 --consumption-price-sensor 1\
--start TOMORROW }T00:00:00+02:00 --duration PT24H --process-duration PT4H \
--process-power 0.2MW --process-type BREAKABLE \

--forbid "{\"start\" : \"${TOMORROW}T15:00:00+02:00\", \"duration\" : \"PT1H\"}"

The BREAKABLE policy splits or breaks the process into blocks that can be scheduled discontinuously. The smallest
possible unit is (currently) determined by the sensor’s resolution.

Finally, we’ll schedule the process using the SHIFTABLE policy.

flexmeasures add schedule for-process --sensor 6 --consumption-price-sensor 1\
--start TOMORROW }T00:00:00+02:00 --duration PT24H --process-duration PT4H \
--process-power 0.2MW --process-type SHIFTABLE \

--forbid "{\"start\" : \"${TOMORROW}T15:00:00+02:00\", \"duration\" : \"PT1H\"}"

4.11. Toy example lll: Computing schedules for processes 63

FlexMeasures Documentation, Release 0.20.1.dev11

Results

The image below shows the resulting schedules following each of the three policies. You will see similar results in your
FlexMeasures UL

Day-ahead prices (EUR/MwWh)

A NN AR RRRRRRRRRNAN S o un oo R

0
Thu 03 02:00 04:00 08:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Friod

Power (Inflexible) (Mw)
0.00

-0.05
-0.10
-0.15
-0.20
Thu 03 02:00 04:00 06:00 08:00 10:00 12:00 14:.00 16:00 18:00 20:00 22:00 Fri 04

Power (Breakable) (MW)
0.00

-0.05
-0.10

-0.15

-0.20 4 T
Thu 03 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Friod

Power (Shiftable) (MW)

0.00
-0.05
-0.10
-0.15
-0.20
Thu 03 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Fri 04
Sensor Source
@ daoy-ohead prices (NL transmission zone} forecaster
Power g\nflexib\e) (toy-process scheduler
® Power (Breakable) (toy-process) other

Power (Shiftable) (toy-process)

In the first policy, there’s no flexibility and it needs to schedule the process as soon as possible. Meanwhile, in the
BREAKABLE policy, the consumption blocks surrounds the time restriction to consume in the cheapest hours. Among
the three polices, the BREAKABLE policy can achieve the best Finally, in the SHIFTABLE policy, the process is shifted
to capture the best prices, avoiding the time restrictions.

Let’s list the power price the policies achieved for each of the four blocks they scheduled:

Block INFLEXIBLE BREAKABLE SHIFTABLE
1 10.00 5.00 10.00

2 11.00 4.00 8.00

3 12.00 5.50 5.00

4 15.00 7.00 4.00
Average Price (EUR/MWh) 12.00 5.37 6.75

Total Cost (EUR) 9.60 4.29 5.40

64 Chapter 4. Where to start reading?

http://localhost:5000/assets/4/

FlexMeasures Documentation, Release 0.20.1.dev11

Quantitatively, comparing the total cost of running the process under each policy, the BREAKABLE policy achieves
the best results. This is because it can fit much more consumption blocks in the cheapest hours.

This tutorial showed a quick way to optimize the activation of processes. In Toy example IV: Computing reports, we’ll
turn away from scheduling, and towards another important FlexMeasures feature: using reporters to apply transforma-
tions to sensor data.

4.12 Toy example IV: Computing reports

Warning: The reporting functionality is still in an early development stage. Beware that major changes might be
introduced.

So far, we have worked on scheduling batteries and processes. Now, we are moving to one of the other three pillars of
FlexMeasures: reporting.

In essence, reporters apply arbitrary transformations to data coming from some sensors (multiple inputs) and save the
results to other sensors (multiple outputs). In practice, this allows to compute KPIs (such as profit and total daily energy
production), to apply operations to beliefs (e.g. changing the sign of a power sensor for some time period), among other
things.

Note:
Currently, FlexMeasures comes with the following reporters:
* PandasReporter: applies arbitrary Pandas methods to sensor data.

* AggregatorReporter: combines data from multiple sensors into one using any of the methods supported by
the Pandas aggregate function (e.g. sum, average, max, min...).

* ProfitOrLossReporter: computes the profit/loss due to an energy flow under a specific tariff.

Moreover, it’s possible to implement your custom reporters in plugins. Instructions for this to come.

Now, coming back to the tutorial, we are going to use the AggregatorReporter and the ProfitOrLossReporter. In the first
part, we’ll use the AggregatorReporter to compute the (discharge) headroom of the battery in 7oy example I1: Adding
solar production and limited grid connection. That way, we can verify the maximum power at which the battery can
discharge at any point of time. In the second part, we’ll use the ProfitOrLossReporter to compute the costs of operating
the process of Tut. Part III in the different policies.

Before getting to the meat of the tutorial, we need to set up up all the entities. Instead of having to do that manually (e.g.
using commands such as flexmeasures add sensor), we have prepared a command that does that automatically.

4.12.1 Setup

Just as in previous sections, we need to run the command flexmeasures add toy-account, but this time with a
different value for kind:

[$ flexmeasures add toy-account --kind reporter J

Under the hood, this command is adding the following entities:

* A yearly sensor that stores the capacity of the grid connection.

4.12. Toy example IV: Computing reports 65

https://pandas.pydata.org

FlexMeasures Documentation, Release 0.20.1.dev11

* A power sensor, headroom, to store the remaining capacity for the battery. This is where we’ll store the
report.

* A ProfitOrLossReporter configured to use the prices that we set up in Tut. Part II.
» Three sensors to register the profits/losses from running the three different processes of Tut. Part III.
Let’s check it out!

Run the command below to show the values for the grid connection capacity:

$ TOMORROW=$(date --date="next day" '+%Y-%m-%d')
$ flexmeasures show beliefs --sensor 7 --start TOMORROW }TO0:00:00+02:00 --duration,.,
PT24H --resolution PT1H

Beliefs for Sensor 'grid connection capacity' (ID 7).
Data spans a day and starts at 2023-08-14 00:00:00+02:00.
The time resolution (x-axis) is an hour.

1.0MW

| ©.5MW

| 0.0MW

-0.5MW

5 10 15 20
grid connection capacity

Moreover, we can check the freshly created source <Source id=6>, which defines the ProfitOrLossReporter with the
required configuration. You’ll notice that the config is under the data_generator field. That’s because reporters belong
to a bigger category of classes that also contains the Schedulers and Forecasters.

$ flexmeasures show data-sources --show-attributes --id 5

ID Name Type User ID Model Version Attributes

6 FlexMeasures reporter ProfitOrLossReporter {
—generator": {
—{

" consumption_price_sensor": 1
(continues on next page)

66 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

3

Compute headroom

In this case, the discharge headroom is nothing but the difference between the grid connection capacity and the PV
power. To compute that quantity, we can use the AggregatorReporter using the weights to make the PV to subtract the
grid connection capacity.

In practice, we need to create the config and parameters:

$ echo "

$ {

$ 'weights' : {

$ 'grid connection capacity' : 1.0,

$ 'PV' : -1.0,

$ h;

$ }" > headroom-config.json

$ echo "

$ {

$ 'input' : [{'name' : 'grid connection capacity', 'sensor' : 7},
$ {'name' : 'PV', 'sensor' : 3}],
$ 'output' : [{'sensor' : 8}]

$ }" > headroom-parameters.json

. J

Finally, we can create the reporter with the following command:

$ TOMORROW=$(date --date="next day" '+%Y-%m-%d')

§ flexmeasures add report --reporter AggregatorReporter \
--parameters headroom-parameters.json --config headroom-config.json \
--start-offset DB, 1D --end-offset DB,2D \
--resolution PT15M

Now we can visualize the headroom in the following link, which should resemble the following image.

Headroom (MW)
0.50

0.45
0.40
0.35
0.30
0.25

0.20
015
010

0.05

Frild8 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Source
m FlexMeasures

4.12. Toy example IV: Computing reports 67

http://localhost:5000/sensor/8/

FlexMeasures Documentation, Release 0.20.1.dev11

The graph shows that the capacity of the grid is at full disposal for the battery when there’s no sun (thus no PV gener-
ation), while at noon the battery can only discharge at 280kW max.

Process scheduler profit

For the second part of this tutorial, we are going to use the ProfitOrLossReporter to compute the losses (defined as cost
- revenue) of operating the process from Tut. Part III, under the three different policies: INFLEXIBLE, BREAKABLE
and SHIFTABLE.

In addition, we’ll explore another way to invoke reporters: data generators. Without going too much into detail, data
generators create new data. The thee main types are: Reporters, Schedulers and Forecasters. This will come handy as
the three reports that we are going to create share the same config. The config defines the price sensor to use and sets
the reporter to work in losses mode, which means that it will return costs as positive values and revenue as negative
values.

Still, we need to define the parameters. The three reports share the same structure for the parameters with the following
fields:

* input: sensor that stores the power/energy flow. The number of sensors is limited to 1.

* output: sensor to store the report. We can provide sensors with different resolutions to store the same results at
different time scales.

Note: It’s possible to define the config and parameters in JSON or YAML formats.

After setting up config and parameters, we can invoke the reporter using the command flexmeasures add report.
The command takes the data source id, the files containing the parameters and the timing parameters (start and end).
For this particular case, we make use of the offsets to indicate that we want the report to encompass the day of tomorrow.

Inflexible process

Define parameters in a JSON file:

$ echo "

$ {

$ "input' : [{'sensor' : 4}],
$ 'output' : [{'sensor' : 9}]
$ }" > inflexible-parameters. json

Create report:

§ flexmeasures add report --source 6 \
--parameters inflexible-parameters.json \
--start-offset DB, 1D --end-offset DB, 2D

Check the results here. The image should be similar to the one below.

68 Chapter 4. Where to start reading?

http://localhost:5000/sensor/9/

FlexMeasures Documentation, Release 0.20.1.dev11

Costs (Inflexible) (EUR)

0.8
07
0.6
05
0.4
03
0.2
01
O%%i2s 0200 o400 | 0600 0800 1000 | 1200 1400 1600 | 1800 | 2000 2200 Sat2s
Source
u FlexMeasures
Breakable process
Define parameters in a JSON file:
$ echo "
$ {
$ "input' : [{'sensor' : 5}],
$ 'output' : [{'sensor' : 10}]
$ }" > breakable-parameters.json
Create report:
§ flexmeasures add report --source 6 \
--parameters breakable-parameters.json \
--start-offset DB, 1D --end-offset DB, 2D
Check the results here. The image should be similar to the one below.
4.12. Toy example IV: Computing reports 69

http://localhost:5000/sensor/10/

FlexMeasures Documentation, Release 0.20.1.dev11

Costs (Breakable) (EUR)
0.35,

0.30
0.254
0.20
0.154
0.10

0.05

0.00 T T T T T T T r T r r . T T T .
Fri25 02:00 04:00 06:00 08:00 10:00 12:00 14.00 16:00 18:00 20:00 22:00 Sat26

Source
m FlexMeasures

Shiftable process

Define parameters in a JSON file:

$ echo "

$ {

$ "input' : [{'sensor' : 6}],
$ 'output' : [{'sensor' : 11}]
$ }" > shiftable-parameters.json

Create report:

§ flexmeasures add report --source 6 \
--parameters shiftable-parameters.json \
--start-offset DB, 1D --end-offset DB, 2D

.

Check the results here. The image should be similar to the one below.

70 Chapter 4. Where to start reading?

http://localhost:5000/sensor/11/

FlexMeasures Documentation, Release 0.20.1.dev11

Costs (Shiftable) (EUR)
0.50

0.45
0.40
0.35
0.30

0.254
0.20
0.15
0.104

0.05

0 T T T T . : } | } |
Fri25 02:00 04.00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat26

Source
FlexMeasures

Now, we can compare the results of the reports to the ones we computed manually in his table). Keep in mind that the
report is showing the profit of each 15min period and adding them all shows that it matches with our previous results.

4.13 Posting data

The platform FlexMeasures strives on the data you feed it. Let’s demonstrate how you can get data into FlexMeasures
using the API. This is where FlexMeasures gets connected to your system as a smart backend and helps you build smart
energy services.

We will show how to use the API endpoints for POSTing data. You can call these at regular intervals (through scheduled
scripts in your system, for example), so that FlexMeasures always has recent data to work with. Of course, these
endpoints can also be used to load historic data into FlexMeasures, so that the forecasting models have access to
enough data history.

Note: For the purposes of forecasting and scheduling, it is often advisable to use a less fine-grained resolution than most
metering services keep. For example, while such services might measure every ten seconds, FlexMeasures will usually
do its job no less effective if you feed it data with a resolution of five minutes. This will also make the data integration
much easier. Keep in mind that many data sources like weather forecasting or markets can have data resolutions of an
hour, anyway.

Table of contents

* Prerequisites
* Posting sensor data

* Observations vs forecasts: The time of knowledge

* Posting flexibility states

4.13. Posting data 71

FlexMeasures Documentation, Release 0.20.1.dev11

4.13.1 Prerequisites

» FlexMeasures needs some structural meta data for data to be understood. For example, for adding weather data
we need to define a weather sensor, and what kind of weather sensors there are. You also need a user account.
If you host FlexMeasures yourself, you need to add this info first. Head over to Getting started, where these
steps are covered, study our CLI Commands or look into plugins which do this like flexmeasures-entsoe or
flexmeasures-openweathermap.

* You should be familiar with where to find your API endpoints (see Main endpoint and API versions) and how to
authenticate against the API (see Authentication).

Note: For deeper explanations of the data and the meta fields we’ll send here, You can always read the API Introduction,
to the FlexMeasures API, e.g. Signs of power values, Frequency and resolution, Setting the recording time and Units.

Note: To address assets and sensors, these tutorials assume entity addresses valid in the namespace fml. See AP/
Introduction for more explanations.

4.13.2 Posting sensor data

Sensor data (both observations and forecasts) can be posted to POST /sensors/data. This endpoint represents the basic
method of getting time series data into FlexMeasures via API. It is agnostic to the type of sensor and can be used to
POST data for both physical and economical events that have happened in the past or will happen in the future. Some
examples:

* readings from electricity and gas meters

* readings from temperature and pressure sensors
* state of charge of a battery

* estimated availability of parking spots

* price forecasts

The exact URL will depend on your domain name, and will look approximately like this:

[[POST] https://company.flexmeasures.io/api/<version>/sensors/data J

This example “PostSensorDataRequest” message posts prices for hourly intervals between midnight and midnight the
next day for the Korean Power Exchange (KPX) day-ahead auction, registered under sensor 16. The prior indicates
that the prices were published at 3pm on December 31st 2014 (i.e. the clearing time of the KPX day-ahead market,
which is at 3 PM on the previous day — see below for a deeper explanation).

{

"type": "PostSensorDataRequest",
"sensor": "eal.2021-01.io.flexmeasures.company:fml.16",
"values": [

52.37,

51.14,

49.09,

48.35,

48.47,

49.98,

(continues on next page)

72 Chapter 4. Where to start reading?

https://github.com/SeitaBV/flexmeasures-entsoe
https://github.com/SeitaBV/flexmeasures-openweathermap
../api/v3_0.html#post--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

58.7,

67.76,

69.21,

70.26,

70.46,

70,

70.7,

70.41,

70,

64.53,

65.92,

69.72,

70.51,

75.49,

70.35,

70.01,

66.98,

58.61
1,
"start": "2015-01-01T00:00:00+09:00",
"duration": "PT24H",
"prior": "2014-12-31T15:00:00+09:00",
"unit": "KRW/kWh"

Note how the resolution of the data comes out at 60 minutes when you divide the duration by the number of data points.
If this resolution does not match the sensor’s resolution, FlexMeasures will try to upsample the data to make the match
or, if that is not possible, complain. Likewise, if the data unit does not match the sensor’s unit, FlexMeasures will
attempt to convert the data or, if that is not possible, complain.

Being explicit when posting power data

For power data, USEF specifies separate message types for observations and forecasts. Correspondingly, we allow the
following message types to be used with the POST /sensors/data endpoint:

{

"type": "PostMeterDataRequest"
}
{

"type": "PostPrognosisRequest"
}

For these message types, FlexMeasures validates whether the data unit is suitable for communicating power data.
Additionally, we validate whether meter data lies in the past, and prognoses lie in the future.

4.13. Posting data 73

../api/v3_0.html#post--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.20.1.dev11

Single value, single sensor

A single average power value for a 15-minute time interval for a single sensor, posted 5 minutes after realisation.

{

"type": "PostSensorDataRequest",
"sensor": "eal.2021-01.io.flexmeasures.company:fml.1",
"value": 220,

"start": "2015-01-01T00:00:00+00:00",
"duration": "PTOHISM",

"horizon": "-PT5M",

"unit": "MW"

Multiple values, single sensor

Multiple values (indicating a univariate timeseries) for 15-minute time intervals for a single sensor, posted 5 minutes
after each realisation.

{
"type": "PostSensorDataRequest",
"sensor": "eal.2021-01.io.flexmeasures.company:fml.1",
"values": [
220,
210,
200
1,
"start": "2015-01-01T00:00:00+00:00",
"duration": "PTOH45M",
"horizon": "-PT5M",
"unit": "MW"
}

4.13.3 Observations vs forecasts: The time of knowledge

To correctly tell FlexMeasures when a meter reading or forecast was known is crucial, as it determines which data is
being used to compute schedules or to make other forecasts.

Usually, the time of posting is assumed to be the time when the data was known. But you can also explicitly tell
FlexMeasures what these times are. This either works with one fixed time (for the whole set of data being sent) or with
a horizon (which applies to each data point separately).

E.g. to post a forecast rather than an observation after the fact, simply set the prior to the moment at which the
forecasts were made, e.g. at “2015-01-01T16:30:00+09:00”. Assuming your data starts at 5.00pm, this denotes that
the data are forecasts, made half an hour before realisation.

Alternatively, to indicate that each individual observation was made directly after the end of its 15-minute interval (i.e.
at 3.15pm, 3.30pm and so on), set a horizon to “PTOH” instead of a prior.

Finally, delays in reading out sensor data can be simulated by setting the horizon field to a negative value. For example,
a horizon of “-PT1H” would denote that each temperature reading was observed one hour after the fact (i.e. at4.15pm,
4.30pm and so on).

See Setting the recording time for more information regarding the prior and horizon fields.

74 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

A good example for the use of the prior field are markets, which have clearing times. For example, at the KPX day-
ahead auction this is every day at 3pm. This point in time (i.e. when contracts are signed) determines the difference
between an ex-post observation and an ex-ante forecast.

Another example for the prior field is running simulations with FlexMeasures. It gives you control over the timing so
that you could run a month in the past as if it happened right now.

4.13.4 Posting flexibility states

There is one more crucial kind of data that FlexMeasures needs to know about: What are the current states of flexible
devices? For example, a battery has a certain state of charge, which is relevant to describe the flexibility that the battery
currently has. In our terminology, this is called the “flex model” and you can read more at Describing flexibility.

Owners of such devices can post the flex model along with triggering the creation of a new schedule, to [POST]
/schedules/trigger. The URL might look like this:

[https ://company . flexmeasures.io/api/<version>/sensors/10/schedules/trigger J

The following example triggers a schedule for a power sensor (with ID 10) of a battery asset, asking to take into account
the battery’s current state of charge. From this, FlexMeasures derives the energy flexibility this battery has in the next
48 hours and computes an optimal charging schedule. The endpoint also allows to limit the flexibility range and also
to set target values.

{
"start": "2015-06-02T10:00:00+00:00",
"flex-model": {
"soc-at-start": 12.1,
"soc-unit": "kWh"
3
}

Note: Atthe moment, FlexMeasures only supports flexibility models suitable for batteries and car chargers here (asset

9% ¢

types “battery”, “one-way_evse” or “two-way_evse”). This will be expanded to other flexible assets as needed.

Note: Flexibility states are persisted on sensor attributes. To record a more complete history of the state of charge, set
up a separate sensor and post data to it using [POST] /sensors/data (see Posting sensor data).

In How scheduling jobs are queued, we’ll cover what happens when FlexMeasures is triggered to create a new schedule,
and how those schedules can be retrieved via the API, so they can be used to steer assets.

4.14 Forecasting & scheduling

Once FlexMeasures contains data (see Posting data), you can enjoy its forecasting and scheduling services. Let’s
take a look at how FlexMeasures users can access information from these services, and how you (if you are hosting
FlexMeasures yourself) can set up the data science queues for this.

Table of contents

* Maintaining the queues

4.14. Forecasting & scheduling 75

../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
../api/v3_0.html#post--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.20.1.dev11

* How forecasting jobs are queued
* How scheduling jobs are queued

* Getting power forecasts (prognoses)

* Getting schedules (control signals)

If you want to learn more about the actual algorithms used in the background, head over to Scheduling and Forecasting.

Note: FlexMeasures comes with in-built scheduling algorithms. You can use your own algorithm, as well, see plugin-
customization.

4.14.1 Maintaining the queues

Note: If you are not hosting FlexMeasures yourself, skip right ahead to How forecasting jobs are queued or Getting
power forecasts (prognoses).

Here we assume you have access to a Redis server and configured it (see Redis).

Start to run one worker for each kind of job (in a separate terminal):

$ flexmeasures jobs run-worker --queue forecasting
§ flexmeasures jobs run-worker --queue scheduling

You can also clear the job queues:

$ flexmeasures jobs clear-queue --queue forecasting
$ flexmeasures jobs clear-queue --queue scheduling

When the main FlexMeasures process runs (e.g. by flexmeasures run), the queues of forecasting and schedul-
ing jobs can be visited at http://localhost:5000/tasks/forecasting and http://localhost:5000/tasks/
schedules, respectively (by admins).

When forecasts and schedules have been generated, they should be visible at http://localhost:5000/assets/
<id>.

Note: You can run workers who process jobs on different computers than the main server process. This can be a great
architectural choice. Just keep in mind to use the same databases (postgres/redis) and to stick to the same FlexMeasures
version on both.

76 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.14.2 How forecasting jobs are queued

A forecasting job is an order to create forecasts based on measurements. A job can be about forecasting one point in
time or about forecasting a range of points.

In FlexMeasures, the usual way of creating forecasting jobs would be right in the moment when new power, weather
or price data arrives through the API (see Posting data). So technically, you don’t have to do anything to keep fresh
forecasts.

The decision which horizons to forecast is currently also taken by FlexMeasures. For power data, FlexMeasures makes
this decision depending on the asset resolution. For instance, a resolution of 15 minutes leads to forecast horizons of 1,
6, 24 and 48 hours. For price data, FlexMeasures chooses to forecast prices forward 24 and 48 hours These are decent
defaults, and fixing them has the advantage that schedulers (see below) will know what to expect. However, horizons
will probably become more configurable in the near future of FlexMeasures.

You can also add forecasting jobs directly via the CLI. We explain this practice in the next section.

Historical forecasts
There might be reasons to add forecasts of past time ranges. For instance, for visualization of past system behavior and
to check how well the forecasting models have been doing on a longer stretch of data.

If you host FlexMeasures yourself, we provide a CLI task for adding forecasts for whole historic periods. This is an
example call:

Here we request 6-hour forecasts to be made for two sensors, for a period of two days:

$ flexmeasures add forecasts --sensor 2 --sensor 3 \
--from-date 2015-02-01 --to-date 2015-08-31 \
--horizon 6 --as-job

This is half a year of data, so it will take a while.

It can be good advice to dispatch this work in smaller chunks. Alternatively, note the --as-job parameter. If you use
it, the forecasting jobs will be queued and picked up by worker processes (see above). You could run several workers
(e.g. one per CPU) to get this work load done faster.

Run flexmeasures add forecasts --help for more information.

4.14.3 How scheduling jobs are queued

In FlexMeasures, a scheduling job is an order to plan optimised actions for flexible devices. It usually involves a linear
program that combines a state of energy flexibility with forecasted data to draw up a consumption or production plan
ahead of time.

There are two ways to queue a scheduling job:

First, we can add a scheduling job to the queue via the API. We already learned about the [POST] /schedules/trigger
endpoint in Posting flexibility states, where we saw how to post a flexibility state (in this case, the state of charge of a
battery at a certain point in time).

Here, we extend that (storage) example with an additional target value, representing a desired future state of charge.

{
"start": "2015-06-02T10:00:00+00:00",
"flex-model": {
"soc-at-start": 12.1,

(continues on next page)

4.14. Forecasting & scheduling 77

../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)
"soc-unit": "kWh"
"soc-targets": [
{
"value": 25,
"datetime": "2015-06-02T16:00:00+00:00"

We now have described the state of charge at 10am to be 12. 1. In addition, we requested that it should be 25 at 4pm.
For instance, this could mean that a car should be charged at 90% at that time.

If FlexMeasures receives this message, a scheduling job will be made and put into the queue. In turn, the scheduling
job creates a proposed schedule. We’ll look a bit deeper into those further down in Getting schedules (control signals).

Note: Even without a target state of charge, FlexMeasures will create a scheduling job. The flexible device can then
be used with more freedom to reach the system objective (e.g. buy power when it is cheap, store it, and sell back when
it’s expensive).

A second way to add scheduling jobs is via the CLI, so this is available for people who host FlexMeasures themselves:

§ flexmeasures add schedule for-storage --sensor 1 --consumption-price-sensor 2 \
--start 2022-07-05T07:00+01:00 --duration PT12H \
--soc-at-start 50% --roundtrip-efficiency 90% --as-job

Here, the --as-job parameter makes the difference for queueing — without it, the schedule is computed right away.

Run flexmeasures add schedule for-storage --help for more information.

4.14.4 Getting power forecasts (prognoses)

Prognoses (the USEF term used for power forecasts) are used by FlexMeasures to determine the best control signals to
valorise on balancing opportunities.

You can access forecasts via the FlexMeasures API at [GET] /sensors/data. Getting them might be useful if you want to
use prognoses in your own system, or to check their accuracy against meter data, i.e. the realised power measurements.
The FlexMeasures Ul also lists forecast accuracy, and visualises prognoses and meter data next to each other.

A prognosis can be requested at a URL looking like this:

[https ://company . flexmeasures.io/api/<version>/sensors/data

This example requests a prognosis for 24 hours, with a rolling horizon of 6 hours before realisation.

{
"type": "GetPrognosisRequest",
"sensor": "eal.2021-01.io.flexmeasures.company:fml.1",
"start": "2015-01-01T00:00:00+00:00",
"duration": "PT24H",
"horizon": "PT6H",
"resolution": "PT15M",
"unit": "MW"
3

78 Chapter 4. Where to start reading?

../api/v3_0.html#get--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.20.1.dev11

4.14.5 Getting schedules (control signals)

We saw above how FlexMeasures can create optimised schedules with control signals for flexible devices (see Posting
[flexibility states). You can access the schedules via the [GET] /schedules/<uuid> endpoint. The URL then looks like
this:

[https ://company. flexmeasures.io/api/<version>/sensors/<id>/schedules/<uuid>]

Here, the schedule’s Universally Unique Identifier (UUID) should be filled in that is returned in the [POST] /sched-
ules/trigger response. Schedules can be queried by their UUID for up to 1 week after they were triggered (ask your
host if you need to keep them around longer). Afterwards, the exact schedule can still be retrieved through the [GET]
/sensors/data, using precise filter values for start, prior and source.

The following example response indicates that FlexMeasures planned ahead 45 minutes for the requested battery power
sensor. The list of consecutive power values represents the target consumption of the battery (negative values for
production). Each value represents the average power over a 15 minute time interval.

{
"values": [
2.15,
5P
2
i
"start": "2015-06-02T10:00:00+00:00",
"duration": "PT45M",
"unit": "MW"

How to interpret these control signals?

One way of reaching the target consumption in this example is to let the battery start to consume with 2.15 MW at
10am, increase its consumption to 3 MW at 10.15am and decrease its consumption to 2 MW at 10.30am.

However, because the targets values represent averages over 15-minute time intervals, the battery still has some degrees
of freedom. For example, the battery might start to consume with 2.1 MW at 10.00am and increase its consumption
to 2.25 at 10.10am, increase its consumption to 5 MW at 10.15am and decrease its consumption to 2 MW at 10.20am.
That should result in the same average values for each quarter-hour.

4.15 Building custom Uls

FlexMeasures provides its own Ul (see Dashboard), but it is a back office platform first. Most energy service companies
already have their own user-facing system. We therefore made it possible to incorporate information from FlexMeasures
in custom Uls.

This tutorial will show how the FlexMeasures API can be used from JavaScript to extract information and display it in
a browser (using HTML). We’ll extract information about users, assets and even whole plots!

Table of contents

e Get an authentication token

* Load user information

* Load asset information

4.15. Building custom Uls 79

../api/v3_0.html#get--api-v3_0-sensors-(id)-schedules-(uuid)
../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
../api/v3_0.html#get--api-v3_0-sensors-data
../api/v3_0.html#get--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.20.1.dev11

» Embedding charts I

Note: We’ll use standard JavaScript for this tutorial, in particular the fetch functionality, which many browsers support
out-of-the-box these days. You might want to use more high-level frameworks like jQuery, Angular, React or VueJS
for your frontend, of course.

4.15.1 Get an authentication token

FlexMeasures provides the [POST] /api/requestAuthToken endpoint, as discussed in Authentication. Here is a
JavaScript function to call it:

var flexmeasures_domain = "http://localhost:5000";
function getAuthToken(){
return fetch(flexmeasures_domain + '/api/requestAuthToken',
{
method: "POST",
mode: "cors",
headers:
{
"Content-Type": "application/json",
e
body: JSON.stringify({"email": email, "password": password})
}
)
.then(function(response) { return response.json(); 1})
.then(console.log("Got auth token from FlexMeasures server ..."));
}

It only expects you to set email and password somewhere (you could also pass them to the function, your call). In
addition, we expect here that flexmeasures_domain is set to the FlexMeasures server you interact with, for example
“https://company.flexmeasures.io”.

We’ll see how to make use of the getAuthToken function right away, keep on reading.

4.15.2 Load user information
Let’s say we are interested in a particular user’s meta data. For instance, which email address do they have and which
timezone are they operating in?

Given we have set a variable called userId, here is some code to find out and display that information in a simple
HTML table:

<hl>User info</h1>
<p>

Email address:
</p>
<p>

Time zone:
</p>

80 Chapter 4. Where to start reading?

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
../api/v2_0.html#post--api-v2_0-requestAuthToken
https://company.flexmeasures.io

FlexMeasures Documentation, Release 0.20.1.dev11

function loadUserInfo(userId, authToken) {
fetch(flexmeasures_domain + '/api/v2_0/user/' + userld,

{
method: "GET",
mode: "cors",
headers:
{
"Content-Type": "application/json",
"Authorization": authToken
e
}
)
.then(console.log("Got user data from FlexMeasures server ..."))

.then(function(response) { return response.json(); })
.then(function(userInfo) {
document.querySelector('#user_email').innerHTML = userInfo.email;
document.querySelector('#user_timezone').innerHTML = userInfo.timezone;

b
3
document.onreadystatechange = (O => {
if (document.readyState === 'complete') {
getAuthToken()

.then(function(response) {
var authToken = response.auth_token;
loadUserInfo(userId, authToken);

b

}

The result looks like this in your browser:

User info

Email address: demo(@seita.nl

Time zone: Europe/Amsterdam

From FlexMeasures, we are using the [GET] /user endpoint, which loads information about one user. Browse its
documentation to learn about other information you could get.

4.15. Building custom Uls 81

../api/v3_0.html#get--api-v3_0-user-(id)

FlexMeasures Documentation, Release 0.20.1.dev11

4.15.3 Load asset information

Similarly, we can load asset information. Say we have a variable accountId and we want to show which assets
FlexMeasures administrates for that account.

For the example below, we’ve used the ID of the account from our toy tutorial, see foy futorial.

<style>
#assetTable th, #assetTable td {
border-right: 1px solid gray;
padding-left: 5px;
padding-right: 5px;
}
</style>

<table id="assetTable">
<thead>
<tr>
<th>Asset name</th>
<th>ID</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody></tbody>
</table>

function loadAssets(accountId, authToken) {
var params = new URLSearchParams();
params.append(account_id", accountId);
fetch(flexmeasures_domain + '/api/v3_0/assets?' + params.toString(),

{
method: "GET",
mode: "cors",
headers:
{
"Content-Type": "application/json",
"Authorization": authToken
e
}
)
.then(console.log("Got asset data from FlexMeasures server ..."))

.then(function(response) { return response.json(); })
.then(function(rows) {
rows.forEach(row => {
const tbody = document.querySelector('#assetTable tbody');
const tr = document.createElement('tr');
tr.innerHTML = " <td>${row.name/</td><td>f{row.id/</td><td>${row.latitude </td>
—<td>${row.longitude j</td>";
tbody.appendChild(tr);
5D5
b

(continues on next page)

82 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

document.onreadystatechange = (0 => {
if (document.readyState === 'complete') {
getAuthToken()
.then(function(response) {
var authToken = response.auth_token;
loadAssets(accountId, authToken);

D)

The result looks like this in your browser:

Asset name | Id | Latitude | Longitude |
toy-solar | 11|52.374 |4.88969 |
toy-building | 12| 52.374 | 4.88969 |
toy-battery |13|52.374 |4.88969 |

From FlexMeasures, we are using the [GET] /assets endpoint, which loads a list of assets. Note how, unlike the user
endpoint above, we are passing a query parameter to the API (account_id). We are only displaying a subset of the
information which is available about assets. Browse the endpoint documentation to learn other information you could
get.

For a listing of public assets, replace /api/v3_0/assets with /api/v3_0/assets/public.

4.15.4 Embedding charts

Creating charts from data can consume lots of development time. FlexMeasures can help here by delivering ready-made
charts. In this tutorial, we’ll embed a chart with electricity prices.

First, we define a div tag for the chart and a basic layout (full width). We also load the visualization libraries we need
(more about that below), and set up a custom formatter we use in FlexMeasures charts.

<script src="https://d3js.org/d3.v6.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/vega@5.22.1"></script>
<script src="https://cdn.jsdelivr.net/npm/vega-lite@5.2.0"></script>
<script src="https://cdn.jsdelivr.net/npm/vega-embed@6.20.8"></script>
<script>
vega.expressionFunction('quantityWithUnitFormat', function(datum, params) {
return d3.format(params[0]) (datum) + " " + params[1];
B;
</script>

<div id="sensor-chart" style="width: 100%;"></div>

Now we define a JavaScript function to ask the FlexMeasures API for a chart and then embed it:

function embedChart(params, authToken, sensorId, divId){
fetch(
flexmeasures_domain + '/api/dev/sensor/' + sensorld + '/chart?include_data=true&

"' 4+ params.toString(),
(continues on next page)

4.15. Building custom Uls 83

../api/v3_0.html#get--api-v3_0-assets

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

{
method: "GET",
mode: "cors",
headers:
{
"Content-Type": "application/json",
"Authorization": authToken
}
}

)
.then(function(response) {return response.json();})
.then(function(data) {vegaEmbed(divId, data)})

This function allows us to request a chart (actually, a JSON specification of a chart that can be interpreted by vega-lite),
and then embed it within a div tag of our choice.

From FlexMeasures, we are using the GET /api/dev/sensor/(id)/chart/ endpoint. Browse the endpoint documentation
to learn more about it.

Note: Endpoints in the developer API are still under development and are subject to change in new releases.

Here are some common parameter choices for our JavaScript function:

var params = new URLSearchParams();

params.append("width", 400); // an integer number of pixels; without it, the chart will.,
—be scaled to the full width of the container (note that we set the div width to 100%)
params.append("height", 400); // an integer number of pixels; without it, a FlexMeasures.,
—default is used

params.append("event_starts_after", '2022-10-01T00:00+01'); // only fetch events from.,
—midnight October 1st

params.append("event_ends_before", '2022-10-08T00:00+01'); // only fetch events until,,
—midnight October 8th

params.append("beliefs_before", '2022-10-03T00:00+01'); // only fetch beliefs prior to.
—October 3rd (time travel)

As FlexMeasures uses the Vega-Lite Grammar of Interactive Graphics internally, we also need to import this library to
render the chart (see the script tags above). It’s crucial to note that FlexMeasures is not transferring images across
HTTP here, just information needed to render them.

Note: It’s best to match the visualization library versions you use in your frontend to those used by FlexMea-
sures. These are set by the FLEXMEASURES_JS_VERSIONS config (see Configuration) with defaults kept in
flexmeasures/utils/config_defaults.

Now let’s call this function when the HTML page is opened, to embed our chart:

document.onreadystatechange = (0 => {
if (document.readyState === 'complete') {
getAuthToken()
.then(function(response) {
var authToken = response.auth_token;
(continues on next page)

84 Chapter 4. Where to start reading?

../api/dev.html#get--api-dev-sensor-(id)-chart-
https://vega.github.io/vega-lite/

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

var params = new URLSearchParams();
params.append("event_starts_after", '2022-01-01T00:00+01');
embedChart (params, authToken, 1, '#sensor-chart');

i)

The parameters we pass in describe what we want to see: all data for sensor 3 since 2022. If you followed our 7oy
tutorial on a fresh FlexMeasures installation, sensor 1 contains market prices (authenticate with the toy-user to gain
access).

The result looks like this in your browser:

Day-ahead prices (EUR/MWh)
18

0
December 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 Fri 02

Source
™ toy-user

4.16 Energy flexibility

FlexMeasures was created so that the value of energy flexibility can be realized. This will make energy cheaper to use,
and can also reduce CO, emissions. Here, we define a few terms around this idea, which come up in other parts of this
documentation.

* Behind-the-meter and front-of-the-meter
e Flexibility opportunities and activation
— Opportunities
— Activation
* An example: the balancing market
e Types of flexibility
— Curtailment
— Shifting
e Profits of flexibility activation
— Computing value

— Accounting / Sharing value

* A word on terminology

4.16. Energy flexibility 85

FlexMeasures Documentation, Release 0.20.1.dev11

4.16.1 Behind-the-meter and front-of-the-meter

In the energy sector, we draw a distinction between behind-the-meter (BTM) and front-of-the-meter (FTM) optimiza-
tion. As usual, the distinction isn’t always clear, but we can give the general definition and the focus for FlexMeasures
(BTM).

BTM optimization describes the optimization of assets connected on a site behind the main meter (which has the
connection to the rest of the electricity grid). Think of local solar, heating, EV charging and even batteries. A (dynamic)
tariff and limits to the grid connection often complete the picture, which can become quite complex and also rewarding
to get right.

On the other hand, there is front-of-the-meter (FTM) optimization, which relates to grid-level optimization as is the
work of utilities, DSOs and TSOs. Think of large-scale generation and its role in wholesale markets, managing trans-
mission lines. But also, flexible grid-level assets like batteries and solar parks might belong here, and you might find
that FlexMeasures can help to optimize some of these assets if you model the circumstances correctly.

When we focus on the situation behind the meter, do we ignore everything else? Not at all. It simply means to prioritize
the local orchestration modeling, and then add services which the site can offer to the grid. For instance, using a dynamic
tariff can already help the grid. Obeying (flexible) grid capacity constraints, as well, of course. Going further, extra
flexibility can be offered explicitly to congestion markets/auctions, which is part of FlexMeasures’ roadmap. (Note:
For a distinction between implicit and explicit flexibility, read on below).

4.16.2 Flexibility opportunities and activation

Opportunities

In an energy system with flexible energy assets present (e.g. batteries, heating/cooling), there are opportunities to profit
from the availability and activation of their flexibility.

Energy flexibility can come from the ability to store energy (“storage”), to delay (or advance) planned consumption or
production (“shifting”), the ability to lower production (“‘curtailment”), or the ability to increase or decrease consump-
tion (“demand response”) — see Types of flexibility for a deeper discussion.

Under a given incentive, this flexibility represents an opportunity to profit by scheduling consumption or production dif-
ferently than originally planned. Within FlexMeasures, flexibility is represented as the difference between a suggested
schedule and a given baseline. By default, a baseline is determined by our own forecasts.

Opportunities are expressed with respect to given economical and ecological incentives. For example, a suggested
schedule may represent an opportunity to save X EUR and Y tonnes of CO,.

Activation

The activation of flexibility usually happens in a context of incentives. Often, that context is a market. We recommend
the USEF white paper on the flexibility value chain for an excellent introduction of who can benefit from energy
flexibility and how it can be delivered. The high-level takeaways are these:

* the value of flexibility flows back to Prosumers along a chain of roles involved in the activation of their flexibility:
the Flexibility Value Chain.

* a portfolio of flexible assets (and even individual assets) may provide services in multiple contexts in the same
period: value stacking.

» Explicit demand-side flexibility services involve Aggregators, while implicit demand-side flexibility services
involve Energy Service Companies (ESCos).

* Many remuneration components for flexibility services requires the determination of a baseline according to
some baseline methodology.

86 Chapter 4. Where to start reading?

https://flexmeasures.io/roadmap/
https://www.usef.energy/app/uploads/2018/11/USEF-White-paper-Flexibility-Value-Chain-2018-version-1.0_Oct18.pdf

FlexMeasures Documentation, Release 0.20.1.dev11

* Both availability and activation of flexibility have value.

The overall value (from availability and activation of flexibility), and how this value is shared amongst stakeholders in
the various roles in the Flexibility Value Chain, can be accounted for by the platform operator. We talk more about this
in Profits of flexibility activation.

4.16.3 An example: the balancing market

An example of a market on which flexibility can be activated is the balancing market, which is meant to bring the
grid frequency back to a target level within a matter of minutes. Consider the aforementioned differences between
suggested schedules and a given baseline. In the context of the balancing market, differences indicating an increase in
production or a decrease in consumption on activation both result in an increasing grid frequency (back towards the
target frequency).

The balancing market pays for such services, and they are often referred to as “up-regulation”. It works the other way
around, too: differences indicating a decrease in production or an increase in consumption both result in a decreasing
grid frequency (“down-regulation”).

4.16.4 Types of flexibility

The FlexMeasures platform distinguishes between different types of flexibility. We explain them here in more detail,
together with examples.

Curtailment

Curtailment happens when an asset temporarily lowers or stops its production or consumption. A defining feature of
curtailment is that total production or consumption decreases when this this flexibility is activated.

* A typical example of curtailing production is when a wind turbine adjusts the pitch angle of its blades to decrease
the generator torque.

¢ An example of curtailing consumption is load shedding of energy intensive industries.

Curtailment offers may specify some freedom in terms of how much energy can be curtailed. In these cases, the user
can select the energy volume (in MWh) to be ordered, within constraints set by the relevant Prosumer. The net effect
of a curtailment action is also measured in terms of an energy volume (see the flexibility metrics in the portfolio page).

Note that the volume ordered is not necessarily equal to the volume curtailed: the ordered volume relates only to the
selected time window, while the curtailed volume may include volumes outside of the selected time window. For
example, an asset that runs an all-or-nothing consumption process of 2 hours can be ordered to curtail consumption
for 1 hour, but will in effect stop the entire process. In this case, the curtailed volume will be higher than the ordered
volume, and the platform will take into account the total expected curtailment in its calculations.

Shifting
Shifting happens when an asset delays or advances its energy production or consumption. A defining feature of shifting
is that total production or consumption remains the same when this flexibility is activated.

* An example of delaying consumption is when a charging station postpones the charging process of an electric
vehicle.

* An example of advancing consumption is when a cooling unit starts to cool before the upper temperature bound
was reached (pre-cooling).

4.16. Energy flexibility 87

FlexMeasures Documentation, Release 0.20.1.dev11

Shifting offers may specify some freedom in terms of how much energy can be shifted. In these cases, the user can
select the energy volume (in MWh) to be ordered, within constraints set by the relevant Prosumer. This energy volume
represents how much energy is shifting into or out of the selected time window. The net effect of a shifting action
is measured in terms of an energy-time volume (see the flexibility metrics in the portfolio page). This volume is a
multiplication of the energy volume being shifted and the duration of that shift.

4.16.5 Profits of flexibility activation

The realized value from activating flexibility has to be computed and accounted for. Both of these activities depend on
the context in which FlexMeasures is being used, and we expect that it will often have to be implemented in a custom
manner (much as the actual scheduling optimization).

Todo: Making it possible to configure custom scheduling and value accounting is on the roadmap for FlexMeasures.

Computing value

The computation of the value is what drives the scheduling optimization. This value is usually monetary, and in that
case there should be some form of market configured. This can be a constant or time-of-use tariff, or a real market.
However, there are other possibilities, for instance if the optimization goal is to minimize CO, emissions. Then, the
realized value is avoided CO,, which nowadays has an assumed value, e.g. in the EU ETS carbon market.

Accounting / Sharing value

The realization of payments is outside of the scope of FlexMeasures, but it can provide the accounting to enable them
(as was said above, this is usually a part of the optimization problem formulation).

However, next to fueling algorithmic optimization, the way that the value of energy flexibility is shared among the
stakeholders will also be an important driver for project participation. Accounting plays an important role here.

There are different roles in a modern smart energy system (e.g. “Prosumer”, “DSO”, Aggregator”, “ESCo”), and they
all enjoy the benefits of flexibility in different ways (see for example this resource for more details).

In our opinion, the only way to successful implementation of energy flexibility is if profits are shared between these
stakeholders. This assumes contractual relationships. Use cases which FlexMeasures can support well are the following
relationships:

* between Aggregator and Prosumer, where the Aggregator sells the balancing power to a third party and shares
the profits with the Prosumer according to some contracted method for profit sharing. In this case the stated
costs and revenues for the Prosumer may be after deducting the Aggregator fee (which typically include price
components per flex activation and price components per unit of time, but may include arbitrarily complex price
components).

* between ESCo and Prosumer, where the ESCo advises the Prosumer to optimize against e.g. dynamic prices.
Likewise, stated numbers may be after deducting the ESCo fee.

FlexMeasures can take these intricacies into account if a custom optimization algorithm is plugged in to model them.

Alternatively, we can assume that all profit from activating flexibility goes to the Prosumer, or simply report the profits
before sharing (and before deducting any service fees).

88 Chapter 4. Where to start reading?

https://ember-climate.org/data/carbon-price-viewer/
https://www.usef.energy/role-specific-benefits/

FlexMeasures Documentation, Release 0.20.1.dev11

4.16.6 A word on terminology

FlexMeasures is compliant with the Universal Smart Energy Framework (USEF). Therefore, this documentation uses
USEF terminology, e.g. for role definitions. In this context, the intended users of FlexMeasures are a Supplier (energy
company) and its Prosumers (asset owners who have energy contracts with that Supplier). The platform operator of
FlexMeasures can be an Aggregator.

4.17 The FlexMeasures data model

The data model being used in FlexMeasures is visualized here (click for larger version):

DataSource
+id - Integer
LatestTaskRun +name : String
Tare Sy Fiype - Siring
+datetime - DateTime 1“;5'5' e ”,Esgg’;
+status : Boolean attributes - JSON
+attributes_hash : LargeBinary|

+model - String
~+version - String

+data_sg '+ data_sourcey +soukge

User 1

+id - Integer
+email : String
+usemame : String
+password : String
+last_login_at : DateTime
+last'seen_at : DateTime
susegzx |+login_count - Integer
+active : Boolean
+fs_uniquifier - String
+timezone : String
+account id - Integer

+us
+account, +flexmeasuras_roles

Account Role
+id : Integer +id : Integer
+name : String suldney_secaunt 0.1 +name : String
+consultancy account id - Integer fancy_client_accounts * +description : String
nts *

+owner
+generic_assets

GenericAsset

+id : Integer
+name : String AccountRole
+latitude - Float -

+id - Integer
+longitude EF\DEt Qem sset 0.1 +name : gtrir\g
+attributes - JSON- fc_asset +description - String
+parent asset id : Integer assets *

+genernic_asset type_id - Integer]
+actount Jd : Integer

+generic_assefs

+sensors
Sensor
+genric_assat_typ! +id - Integer
+name : String
GenericAssetType Funit - String
+id - Integer +timezone - String
+name : String +event _resolution : Interval
+description : String +knowledge_horizon_fnc : String
+knowledge horizon par :]SON
+attributes - JSON
+generic_asset id - Integer

+serisgr!
+belie +heliefs *

TimedBelief

“event start : DateTime
+helief horizon - Interval
+cumulative_probability - Float
+event value - Float
+sensor_id : Integer
+source_id - Integer

Let’s dive into some of the more crucial model types:

4.17. The FlexMeasures data model 89

https://www.usef.energy/
https://raw.githubusercontent.com/FlexMeasures/screenshots/main/architecture/FlexMeasures-NewDataModel.png

FlexMeasures Documentation, Release 0.20.1.dev11

4.17.1 Assets

Assets can represent physical objects (e.g. a car battery or an industrial machine) or “virtual” objects (e.g. a market).
In essence, an asset is anything on which you collect data.

Assets can also have a parent-child relationship with other assets. So, you could model a building that contains assets
like solar panels, a heat pump and EV chargers.

4.17.2 Sensors

A sensor depicts how data is collected in detail. Each sensor links to an asset.

For instance, an asset might have both a energy meter and a temperature reading. You’d link two sensors to that asset
and each sensor would have a unique unit (e.g. kWh and °C).

You can also tell FlexMeasures in what timezone your data is expected to be set, and what the resolution should be.
Then, FlexMeasures can try to convert incoming data to these specifications (e.g. if Fahrenheit readings come in, it
converts them to Celsius).

A bit more intricate control is to describe when beliefs (see below) are known. You might get prices from a supplier,
but the time you imported them is not the time they were known. A market might have a publication date you want to
adhere to. More information in the timely-beliefs documentation.

4.17.3 Data sources

We keep track of where data comes from, for better reporting (this is also an aspect of the timely-beliefs package). A
data source can be a FlexMeasures user, but also simply a named source from outside, e.g. a third-party API, where
weather forecasts are collected from.

4.17.4 Beliefs

When we discussed sensors, we hinted at the care we took to model the event data well. We call each data point a
“belief”, as we not only store measurements — we also store forecasts, schedules and the like, many of which do not
have a 100% truth value.

For instance, a horizon of 0 means the data point was known right after it happened. A positive horizon means the data
point is a forecast.

The timely-beliefs package helps us to model many aspects about data points, e.g. who claims to know that value, when
they said so and how certain they were.

Each belief links to a sensor and a data source. Here are two examples:

» The power sensor of a battery, where we store the schedules, can have two sources: (1) the schedule itself (a data
source of type “scheduler”, representing how FlexMeasures created this data) and (2) the realized schedule, i.e.
the measurements of how the battery responded (or not) to the schedule. The latter might have a data source of
type “user” (who sent the measurements to FlexMeasures).

* A thermal demand sensor containing forecasts (data source of type “forecast”, e.g. heating usage forecast sent to
FlexMeasures or made by FlexMeasures) and measurements (sent into FlexMeasures, data source type “user’).

90 Chapter 4. Where to start reading?

https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#beliefs-in-economics
https://github.com/SeitaBV/timely-beliefs

FlexMeasures Documentation, Release 0.20.1.dev11

4.17.5 Accounts & Users

FlexMeasures is a multi-tenant system. Each account should model an organization with multiple users.

Accounts “own” assets, and data of these assets are protected against anyone from a different account (unless a user
has the admin role).

Accounts can “consult” other accounts. This depicts the real situation that some organizations are the consultants or
advisors to many others. They have certain rights, e.g. to read the data of their clients. That is useful for serving them.
If you are hosting FlexMeasures, and the organizations you serve with it use this feature, you are effectively running a
B2B2B setup :)

4.18 Security aspects

4.18.1 Data

There are two types of data on FlexMeasures servers - files (e.g. source code, images) and data in a database (e.g. user
data and time series for energy consumption/generation or weather).

e Files are stored on EBS volumes on Amazon Web Services. These are shared with other customers of Amazon,
but protected from them by Linux’s chroot system — each user can see only the files in their own section of the
disk.

 Database data is stored in PostgresDB instances which are not shared with other Amazon customers. They are
password-protected.

* Finally, The application communicates all data with HTTPS, the Hypertext Transfer Protocol encrypted by Trans-
port Layer Security. This is used even if the application is accessed via http://.

4.18.2 Authentication

Authentication is the system by which users tell the FlexMeasures platform that they are who they claim they are. This
involves a username/password combination (“credentials’) or an access token.

» No user passwords are stored in clear text on any server - the FlexMeasures platform only stores the hashed
passwords (encrypted with the berypt hashing algorithm). If an attacker steals these password hashes, they
cannot compute the passwords from them in a practical amount of time.

» Access tokens are used so that the sending of usernames and passwords is limited (even if they are encrypted
via https, see above) when dealing with the part of the FlexMeasures platform which sees the most traffic: the
API functionality. Tokens thus have use cases for some scenarios, where developers want to treat authentica-
tion information with a little less care than credentials should be treated with, e.g. sharing among computers.
However, they also expire fast, which is a common industry practice (by making them short-lived and requiring
refresh, FlexMeasures limits the time an attacker can abuse a stolen token). At the moment, the access tokens on
FlexMeasures platform expire after six hours. Access tokens are encrypted and validated with the sha256_crypt
algorithm, and the functionality to expire tokens is realised by storing the seconds since January 1, 2011 in the
token. The maximum age of access tokens in FlexMeasures can be altered by setting the env variable SECU-
RITY_TOKEN_MAX_AGE to the number of seconds after which tokens should expire.

Note: Authentication (and authorization, see below) affects the FlexMeasures API and UI. The CLI (command line
interface) can only be used if the user is already on the server and can execute flexmeasures commands, thus we can
safely assume they are admins.

4.18. Security aspects 91

https://passlib.readthedocs.io/en/stable/lib/passlib.hash.bcrypt.html
https://passlib.readthedocs.io/en/stable/lib/passlib.hash.sha256_crypt.html
https://passlib.readthedocs.io/en/stable/lib/passlib.hash.sha256_crypt.html
https://pythonhosted.org/itsdangerous/#itsdangerous.TimestampSigner
https://pythonhosted.org/itsdangerous/#itsdangerous.TimestampSigner

FlexMeasures Documentation, Release 0.20.1.dev11

4.18.3 Authorization

Authorization is the system by which the FlexMeasures platform decides whether an authenticated user can access data.
Data about users and assets. Or metering data, forecasts and schedules.

For instance, a user is authorized to update his or her personal data, like the surname. Other users should not be
authorized to do that. We can also authorize users to do something because they belong to a certain account. An
example for this is to read the meter data of the account’s assets. Any regular user should only be able to read data that
their account should be able to see.

Note: Each user belongs to exactly one account.

In a nutshell, the way FlexMeasures implements authorization works as follows: The data models codify under which
conditions a user can have certain permissions to work with their data (in code, look for the __acl__ function, where
the access control list is defined). Permissions allow distinct ways of access like reading, writing or deleting. The API
endpoints are where we know what needs to happen to what data, so there we make sure that the user has the necessary
permissions.

We already discussed certain conditions under which a user has access to data — being a certain user or belonging to
a specific account. Furthermore, authorization conditions can also be implemented via roles:

e Account roles are often used for authorization. We support several roles which are mentioned in the USEF
framework but more roles are possible (e.g. defined by custom-made services, see below). For example, a user
might be authorized to write sensor data if they belong to an account with the “MDC” account role (“MDC”
being short for meter data company).

* User roles give a user personal authorizations. For instance, we have a few admins who can perform all
actions, and admin-readers who can read everything. Other roles have only an effect within the user’s account,
e.g. there could be an “HR” role which allows to edit user data like surnames within the account.

* A special case are consultant accounts — accounts which can read data on other accounts (usually their clients,
handy for servicing them). For this, accounts have an attribute called consultancy_account_id. Users in
the consultant account with role consultant can read data in their client accounts. We plan to introduce some
editing/creation capabilities in the future. You can also add a consultant account when creating a client account,
for instance on the CLI: flexmeasures add account --name "Account2" --consultancy 1.

* Roles cannot be edited via the UI at the moment. They are decided when a user or account is created in the CLI
(for adding roles later, we use the database for now). Editing roles in UI and CLI is future work.

Note: Custom energy flexibility services developed on top of FlexMeasures also need to implement authorization.
More on this in Custom authorization. Here is an example for a custom authorization concept: services can use account
roles to achieve their custom authorization. E.g. if several services run on one FlexMeasures server, each service could
define a “MyService-subscriber” account role, to make sure that only users of such accounts can use the endpoints.

92 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.19 Storage device scheduler: Linear model

4.19.1 Introduction
This generic storage device scheduler is able to handle an EMS with multiple devices, with various types of constraints
on the EMS level and on the device level, and with multiple market commitments on the EMS level.

A typical example is a house with many devices. The commitments are assumed to be with regard to the flow of energy
to the device (positive for consumption, negative for production). In practice, this generic scheduler is used in the
StorageScheduler to schedule a storage device.

The solver minimizes the costs of deviating from the commitments.

4.19.2 Notation

Indexes

Symbol Variable in the Code Description

c c Commitments, for example, day-ahead or intra-day market commitments.
d Devices, for example, a battery or a load.
7] 0-indexed time dimension.

Note: The time index j has two interpretations: a time period or an instantaneous moment at the end of time period
7. For example, j in flow constraints correspond to time periods, whereas j used in a stock constraint refers to the end
of time period j.

4.19. Storage device scheduler: Linear model 93

FlexMeasures Documentation, Release 0.20.1.dev11

Parameters
Symbol Variable in the Code Description
Pricey,(c, j) up_price Price of incurring an upwards deviations in commitment c during

Pricegown(c,j) down_price

nup(d»]) de-

time period j.

Price of incurring a downwards deviations in commitment ¢ dur-
ing time period j.

Upwards conversion efficiency.

vice_derivative_up_efficiency

Ndown <d7 .7) de-

Downwards conversion efficiency.

vice_derivative_down_efficie

Stockmin(d,j) device_min

Minimum quantity for the stock of device d at the end of time

period j.

Stockmaz(d,j) device_max Maximum quantity for the stock of device d at the end of time
period j.

e(d, 5) efficiencies Stock energy losses.

Praz(d,j) device_derivative_max Maximum flow of device d during time period j.

Prin(d, 7) device_derivative_min Minimum flow of device d during time period j.

Pems(4) ems_derivative_min Minimum flow of the EMS during time period j.

Pems () ems_derivative_max Maximum flow of the EMS during time period j.

Commitment(c, commitment_quantity Commitment ¢ (at EMS level) over time step j.

M M Large constant number, upper bound of Power,,(d,j) and
| Power gown(d, j)|-

D(d, j) stock_delta Explicit energy gain or loss of device d during time period j.

Variables

Symbol Variable in the Code

Description

Ayp(e,j) commit-
ment_upwards_deviation

Agown(c,j) commit-
ment_downwards_deviation

AStock(d,j n/a

P,,(d,j) device_power_up

Piown(d,7) device_power_down

Upwards deviation from the power commitment c of the EMS during
time period j.

Downwards deviation from the power commitment ¢ of the EMS dur-
ing time period j.

Change of stock of device d at the end of time period j.

Upwards power of device d during time period j.

Downwards power of device d during time period j.

Pems(g) ems_power Aggregated power of all the devices during time period j.
o(d, j) device_power_sign Upwards power activation if o(d, j) = 1, downwards power activation
otherwise.
94 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.19.3 Cost function
The cost function quantifies the total cost of upwards and downwards deviations from the different commitments.

mln[z Aup(cvj) . Priceup(cvj) + Adown(ca j) . Pricedown (Ca j)] (4])

g

4.19.4 State dynamics

To simplify the description of the model, the auxiliary variable AStock(d, j) is introduced in the documentation. It
represents the change of Stock(d, j), taking into account conversion efficiencies but not considering the storage losses.

Piown(d,j . . .
AStock(d, j) = Paoun(d,3) | Pup(d, j) - nup(d, §) + D(d, 5) “4.2)
ndown(da])
Stockmin(d, j) < Stock(d, j) — Stock(d, —1) < Stockmaz(d, 5) (4.3)
Perfect efficiency
Stock(d, j) = Stock(d,j — 1) + AStock(d, j) 4.4)

Left efficiency

First apply the stock change, then apply the losses (i.e. the stock changes on the left side of the time interval in which
the losses apply)

Stock(d, j) = (Stock(d,j — 1) + AStock(d, 7)) - e(d, j) 4.5)

Right efficiency

First apply the losses, then apply the stock change (i.e. the stock changes on the right side of the time interval in which
the losses apply)

Stock(d, j) = Stock(d,j — 1) - e(d, j) + AStock(d, j) (4.6)

Linear efficiency

Assume the change happens at a constant rate, leading to a linear stock change, and exponential decay, within the
current interval

€(d7.]) -1

Stock(d, j) = Stock(d,j — 1) - e(d, j) + AStock(d, j) - log((d.7)

%))

4.19. Storage device scheduler: Linear model 95

FlexMeasures Documentation, Release 0.20.1.dev11

4.19.5 Constraints

Device bounds

szn(dvj) S Pup(daj) + Pdown(dvj) S Pmax(dvj) (48)
mZTL(szn(d,]), O) < Pdown(daj) <0 4.9
0 < P,y(d,j) <mazx(Ppas(d,j),0) (4.10)

Upwards/Downwards activation selection

Avoid simultaneous upwards and downwards activation during the same time period.

~Puaown(d,j) < M - (1 - 0o(d,)) (4.12)
Grid constraints
Pems(d,j) :Pup(daj)+Pdown(d;j) (4.13)
PErs(d) < > Pem(d, 5) < Pama(d) (4.14)
d

Power coupling constraints

Z Pi(d, j) = Z Commitment(c, j) + Aup(c, §) + Adown(c, J) (4.15)
d c

4.20 Dashboard

The dashboard shows where the user’s assets are located and how many different asset types are connected to the
platform. The view serves to quickly identify the status of assets, such as whether there are upcoming opportunities to
valorise on flexibility activations. In particular, the page contains:

* Interactive map of assets

* Summary of asset types

* Grouping by accounts

96 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

*3 FlexMeasures

Status of my assets:

b Spagrndam) < Folysioot
e g %"‘e, toy-battery @m Zunderdorp
| Bloemendaal Spaarnwolide 2
05
Sos
Overveen S, 2=} Sos Edit this NOORDERRFASSEN
Foz
L 2 _co i asset =
Halfweg; i < ° Schellingwoude
o
Zwanenburg COMHER 11777 N Dirgerdain Lmeer i
Nieuwebrug erdam ¢
& Banttch NG AT
> NIEUWS
Aerdenhout WEST
Bogeingheliede WES SRR 2
ol o o B0, & HOMERUSKWARTIER
Rikémuseurn %,
Heemstede
Viithuizen Vipden WATERGRAAFSMEER (XD ALMERE
£ g A Zyio igrensul iy o
£rf @B gy Diemen, 2.
@uuptin |8/ ¢ Badhoevedorf TS e
@meshen | §¢ § e o Leaflet | © Mapbox © O his map

Renewables Solar Batteries Buildings Temperatures Wind_speeds Radiations Weather stations
I k3
§is & ® i
My assets: 1 1 1 1 4 2 2 1

FlexMeasures technology is created by Seita Energy Flexibility, in cooperation with A1 Engineering © 2022. About FlexMeasures. Credits. This app is running since 11 minutes ago on version 0.9.2.

1 8%
o

4.20.1 Interactive map of assets

The map shows all of the user’s assets with icons for each asset type. Hovering over an asset allows users to see its
name and ownership, and clicking on an asset allows the user to navigate to its page to see more details, for instance
forecasts.

4.20.2 Summary of asset types

The summary below the map lists all asset types that the user has hooked up to the platform and how many of each
there are. Clicking on the asset type name leads to the asset’s page, where its data is shown.

4.20.3 Grouping by accounts

Note: This is a feature for user with role admin or admin-reader.

By default, the map is layered by asset type. However, on the bottom right admins can also switch to grouping by
accounts. Then, map layers will contain the assets owned by accounts, and you can easily see who you’re serving with
what.

4.21 Assets & sensor data

4.21.1 Asset page

The asset page allows to see data from the asset’s sensors, and also to edit attributes of the asset, like its location. Other
attributes are stored as a JSON string, which can be edited here as well. This is meant for meta information that may be
used to customize views or functionality, e.g. by plugins. This includes the possibility to specify which sensors the asset
page should show. For instance, here we include a price sensor from a public asset, by setting {"sensor_to_show" :
[3, 21} (sensor 3 on top, followed by sensor 2 below).

4.21. Assets & sensor data 97

FlexMeasures Documentation, Release 0.20.1.dev11

TILFENERGY

FlexMeasures @)

8%
g

Create Delete this
new asset asset Day ahead prices (EUR/MWh)
15
10
5
o
Wed 06 04:00 08:00 12:00 16:00 20:00 Thu 07 04:00 08:00 12:00 16:00 20:00 Fri08

Discharging (MW)

-02
Today ‘ Last 7 days ‘ This month 0s

Wed 06 04:00 08:00 12:00 16:00 20:00 Thu 07 04:00 08:00 12:00 16:00 20:00 Fri 08

source
® seita
P toy-user

Edit toy-battery
Name
Latitude show 10 v records Filter records:

523740 Name Unit Resolution Entity address Data
Longitude discharging MW 15 minutes eal.2022-08 localhostfml106

48897
Showing 1 to] out of 1 records

Asset Type

battery

Asset id

Location

Purmerend o .o

Monnickendam
‘Zaandam

® o
Amsterdam

Diemen

prddorp Amstelveen

Lo/ Aalsimeer

Uithoorn
s bferbox © Openstreciiap Improve his
map

FlexMeasures technology is created by Seita Energy Flexibility, in cooperation with Al Engineering © 2022. About FlexMeasures. Credits. This app is running since 2 minutes ago on version 0.11.0.dev23. Loaded plugins: flexmeasures-zinfo (v0.7).

[8%)
74

Note: It is possible to overlay data for multiple sensors, by setting the sensors_to_show attribute to a nested list. For
example, {"sensor_to_show": [3, [2, 4]]} would show the data for sensor 4 laid over the data for sensor 2.

Note: While it is possible to show an arbitrary number of sensors this way, we recommend showing only the most
crucial ones for faster loading, less page scrolling, and generally, a quick grasp of what the asset is up to.

98 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

Note: Asset attributes can be edited through the CLI as well, with the CLI command flexmeasures edit
attribute.

4.21.2 Sensor page

Each sensor also has its own page:

COLFEMERGY

’ "::-.:’} FIBXM gasures & Daoshboard = & Users ETasks ~ & Accounts
o

Positive Design > Ards place > Nissan Leaf battery state of charge

Nissan Leaf battery state of charge (%)
100 Source

| ‘i .Ard

90

bl

P I L = Y |
o o o o o o o

Mon 03 Wed 05 Fri 07 Jul 09

Next to line plots, data can sometimes be more usefully displayed as heatmaps. Heatmaps are great ways to spot the
hotspots of activity. Usually heatmaps are actually geographical maps. In our context, the most interesting background
is time — so we’d like to see activity hotspots on a map of time intervals.

We chose the “time map” of weekdays. From our experience, this is where you see the most interesting activity hotspots
at a glance. For instance, that mornings often experience peaks. Or that Tuesday afternoons have low energy use, for
some reason.

Here is what it looks like for one week of temperature data:

4.21. Assets & sensor data 99

FlexMeasures Documentation, Release 0.20.1.dev11

May 14, 2023
May 13, 2023 .
May 12, 2023
May 11, 2023 .
May 10, 2023
May 09, 2023

May 08, 2023

Temperature (°C)

0000 0200 0400 0800 0800 1000 1200 1400 1600 1800 2000 2200 00:00

It’s easy to see which days had milder temperatures.

And here are 4 days of (dis)-charging patterns in Seita’s V2GLiberty project:

Jul T, 2022

Jul 10, 2022

Jul 09, 2022

" ns‘ e l _ I |

00:00 0200 0400 0600 08:00 10:00 1200 1400 16:00

Nissan Leaf batte..

.0.004

0.002
0.000
-0.002

I -0.004

C18:00 2000 2200 00:00

Charging (blue) mostly happens in sunshine hours, discharging during high-price hours (morning & evening)

So on a technical level, the daily heatmap is essentially a heatmap of the sensor’s values, with dates on the y-axis and
time of day on the x-axis. For individual devices, it gives an insight into the device’s running times. A new button lets

users switch between charts.

4.22 Account overview

This is the account overview page:

100

Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

Y E TILFEMERGY

¥ FlexMeasures

Account

Roles

Users

Show |5 v |records

& Dashboard

Filter records:

Username Email Roles
victor victor@seito.nl admin
Felix2 felix2@seita.nl admin
Guus guus@seitanl admin
Felix felix@seitan! admin
seita- seita- odmin-
adrmin- adminreader@seita.n reqder
reader

Showing | to & out of 7 records

Assets

Show |10~ |records

Filter records:

Name Location Asset

D

2
ClInclude inactive
Timezone Last 1
Login H
Europe/Madrid Sep b
27 .
Europe/Amsterdam Sep !
26
Europe/Amsterdam Mary I
31
2023

Europe/Amsterdam Sep (

AsiafSeoul

Previous

Account

26 {

MNow I
22

Sensors

4.22. Account overview

101

FlexMeasures Documentation, Release 0.20.1.dev11

4.23 Administration

The administrator can see assets and users here.

4.23.1 Assets

Listing all assets:

TILFENERGY

FlexMeasures
Asset overview
Show| 10 v | records Filter records:
Name Location Asset id Account Sensors
& toy-solar LAT: 52.3740 LONG: 4.8897 1 Docker Toy Account 0
m toy-building LAT: 52.3740 LONG: 4.8897 2 Docker Toy Account 0
@ toy-battery LAT: 52.3740 LONG: 4.8897 3 Docker Toy Account 1

Showing 1to 3 out of 3 records

Flexmeasures technology is created by Seita Energy Flexibility, in cooperation with Al Engineering © 2022. About FlexMeasures. Credits. This app is running since 18 minutes ago on version 011.0.dev2l

A
o

4.23.2 Users

Listing all users:

aLFENERGY

2% r Dashboar
> FlexMeasures & Dashboard

All active users

O include inactive

show| 10 v|records Filter records:
Username Email Roles Account Timezone Last Login Active
nicolas am@nicolashoening.de admin Seita Europe/Amsterdam an hour ago True
Ki_yeol shin nu.ac.kr admin AL Asia/seoul Oct 06 2020 True
Summer summer@seita.n Some company ute Jan 13 True
toy-user toy-user@flexmeasures.io account-admin Toy Account Europe/Amsterdam Mar 30 True
mohammudullah mohammudullah@seita.nl admin-reader Toy Account Europe/Amsterdam Apr 23 True

Showing 11 to 15 out of 15 records

FlexMeasures technology is created by Seita Energy Flexibility, in cooperation with gineering © 2022. About Fle; es. Cre his app is running since 10 minutes ago on v

AN
o

Viewing one user:

102 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

*3 FlexMeasures @ Dashboard 1= Assets I

Overview for logged-in user: nicolas

Log out Send password reset instructions List active users

Email address iam@nicolashoening.de

Account Seita

Assets in account 68

Time Zone Europe/Amsterdam
Last login was 2022-05-08 05:00 AM
Roles admin

Fresh access token WylwOWFmZTk0ODBKZDCOYWYyOTYWNDC1MDA3NGEZYTMZOC)d.Ynb73w.KUEXSYcnlpsjsz9LRXRNQQACBKE

FlexMeasures technology is created by Seita Energy Flexibility, in cooperation with A1 Engineering © 2022. About FlexMeasures. Credits. This app is running since 9 minutes ago on version 0.9.2.

8%)
o

4.24 API Introduction

This document details the Application Programming Interface (API) of the FlexMeasures web service. The API sup-
ports user automation for flexibility valorisation in the energy sector, both in a live setting and for the purpose of

simulating scenarios. The web service adheres to the concepts and terminology used in the Universal Smart Energy
Framework (USEF).

All requests and responses to and from the web service should be valid JSON messages. For deeper explanations on
how to construct messages, see Notation.

4.24.1 Main endpoint and API versions

All versions of the API are released on:

[https ://<flexmeasures-root-url>/api]

So if you are running FlexMeasures on your computer, it would be:

[https://localhost:5®®®/api]

Let’s assume we are running a server for a client at:

[https://company.flexmeasures.io/api J

where company is a client of ours. All their accounts’ data lives on that server.

We assume in this document that the FlexMeasures instance you want to connect to is hosted at https://company.
flexmeasures.io.

Let’s see what the /api endpoint returns:

4.24. API Introduction 103

https://company.flexmeasures.io
https://company.flexmeasures.io

FlexMeasures Documentation, Release 0.20.1.dev11

>>> import requests
>>> res = requests.get("https://company.flexmeasures.io/api")
>>> res.json()
{'flexmeasures_version': '0.9.0',

'message': 'For these API versions endpoints are available. An authentication token can..
—be requested at: /api/requestAuthToken. For a list of services, see https://
—flexmeasures.readthedocs.io',

'status': 200,

'versions': ['v3_0"']

¥

So this tells us which API versions exist. For instance, we know that the latest API version is available at:

[https ://company . flexmeasures.io/api/v3_0

Also, we can see that a list of endpoints is available on https://flexmeasures.readthedocs.io for each of these versions.

Note: Sunset API versions are still documented there, simply select an older version.

4.24.2 Authentication

Service usage is only possible with a user access token specified in the request header, for example:

{

"Authorization": "<token>"

}

A fresh “<token>" can be generated on the user’s profile after logging in:

[https ://company. flexmeasures.io/logged-in-user

or through a POST request to the following endpoint:

[https ://company . flexmeasures.io/api/requestAuthToken

using the following JSON message for the POST request data:

{
"email": "<user email>",
"password": "<user password>"

which gives a response like this if the credentials are correct:

{
"auth_token": "<authentication token>",
"user_id": "<ID of the user>"

Note: Each access token has a limited lifetime, see Authentication.

104 Chapter 4. Where to start reading?

https://flexmeasures.readthedocs.io

FlexMeasures Documentation, Release 0.20.1.dev11

4.24.3 Deprecation and sunset

When an API feature becomes obsolete, we deprecate it. Deprecation of major features doesn’t happen a lot, but when
it does, it happens in multiple stages, during which we support clients and hosts in adapting. For more information
on our multi-stage deprecation approach and available options for FlexMeasures hosts, see Deprecation and sunset for
hosts.

Clients

Professional API users should monitor API responses for the "Deprecation" and "Sunset" response headers [see
draft-ietf-httpapi-deprecation-header-02 and RFC 8594, respectively], so system administrators can be warned when
using API endpoints that are flagged for deprecation and/or are likely to become unresponsive in the future.

The deprecation header field shows an IMF-fixdate indicating when the API endpoint was deprecated. The sunset
header field shows an IMF-fixdate indicating when the API endpoint is likely to become unresponsive.

More information about a deprecation, sunset, and possibly recommended replacements, can be found under the
"Link" response header. Relevant relations are:

e "deprecation"

¢ "successor-version"
e "latest-version"

e "alternate"

e "sunset"

Here is a client-side code example in Python (this merely prints out the deprecation header, sunset header and relevant
links, and should be revised to make use of the client’s monitoring tools):

def check_deprecation_and_sunset(self, url, response):
"""Print deprecation and sunset headers, along with info links.

Reference
https://flexmeasures.readthedocs.io/en/latest/api/introduction.html#deprecation-and-
-, sunset
Go through the response headers in their given order
for header, content in response.headers:

if header == "Deprecation":

print(f"Your request to {url} returned a deprecation warning. Deprecation:

—{content }")

elif header == "Sunset":
print(f"Your request to {url} returned a sunset warning. Sunset: {content}")
elif header == "Link" and ('rel="deprecation";' in content or 'rel="sunset";' in,
—.content):

print(f"Further info is available: {content}")

4.24. API Introduction 105

https://datatracker.ietf.org/doc/draft-ietf-httpapi-deprecation-header/
https://www.rfc-editor.org/rfc/rfc8594
https://www.rfc-editor.org/rfc/rfc7231#section-7.1.1.1
https://www.rfc-editor.org/rfc/rfc7231#section-7.1.1.1

FlexMeasures Documentation, Release 0.20.1.dev11

Hosts

FlexMeasures versions go through the following stages for deprecating major features (such as API versions):
e Stage I: Deprecation: status 200 (OK) with relevant headers, plus a toggle to 410 (Gone) for blackout tests
 Stage 2: Preliminary sunset: status 410 (Gone), plus a toggle to 200 (OK) for sunset rollbacks
e Stage 3: Definitive sunset: status 410 (Gone)

Let’s go over these stages in more detail.

Stage 1: Deprecation

When upgrading to a FlexMeasures version that deprecates an API version (e.g. flexmeasures==0. 12 deprecates API
version 2), clients will receive "Deprecation” and "Sunset" response headers [see draft-ietf-httpapi-deprecation-
header-02 and RFC 8594, respectively].

Hosts should not expect every client to monitor response headers and proactively upgrade to newer API versions. Please
make sure that your users have upgraded before you upgrade to a FlexMeasures version that sunsets an API version.
You can do this by checking your server logs for warnings about users who are still calling deprecated endpoints.

In addition, we recommend running blackout tests during the deprecation notice phase. You (and your users) can
learn which systems need attention and how to deal with them. Be sure to announce these beforehand. Here is an
example of how to run a blackout test: If a sunset happens in version 0.13, and you are hosting a version which
includes the deprecation notice (e.g. 0.12), FlexMeasures will simulate the sunset if you set the config setting
FLEXMEASURES_API_SUNSET_ACTIVE = True (see Sunset Configuration). During such a blackout test, clients will
receive HITP status 410 (Gone) responses when calling corresponding endpoints.

What is a blackout test

A blackout test is a planned, timeboxed event when a host will turn off a certain API or some of the API capabilities. The
test is meant to help developers understand the impact the retirement will have on the applications and users. Source:
Platform of Trust

Stage 2: Preliminary sunset

When upgrading to a FlexMeasures version that sunsets an API version (e.g. flexmeasures==0.13 sunsets API
version 2), clients will receive HTITP status 410 (Gone) responses when calling corresponding endpoints.

In case you have users that haven’t upgraded yet, and would still like to upgrade FlexMeasures (to the version that offi-
cially sunsets the API version), you can. For a little while after sunset (usually one more minor version), we will con-
tinue to support a “sunset rollback”. To enable this, just set the config setting FLEXMEASURES_API_SUNSET_ACTIVE
= False and consider announcing some more blackout tests to your users, during which you can set this setting to
True to reactivate the sunset.

106 Chapter 4. Where to start reading?

https://datatracker.ietf.org/doc/draft-ietf-httpapi-deprecation-header/
https://datatracker.ietf.org/doc/draft-ietf-httpapi-deprecation-header/
https://www.rfc-editor.org/rfc/rfc8594
https://design.oftrust.net/api-migration-policies/blackout-testing
https://design.oftrust.net/api-migration-policies/blackout-testing

FlexMeasures Documentation, Release 0.20.1.dev11

Stage 3: Definitive sunset

After upgrading to one of the next FlexMeasures versions (e.g. flexmeasures==0.14), clients that call sunset end-
points will receive HTTP status 410 (Gone) responses.

4.25 Notation

This page helps you to construct messages to the FlexMeasures API. Please consult the endpoint documentation first.
Here we dive into topics useful across endpoints.

4.25.1 Singular vs plural keys

Throughout this document, keys are written in singular if a single value is listed, and written in plural if multiple values
are listed, for example:

{
"keyToValue": "this is a single value",
"keyToValues": ["this is a value", "and this is a second value"]

}

The API, however, does not distinguish between singular and plural key notation.

4.25.2 Sensors and entity addresses

In many API endpoints, sensors are identified by their ID, e.g. /sensors/45. However, all sensors can also be
identified with an entity address following the EA1 addressing scheme prescribed by USEF[1], which is mostly taken
from IETF RFC 3720 [2].

This is the complete structure of an EA1 address:

{

"sensor": "eal.{date code}.{reversed domain name}:{locally unique string}"

}

Here is a full example for an entity address of a sensor in FlexMeasures:

{

"sensor": "eal.2021-02.io.flexmeasures.company:fml.73"

}

where FlexMeasures runs at company.flexmeasures.io (which the current domain owner started using in February 2021),
and the locally unique string uses the fim/ scheme (see below) to identify sensor ID 73.

Assets are listed at:

[https ://company . flexmeasures.io/assets

The full entity addresses of all of the asset’s sensors can be obtained on the asset’s page, e.g. for asset 81:

[https ://company. flexmeasures.io/assets/81

4.25. Notation 107

FlexMeasures Documentation, Release 0.20.1.dev11

Entity address structure

Some deeper explanations about an entity address:
* “eal” is a constant, indicating this is a type 1 USEF entity address

* The date code “must be a date during which the naming authority owned the domain name used in this format,
and should be the first month in which the domain name was owned by this naming authority at 00:01 GMT of
the first day of the month.

* The reversed domain name is taken from the naming authority (person or organization) creating this entity address

* The locally unique string can be used for local purposes, and FlexMeasures uses it to identify the resource. Fields
in the locally unique string are separated by colons, see for other examples IETF RFC 3721, page 6 [3]. While [2]
says it’s possible to use dashes, dots or colons as separators, we might use dashes and dots in latitude/longitude
coordinates of sensors, so we settle on colons.

[1] https://www.usef.energy/app/uploads/2020/01/USEF-Flex- Trading-Protocol-Specifications- 1.01.pdf
[2] https://tools.ietf.org/html/rfc3720
[3] https://tools.ietf.org/html/rfc3721

Types of sensor identification used in FlexMeasures

FlexMeasures expects the locally unique string string to contain information in a certain structure. We distinguish type
fm@ and type fm1 FlexMeasures entity addresses.

The fm1 scheme is the latest version. It uses the fact that all FlexMeasures sensors have unique IDs.

eal.2021-01.i0.flexmeasures:fml.42
eal.2021-01.io0.flexmeasures:fml.<sensor_id>

The fm® scheme is the original scheme. It identified different types of sensors (such as grid connections, weather
sensors and markets) in different ways. The fm0@ scheme has been sunset since API version 3.

4.25.3 Timeseries
Timestamps and durations are consistent with the ISO 8601 standard. The frequency of the data is implicit (from
duration and number of values), while the resolution of the data is explicit, see Frequency and resolution.

All timestamps in requests to the API must be timezone-aware. For instance, in the below example, the timezone
indication “Z” indicates a zero offset from UTC.

We use the following shorthand for sending sequential, equidistant values within a time interval:

{
"values": [
10,
5y
8
Iy
"start": "2016-05-01T13:00:00Z",
"duration": "PT45M"

}

Technically, this is equal to:

108 Chapter 4. Where to start reading?

https://www.usef.energy/app/uploads/2020/01/USEF-Flex-Trading-Protocol-Specifications-1.01.pdf
https://tools.ietf.org/html/rfc3720
https://tools.ietf.org/html/rfc3721

FlexMeasures Documentation, Release 0.20.1.dev11

{
"timeseries": [
{
"value": 10,
"start": "2016-05-01T13:00:00Z",
"duration": "PT15M"
o
{
"value": 5,
"start": "2016-05-01T13:15:00Z",
"duration": "PT15M"
o
{
"value": 8,
"start": "2016-05-01T13:30:00Z",
"duration": "PT15M"
}
]
}

This intuitive convention allows us to reduce communication by sending univariate timeseries as arrays.

In all current versions of the FlexMeasures API, only equidistant timeseries data is expected to be communicated.
Therefore:

* only the array notation should be used (first notation from above),

 “start” should be a timestamp on the hour or a multiple of the sensor resolution thereafter (e.g. “16:10” works if
the resolution is 5 minutes), and

* “duration” should also be a multiple of the sensor resolution.

4.25.4 Tracking the recording time of beliefs

For all its time series data, FlexMeasures keeps track of the time they were recorded. Data can be defined and filtered
accordingly, which allows you to get a snapshot of what was known at a certain point in time.

Note: FlexMeasures uses the timely-beliefs data model for modelling such facts about time series data, and accordingly
we use the term “belief” in this documentation. In that model, the recording time is referred to as “belief time”.

Querying by recording time

Some GET endpoints have two optional timing fields to allow such filtering.

The prior field (a timestamp) can be used to select beliefs recorded before some moment in time. It can be used to
“time-travel” to see the state of information at some moment in the past.

In addition, the horizon field (a duration) can be used to select beliefs recorded before some moment in time, relative
to each event. For example, to filter out meter readings communicated within a day (denoted by a negative horizon) or
forecasts created at least a day beforehand (denoted by a positive horizon).

The two timing fields follow the ISO 8601 standard and are interpreted as follows:

e prior: recorded prior to <timestamp>.

4.25. Notation 109

https://github.com/SeitaBV/timely-beliefs/#the-data-model

FlexMeasures Documentation, Release 0.20.1.dev11

* horizon: recorded at least <duration> before the fact (indicated by a positive horizon), or at most <duration>
after the fact (indicated by a negative horizon).

For example (note that you can use both fields together):

{
"horizon": "PT6H",
"prior": "2020-08-01T17:00:00Z"

These fields denote that the data should have been recorded at least 6 hours before the fact (i.e. forecasts) and prior to
5 PM on August 1st 2020 (UTC).

Note: In addition to these two timing filters, beliefs can be filtered by their source (see Sources).

Setting the recording time

Some POST endpoints have two optional fields to allow setting the time at which beliefs are recorded in an explicit
manner. This is useful to keep an accurate history of what was known at what time, especially for prognoses. If not
used, FlexMeasures will infer the belief time from the arrival time of the message.

The “prior” field (a timestamp) can be used to set a single time at which the entire time series (e.g. a prognosed series)
was recorded. Alternatively, the “horizon” field (a duration) can be used to set the recording times relative to each
(prognosed) event. In case both fields are set, the earliest possible recording time is determined and recorded for each
(prognosed) event.

The two timing fields follow the ISO 8601 standard and are interpreted as follows:

{
"values": [
10,
5,
8
1,
"start": "2016-05-01T13:00:00Z",
"duration": "PT45M",
"prior": "2016-05-01T07:45:00Z",

This message implies that the entire prognosis was recorded at 7:45 AM UTC, i.e. 6 hours before the end of the entire
time interval.

{
"values": [
10,
Dy
8
i
"start": "2016-05-01T13:00:00Z",
"duration": "PT45M",
"horizon": "PT6H"

110 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

This message implies that all prognosed values were recorded 6 hours in advance. That is, the value for 1:00-1:15 PM
was made at 7:15 AM, the value for 1:15-1:30 PM was made at 7:30 AM, and the value for 1:30-1:45 PM was made at
7:45 AM.

Negative horizons may also be stated (breaking with the ISO 8601 standard) to indicate a belief about something that
has already happened (i.e. after the fact, or simply ex post). For example, the following message implies that all
prognosed values were made 10 minutes after the fact:

{
"values": [
10,
5y
8
i
"start": "2016-05-01T13:00:00Z",
"duration": "PT45M",
"horizon": "-PT10M"

Note that, for a horizon indicating a belief 10 minutes after the start of each 15-minute interval, the “horizon” would
have been “PT5M”. This denotes that the prognosed interval has 5 minutes left to be concluded.

4.25.5 Frequency and resolution
FlexMeasures handles two types of time series, which can be distinguished by defining the following timing properties
for events recorded by sensors:

* Frequency: how far apart events occur (a constant duration between event starts)

* Resolution: how long an event lasts (a constant duration between the start and end of an event)

Note: FlexMeasures runs on Pandas, and follows Pandas terminology accordingly. The term frequency as used by
Pandas is the reciprocal of the SI quantity for frequency.

1. The first type of time series describes non-instantaneous events such as average hourly wind speed. For this case,
it is commonly assumed that frequency == resolution. That is, events follow each other sequentially and
without delay.

2. The second type of time series describes instantaneous events (zero resolution) such as temperature at a given
time. For this case, we have frequency != resolution.

Specifying a frequency and resolution is redundant for POST requests that contain both “values” and a “duration” —
FlexMeasures computes the frequency by dividing the duration by the number of values, and, for sensors that record
non-instantaneous events, assumes the resolution of the data is equal to the frequency.

When POSTing data, FlexMeasures checks this inferred resolution against the required resolution of the sensors that
are posted to. If these can’t be matched (through upsampling), an error will occur.

GET requests (such as /sensors/data) return data with a frequency either equal to the resolution that the sensor is con-
figured for (for non-instantaneous sensors), or a default frequency befitting (in our opinion) the requested time interval.
A “resolution” may be specified explicitly to obtain the data in downsampled form, which can be very beneficial for
download speed. For non-instantaneous sensors, the specified resolution needs to be a multiple of the sensor’s res-
olution, e.g. hourly or daily values if the sensor’s resolution is 15 minutes. For instantaneous sensors, the specified
resolution is interpreted as a request for data in a specific frequency. The resolution of the underlying data will remain
zero (and the returned message will say so).

4.25. Notation 111

https://en.wikipedia.org/wiki/SI_derived_unit

FlexMeasures Documentation, Release 0.20.1.dev11

4.25.6 Sources

Requests for data may filter by source. FlexMeasures keeps track of the data source (the data’s author, for example,
a user, forecaster or scheduler belonging to a given organisation) of time series data. For example, to obtain data
originating from data source 42, include the following:

{

"source": 42,

¥

Data source IDs can be found by hovering over data in charts.

4.25.7 Units

The FlexMeasures API is quite flexible with sent units. A valid unit for timeseries data is any unit that is convertible
to the configured sensor unit registered in FlexMeasures. So, for example, you can send timeseries data with “W” unit
to a “kW” sensor. And if you wish to do so, you can even send a timeseries with “kWh” unit to a “kW” sensor. In this
case, FlexMeasures will convert the data using the resolution of the timeseries.

4.25.8 Signs of power values

USEF recommends to use positive power values to indicate consumption and negative values to indicate production,
i.e. to take the perspective of the Prosumer. If an asset has been configured as a pure producer or pure consumer, the
web service will help avoid mistakes by checking the sign of posted power values.

112 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.26 Version 3.0

4.26.1 Summary

Resource Operation Description
Asset GET /api/v3_0/assets Download asset list
POST /api/v3_0/assets Create a new asset
DELETE /api/v3_0/assets/(id) Delete an asset
GET /api/v3_0/assets/(id) Get an asset
PATCH /api/v3_0/assets/(id) Update an asset
GET /api/v3_0/assets/public Return all public assets.
Chart GET /api/v3_0/assets/(id)/chart Download a chart with time series
GET /api/v3_0/assets/(id)/chart_data Download time series for use in charts
Data GET /api/v3_0/sensors/data Download sensor data
POST /api/v3_0/sensors/data Upload sensor data
Health GET /api/v3_0/health/ready Get readiness status
Public GET /api/ List available API versions
POST /api/requestAuthToken Obtain an authentication token
GET /api/v3_0 Obtain a service listing for this version
Schedule GET /api/v3_0/sensors/(id)/schedules/(uuid) Download schedule from the platform
POST /api/v3_0/sensors/(id)/schedules/trigger Trigger scheduling job
Sensor GET /api/v3_0/sensors Download sensor list
POST /api/v3_0/sensors Create a new Sensor
DELETE /api/v3_0/sensors/(id) Delete a sensor
GET /api/v3_0/sensors/(id) Get a sensor
PATCH /api/v3_0/sensors/(id) Update a sensor
User GET /api/v3_0/users Download user list

GET /api/v3_0/users/(id)
PATCH /api/v3_0/users/(id)
PATCH /api/v3_0/users/(id)/password-reset

Get a user
Patch data for an existing user
Password reset

4.26.2 API Details

GET /api/

Public endpoint to list API versions.

POST /api/requestAuthToken

API endpoint to get a fresh authentication access token. Be aware that this fresh token has a limited lifetime
(which depends on the current system setting SECURITY_TOKEN_MAX_AGE).

Pass the email parameter to identify the user. Pass the password parameter to authenticate the user (if not already
authenticated in current session)

GET /api/v3_0

API endpoint to get a service listing for this version.

Response Headers

» Content-Type — application/json

Status Codes
¢ 200 OK — PROCESSED

4.26. Version 3.0

113

https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

FlexMeasures Documentation, Release 0.20.1.dev11

GET /api/v3_0/assets

List all assets owned by a certain account.

This endpoint returns all accessible assets for the account of the user. The account_id query parameter can be

used to list assets from a different account.
Example response

An example of one asset being returned:

[

"id": 1,

"name": "Test battery",
"latitude": 10,
"longitude": 100,
"account_id": 2,
"generic_asset_type_id": 1

Request Headers

 Authorization — The authentication token

» Content-Type — application/json
Response Headers

» Content-Type — application/json
Status Codes

* 200 OK — PROCESSED
400 Bad Request — INVALID_REQUEST
401 Unauthorized — UNAUTHORIZED
403 Forbidden — INVALID_SENDER
422 Unprocessable Entity — UNPROCESSABLE_ENTITY

POST /api/v3_0/assets
Create new asset.

This endpoint creates a new asset.

Example request

{
"name": "Test battery",
"generic_asset_type_id": 2,
"account_id": 2,
"latitude": 40,
"longitude": 170.3,

}

The newly posted asset is returned in the response.

Request Headers

114 Chapter 4

. Where to start reading?

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.20.1.dev11

* Authorization — The authentication token
» Content-Type — application/json
Response Headers
» Content-Type — application/json
Status Codes
* 201 Created — CREATED
* 400 Bad Request — INVALID_REQUEST
* 401 Unauthorized — UNAUTHORIZED
* 403 Forbidden — INVALID_SENDER
* 422 Unprocessable Entity —- UNPROCESSABLE_ENTITY
DELETE /api/v3_0/assets/ (id)

Delete an asset given its identifier.
This endpoint deletes an existing asset, as well as all sensors and measurements recorded for it.
Request Headers
* Authorization — The authentication token
* Content-Type — application/json
Response Headers
» Content-Type — application/json
Status Codes
* 204 No Content — DELETED

* 400 Bad Request — INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-
PECTED_PARAMS

* 401 Unauthorized - UNAUTHORIZED
* 403 Forbidden — INVALID_SENDER
* 422 Unprocessable Entity — UNPROCESSABLE_ENTITY

GET /api/v3_0/assets/ (id)
Fetch a given asset.

This endpoint gets an asset.

Example response

{
"generic_asset_type_id": 2,
"name": "Test battery",
"id": 1,

"latitude": 10,
"longitude": 100,
"account_id": 1,

Request Headers

4.26. Version 3.0 115

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.20.1.dev11

* Authorization — The authentication token
» Content-Type — application/json
Response Headers
» Content-Type — application/json
Status Codes
* 200 OK — PROCESSED

* 400 Bad Request — INVALID_REQUEST,

PECTED_PARAMS
¢ 401 Unauthorized - UNAUTHORIZED
403 Forbidden — INVALID_SENDER

REQUIRED_INFO_MISSING, UNEX-

e 422 Unprocessable Entity —- UNPROCESSABLE_ENTITY

PATCH /api/v3_0/assets/(id)
Update an asset given its identifier.

This endpoint sets data for an existing asset. Any subset of asset fields can be sent.

The following fields are not allowed to be updated: - id - account_id

Example request

{

"latitude": 11.1,
"longitude": 99.9,

Example response

The whole asset is returned in the response:

{

"generic_asset_type_id": 2,

"id": 1,

"latitude": 11.1,
"longitude": 99.9,
"name": "Test battery",

"account_id": 2,

Request Headers
 Authorization — The authentication token
» Content-Type — application/json
Response Headers
» Content-Type — application/json
Status Codes
* 200 OK - UPDATED

* 400 Bad Request — INVALID_REQUEST,
PECTED_PARAMS

REQUIRED_INFO_MISSING, UNEX-

116

Chapter 4. Where to start reading?

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

FlexMeasures Documentation, Release 0.20.1.dev11

* 401 Unauthorized — UNAUTHORIZED
* 403 Forbidden — INVALID_SENDER
* 422 Unprocessable Entity —- UNPROCESSABLE_ENTITY

GET /api/v3_0/assets/(id)/chart
GET from /assets/<id>/chart

GET /api/v3_0/assets/(id)/chart_data
GET from /assets/<id>/chart_data

Data for use in charts (in case you have the chart specs already).

GET /api/v3_0/assets/public
Return all public assets.

This endpoint returns all public assets.
Request Headers
* Authorization — The authentication token
» Content-Type — application/json
Response Headers
* Content-Type — application/json
Status Codes
* 200 OK — PROCESSED
* 400 Bad Request — INVALID_REQUEST
* 401 Unauthorized - UNAUTHORIZED
» 422 Unprocessable Entity — UNPROCESSABLE_ENTITY

GET /api/v3_0/health/ready
Get readiness status

Example response:

{

Q)

oS Sl T,
databaise redil: Fale

GET /api/v3_0/sensors

API endpoint to list all sensors of an account.

This endpoint returns all accessible sensors. Accessible sensors are sensors in the same account as the current
user. Only admins can use this endpoint to fetch sensors from a different account (by using the account_id query
parameter).

Example response

An example of one sensor being returned:

4.26. Version 3.0 117

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.20.1.dev11

[
{
"entity_address": "eal.2021-01.io.flexmeasures.company:fml.42",
"event_resolution": PT15M,
"generic_asset_id": 1,
"name": "Gas demand",
"timezone": "Europe/Amsterdam",
"unit": "m3/h"
"id": 2
}
1
Request Headers

* Authorization — The authentication token
» Content-Type — application/json
Response Headers
* Content-Type — application/json
Status Codes
* 200 OK - PROCESSED
* 400 Bad Request — INVALID_REQUEST
* 401 Unauthorized - UNAUTHORIZED
403 Forbidden — INVALID_SENDER
» 422 Unprocessable Entity —- UNPROCESSABLE_ENTITY

POST /api/v3_0/sensors

Create new asset.
This endpoint creates a new Sensor.

Example request

-

{
"name": "power",
"event_resolution": "PT1H",
"unit": "kwh",
"generic_asset_id": 1,

}

L

Example response

The whole sensor is returned in the response:

{
"name": "power",
"unit": "kWh",
"entity_address": "eal.2023-08.localhost:fml.1",
"event_resolution": "PT1H",
"generic_asset_id": 1,
"timezone": "UTC",

(continues on next page)

118

Chapter 4. Where to start reading?

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

"id": 2

Request Headers
* Authorization — The authentication token
» Content-Type — application/json
Response Headers
» Content-Type — application/json
Status Codes
* 201 Created - CREATED
* 400 Bad Request — INVALID_REQUEST
* 401 Unauthorized - UNAUTHORIZED
* 403 Forbidden — INVALID_SENDER
» 422 Unprocessable Entity — UNPROCESSABLE_ENTITY

DELETE /api/v3_0/sensors/ (id)
Delete a sensor given its identifier.

This endpoint deletes an existing sensor, as well as all measurements recorded for it.
Request Headers
* Authorization — The authentication token
» Content-Type — application/json
Response Headers
* Content-Type — application/json
Status Codes
e 204 No Content — DELETED

* 400 Bad Request — INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-

PECTED_PARAMS
¢ 401 Unauthorized - UNAUTHORIZED
403 Forbidden — INVALID_SENDER

» 422 Unprocessable Entity —- UNPROCESSABLE_ENTITY

GET /api/v3_0/sensors/ (id)
Fetch a given sensor.

This endpoint gets a sensor.

Example response

{
"name": "some gas sensor",
Ilunitll : ”m /hll ,
"entity_address": "eal.2023-08.localhost:fml.1",

(continues on next page)

4.26. Version 3.0

119

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

"event_resolution": "PT10M",
"generic_asset_id": 4,

"timezone": "UTC",
"id": 2

}
Request Headers

» Authorization — The authentication token
» Content-Type — application/json
Response Headers
» Content-Type — application/json
Status Codes
* 200 OK — PROCESSED

* 400 Bad Request — INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-
PECTED_PARAMS

401 Unauthorized - UNAUTHORIZED
403 Forbidden — INVALID_SENDER

» 422 Unprocessable Entity —- UNPROCESSABLE_ENTITY

PATCH /api/v3_0/sensors/ (id)

Update a sensor given its identifier.
This endpoint updates the descriptive data of an existing sensor.

Any subset of sensor fields can be sent. However, the following fields are not allowed to be updated: - id -
generic_asset_id - entity_address

Only admin users have rights to update the sensor fields. Be aware that changing unit, event resolution and
knowledge horizon should currently only be done on sensors without existing belief data (to avoid a serious
mismatch), or if you really know what you are doing.

Example request

{
"name": "POWER",

}

Example response

The whole sensor is returned in the response:

{
"name": "some gas sensor",
"wnit": "m’/h",
"entity_address": "eal.2023-08.localhost:fml.1",
"event_resolution": "PT10M",
"generic_asset_id": 4,
"timezone": "UTC",

(continues on next page)

120

Chapter 4. Where to start reading?

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.20.1.dev11

"id": 2

(continued from previous page)

Request Headers
* Authorization — The authentication token
* Content-Type — application/json
Response Headers
» Content-Type — application/json
Status Codes
* 200 OK - UPDATED

* 400 Bad Request — INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-

PECTED_PARAMS
¢ 401 Unauthorized - UNAUTHORIZED

403 Forbidden — INVALID_SENDER

* 422 Unprocessable Entity —- UNPROCESSABLE_ENTITY

GET /api/v3_0/sensors/(id)/schedules/

uuid

Get a schedule from FlexMeasures.

Optional fields

e “duration” (6 hours by default; can be increased to plan further into the future)

Example response

This message contains a schedule indicating to consume at various power rates from 10am UTC onwards for a
duration of 45 minutes.

{
"values": [
2.15,
3 ’
2
] ’
"start": "2015-06-02T10:00:00+00:00",
"duration": "PT45M",
"unit": "MW"
\}
Request Headers

* Authorization — The authentication token
» Content-Type — application/json
Response Headers
» Content-Type — application/json
Status Codes

4.26. Version 3.0

121

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

FlexMeasures Documentation, Release 0.20.1.dev11

200 OK — PROCESSED

* 400 Bad Request — INVALID_TIMEZONE, INVALID_DOMAIN, INVALID_UNIT, UN-
KNOWN_SCHEDULE, UNRECOGNIZED_CONNECTION_GROUP

* 401 Unauthorized - UNAUTHORIZED
403 Forbidden — INVALID_SENDER

405 Method Not Allowed — INVALID_METHOD
» 422 Unprocessable Entity —- UNPROCESSABLE_ENTITY

POST /api/v3_0/sensors/(id)/schedules/trigger

Trigger FlexMeasures to create a schedule.

Trigger FlexMeasures to create a schedule for this sensor. The assumption is that this sensor is the power sensor
on a flexible asset.

In this request, you can describe:

¢ the schedule’s main features (when does it start, what unit should it report, prior to what time can we assume
knowledge)

* the flexibility model for the sensor (state and constraint variables, e.g. current state of charge of a battery,
or connection capacity)

* the flexibility context which the sensor operates in (other sensors under the same EMS which are relevant,
e.g. prices)

For details on flexibility model and context, see Describing flexibility. Below, we’ll also list some examples.

Note: This endpoint does not support to schedule an EMS with multiple flexible sensors at once. This will hap-
pen in another endpoint. See https://github.com/FlexMeasures/flexmeasures/issues/485. Until then, it is possible
to call this endpoint for one flexible endpoint at a time (considering already scheduled sensors as inflexible).

The length of the schedule can be set explicitly through the ‘duration’ field. Otherwise, it is set by the config
setting FLEXMEASURES_PLANNING _HORIZON, which defaults to 48 hours. If the flex-model contains tar-
gets that lie beyond the planning horizon, the length of the schedule is extended to accommodate them. Finally,
the schedule length is limited by max_planning_horizon_config, which defaults to 2520 steps of the sensor’s
resolution. Targets that exceed the max planning horizon are not accepted.

The appropriate algorithm is chosen by FlexMeasures (based on asset type). It’s also possible to use custom
schedulers and custom flexibility models, see Plugin Customizations.

If you have ideas for algorithms that should be part of FlexMeasures, let us know: https://flexmeasures.io/
get-in-touch/

Example request A

This message triggers a schedule for a storage asset, starting at 10.00am, at which the state of charge (soc) is 12.1
kWh.

{
"start": "2015-06-02T10:00:00+00:00",
"flex-model": {
"soc-at-start": 12.1,
"soc-unit": "kWh"
3
}

122

Chapter 4. Where to start reading?

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://github.com/FlexMeasures/flexmeasures/issues/485
https://flexmeasures.io/get-in-touch/
https://flexmeasures.io/get-in-touch/

FlexMeasures Documentation, Release 0.20.1.dev11

Example request B

This message triggers a 24-hour schedule for a storage asset, starting at 10.00am, at which the state of charge
(soc) is 12.1 kWh, with a target state of charge of 25 kWh at 4.00pm.

The charging efficiency is constant (120%) and the discharging efficiency is determined by the contents of sensor
with id 98. If just the roundtrip-efficiency is known, it can be described with its own field. The global
minimum and maximum soc are set to 10 and 25 kWh, respectively. To guarantee a minimum SOC in the period
prior, the sensor with ID 300 contains beliefs at 2.00pm and 3.00pm, for 15kWh and 20kWh, respectively. Storage
efficiency is set to 99.99%, denoting the state of charge left after each time step equal to the sensor’s resolution.
Aggregate consumption (of all devices within this EMS) should be priced by sensor 9, and aggregate production
should be priced by sensor 10, where the aggregate power flow in the EMS is described by the sum over sensors
13, 14 and 15 (plus the flexible sensor being optimized, of course).

The battery consumption power capacity is limited by sensor 42 and the production capacity is constant (30 kW).
Finally, the site consumption capacity is limited by sensor 32.

Note that, if forecasts for sensors 13, 14 and 15 are not available, a schedule cannot be computed.

{
"start": "2015-06-02T10:00:00+00:00",

"duration": "PT24H",

"flex-model": {
"soc-at-start": 12.1,
"soc-unit": "kWh",
"soc-targets": [

{
"value": 25,
"datetime": "2015-06-02T16:00:00+00:00"
o

1,
"soc-minima": {"sensor" : 300},
"soc-min": 10,
"soc-max": 25,
"charging-efficiency": "120%",
"discharging-efficiency": {"sensor": 98},
"storage-efficiency": 0.9999,
"power-capacity": "25kW",
"consumption-capacity" : {"sensor": 42},
"production-capacity" : "30 kW"

1},

"flex-context": {
"consumption-price-sensor": 9,
"production-price-sensor": 10,
"inflexible-device-sensors": [13, 14, 15],
"site-power-capacity": "100kW",
"site-production-capacity": "80kW",
"site-consumption-capacity": {"sensor": 32}

}

Example response

This message indicates that the scheduling request has been processed without any error. A scheduling job has
been created with some Universally Unique Identifier (UUID), which will be picked up by a worker. The given
UUID may be used to obtain the resulting schedule: see /sensors/<id>/schedules/<uuid>.

4.26. Version 3.0 123

FlexMeasures Documentation, Release 0.20.1.dev11

{
"status": "PROCESSED",
"schedule": "364bfd06-c1fa-430b-8d25-8£5a547651fb",
"message": "Request has been processed."
}
Request Headers

* Authorization — The authentication token
» Content-Type — application/json
Response Headers
» Content-Type — application/json
Status Codes
* 200 OK — PROCESSED

400 Bad Request — INVALID_DATA

401 Unauthorized — UNAUTHORIZED

403 Forbidden — INVALID_SENDER

* 405 Method Not Allowed — INVALID_METHOD

» 422 Unprocessable Entity — UNPROCESSABLE_ENTITY

GET /api/v3_0/sensors/data
Get sensor data from FlexMeasures.

Example request

e

{
"sensor": "eal.2021-01.io.flexmeasures:fml.1",
"start": "2021-06-07T00:00:00+02:00",
"duration": "PT1H",
"resolution": "PT15M",
"wnit": "m?/h"

}

.

The unit has to be convertible from the sensor’s unit.
Optional fields
* “resolution” (see Frequency and resolution)
* “horizon” (see Tracking the recording time of beliefs)
o “prior” (see Tracking the recording time of beliefs)

e “source” (see Sources)

Request Headers
* Authorization — The authentication token
» Content-Type — application/json

Response Headers

124 Chapter 4. Where to start reading?

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

FlexMeasures Documentation, Release 0.20.1.dev11

» Content-Type — application/json
Status Codes
* 200 OK — PROCESSED
* 400 Bad Request — INVALID_REQUEST
* 401 Unauthorized — UNAUTHORIZED
403 Forbidden — INVALID_SENDER
* 422 Unprocessable Entity —- UNPROCESSABLE_ENTITY

POST /api/v3_0/sensors/data

Post sensor data to FlexMeasures.

Example request

{
"sensor": "eal.2021-01.io.flexmeasures:fml.1",
"values": [-11.28, -11.28, -11.28, -11.28],
"start": "2021-06-07T00:00:00+02:00",
"duration": "PTI1H",
"unit": "m3/h"

}

The above request posts four values for a duration of one hour, where the first event start is at the given start time,
and subsequent events start in 15 minute intervals throughout the one hour duration.

The sensor is the one with ID=1. The unit has to be convertible to the sensor’s unit. The resolution of the data
has to match the sensor’s required resolution, but FlexMeasures will attempt to upsample lower resolutions. The
list of values may include null values.

Request Headers
 Authorization — The authentication token
* Content-Type — application/json
Response Headers
» Content-Type — application/json
Status Codes
* 200 OK — PROCESSED
* 400 Bad Request — INVALID_REQUEST
* 401 Unauthorized - UNAUTHORIZED
403 Forbidden — INVALID_SENDER
» 422 Unprocessable Entity — UNPROCESSABLE_ENTITY

GET /api/v3_0/users
API endpoint to list all users of an account.

This endpoint returns all accessible users. By default, only active users are returned. The include_inactive query
parameter can be used to also fetch inactive users. Accessible users are users in the same account as the current
user. Only admins can use this endpoint to fetch users from a different account (by using the account_id query
parameter).

Example response

4.26. Version 3.0 125

https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.20.1.dev11

An example of one user being returned:

[
{
laldtivie]']: Tirule,
"lemali1]"|: Ttest%@@@@@@@@yta@lm,
'aldcount id'|: 13,
'[f1exmelalsuries] nolllels': [1, 31,
id: 1,
'tiHeddﬂe': 'Euxlhv/ﬂhsteﬂ‘dﬁ',
"usernane]'|: ['Telst Priosumelr Uslelr'|
}
]
Request Headers

* Authorization — The authentication token
» Content-Type — application/json
Response Headers
» Content-Type — application/json
Status Codes
* 200 OK — PROCESSED
* 400 Bad Request — INVALID_REQUEST
* 401 Unauthorized - UNAUTHORIZED

403 Forbidden — INVALID_SENDER
* 422 Unprocessable Entity —- UNPROCESSABLE_ENTITY

GET /api/v3_0/users/ (id)
API endpoint to get a user.

This endpoint gets a user. Only admins or the members of the same account can use this endpoint.

Example response

-

{
'lalcicio tHid': 1,
"lalctiivie]']: M,
lemalill]": ['test/ pifolsumelrdselital.n1[],
'f]_exn(-d]\“‘\\urﬂeﬂs rolle ": [1, 37,
id'e 1,
"tinelZone['|: [[Euirople)//Amsit erida’],
'username]'|: ['Telst Prosumel] Usel'|
}
Request Headers

¢ Authorization — The authentication token
» Content-Type — application/json

Response Headers

126 Chapter 4. Where to start reading?

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

FlexMeasures Documentation, Release 0.20.1.dev11

» Content-Type — application/json
Status Codes
* 200 OK — PROCESSED

e 400 Bad Request — INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-
PECTED_PARAMS

* 401 Unauthorized — UNAUTHORIZED
403 Forbidden — INVALID_SENDER
» 422 Unprocessable Entity —- UNPROCESSABLE_ENTITY

PATCH /api/v3_0/users/(id)
API endpoint to patch user data.

This endpoint sets data for an existing user. It has to be used by the user themselves, admins or account-admins
(of the same account). Any subset of user fields can be sent. If the user is not an (account-)admin, they can only
edit a few of their own fields.

The following fields are not allowed to be updated at all:
e id
e account_id

Example request

{

"active": false,

}

Example response

The following user fields are returned:

{
'ladco tuid' 1,
"lalctiivie]']: [Mrue,
lemalill]": ['test/ pifolsumelrdselital.n1[,
'fl(:xll(-'dﬂ\l]fﬂeﬂs rolle ": [1, 37,
id'e 1,
"tlinlelZone['|: [[Euirople)//Amsit erida’],
'username'|: |'Telst Prosumel] User'|
}
Request Headers

* Authorization — The authentication token
» Content-Type — application/json
Response Headers
» Content-Type — application/json
Status Codes
* 200 OK - UPDATED

4.26. Version 3.0 127

https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

FlexMeasures Documentation, Release 0.20.1.dev11

400 Bad Request — INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-

PECTED_PARAMS
401 Unauthorized - UNAUTHORIZED
403 Forbidden — INVALID_SENDER

422 Unprocessable Entity — UNPROCESSABLE_ENTITY

PATCH /api/v3_0/users/(id)/password-reset
API endpoint to reset the user’s current password, cookies and auth tokens, and to email a password reset link to

the user.

Reset the user’s password, and send them instructions on how to reset the password. This endpoint is useful from
a security standpoint, in case of worries the password might be compromised. It sets the current password to
something random, invalidates cookies and auth tokens, and also sends an email for resetting the password to the

user.

Users can reset their own passwords. Only admins can use this endpoint to reset passwords of other users.

Request Headers

Authorization — The authentication token

Content-Type — application/json

Response Headers

Content-Type — application/json

Status Codes

200 OK — PROCESSED

400 Bad Request — INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-

PECTED_PARAMS
401 Unauthorized —- UNAUTHORIZED
403 Forbidden — INVALID_SENDER

422 Unprocessable Entity —- UNPROCESSABLE_ENTITY

4.27 Developer API

These endpoints are still under development and are subject to change in new releases.

4.27.1 Summary

Resource Operation Description
Chart GET /api/dev/asset/(id) Download asset attributes for use in
charts
GET /api/dev/sensor/(id) Download sensor attributes for use in
charts
GET /api/dev/sensor/(id)/chart Download a chart with time series
GET /api/dev/sensor/(id)/chart_annotations Download annotations for use in charts
GET /api/dev/sensor/(id)/chart_data Download time series for use in charts
128 Chapter 4. Where to start reading?

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.20.1.dev11

4.27.2 API Details

GET /api/dev/asset/ (id)
GET from /asset/<id>

GET /api/dev/sensor/ (id)
GET from /sensor/<id>

GET /api/dev/sensor/(id)/chart
GET from /sensor/<id>/chart

Optional fields

“event_starts_after” (see the timely-beliefs documentation)
“event_ends_before” (see the timely-beliefs documentation)
“beliefs_after” (see the timely-beliefs documentation)
“beliefs_before” (see the timely-beliefs documentation)

“include_data” (if true, chart specs include the data; if false, use the GET /api/dev/sensor/(id)/chart_data
endpoint to fetch data)

“chart_type” (currently ‘bar_chart’ and ‘daily_heatmap’ are supported types)

“width” (an integer number of pixels; without it, the chart will be scaled to the full width of the container
(hint: use <div style="width: 100%;"> to set a div width to 100%)

“height” (an integer number of pixels; without it, FlexMeasures sets a default, currently 300)

GET /api/dev/sensor/(id)/chart_annotations

GET from /sensor/<id>/chart_annotations

Annotations for use in charts (in case you have the chart specs already).

GET /api/dev/sensor/(id)/chart_data
GET from /sensor/<id>/chart_data

Data for use in charts (in case you have the chart specs already).

Optional fields

“event_starts_after” (see the timely-beliefs documentation)
“event_ends_before” (see the timely-beliefs documentation)
“beliefs_after” (see the timely-beliefs documentation)
“beliefs_before” (see the timely-beliefs documentation)
“resolution” (see resolutions)

“most_recent_beliefs_only” (if true, returns the most recent belief for each event; if false, returns each
belief for each event; defaults to true)

4.27. Developer API 129

https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
../api/dev.html#get--api-dev-sensor-(id)-chart_data-
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors

FlexMeasures Documentation, Release 0.20.1.dev11

4.28 API change log

Note: The FlexMeasures API follows its own versioning scheme. This is also reflected in the URL (e.g. /api/v3_0),
allowing developers to upgrade at their own pace.

4.28.1 v3.0-18 | 2024-03-07

* Add support for providing a sensor definition to the soc-minima, soc-maxima and soc-targets flex-model
fields for /sensors/<id>/schedules/trigger (POST).

4.28.2 v3.0-17 | 2024-02-26

* Add support for providing a sensor definition to the site-power-capacity, site-consumption-capacity
and site-production-capacity flex-context fields for /sensors/<id>/schedules/trigger (POST).

4.28.3 v3.0-16 | 2024-02-26

» Fix support for providing a sensor definition to the power-capacity flex-model field for /sen-
sors/<id>/schedules/trigger (POST).

4.28.4 v3.0-15 | 2024-01-11

* Support setting SoC constraints in the flex model for a given time period rather than a single datetime, using the
new start, end and/or duration fields of soc-maxima, soc-minima and soc-targets.

4.28.5 v3.0-14 | 2023-12-07

* Fix API version listing (GET /api/v3_0) for hosts running on Python 3.8.

4.28.6 v3.0-13 | 2023-10-31

* Read access to accounts, assets and sensors is given to external consultants (users with the consultant role who
belong to a different organisation account) in case a consultancy relationship has been set up.

* The /accounts/<id> (GET) endpoint includes the account ID of its consultancy.

¢ Introduced the site-consumption-capacity and site-production-capacity tothe flex-context field
for /sensors/<id>/schedules/trigger (POST).

130 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.28.7 v3.0-12 | 2023-09-20

e Introduced the power-capacity field under flex-model, and the site-power-capacity field under
flex-context, for /sensors/<id>/schedules/trigger (POST).

4.28.8 v3.0-11 | 2023-08-02

Added REST endpoint for fetching one sensor: /sensors/<id> (GET)
Added REST endpoint for adding a sensor: /sensors (POST)

Added REST endpoint for patching a sensor: /sensors/<id> (PATCH)
Added REST endpoint for deleting a sensor: /sensors/<id> (DELETE)

4.28.9 v3.0-10 | 2023-06-12

¢ Introduced the storage-efficiency field to the ““flex-model *field for /sensors/<id>/schedules/trigger
(POST).

* Introduced the database_redis optional field to the response of the endpoint /health/ready (GET).

4.28.10 v3.0-9 | 2023-04-26

¢ Added missing documentation for the public endpoints for authentication and listing active API versions.

* Added REST endpoint for listing available services for a specific API version: /api/v3_0 (GET). This function-
ality is similar to the getService endpoint for older API versions, but now also returns the full URL for each
available service.

4.28.11 v3.0-8 | 2023-03-23

* Added REST endpoint for listing accounts and their account roles: /accounts (GET)

* Added REST endpoint for showing an account and its account roles: /accounts/<id> (GET)

4.28.12 v3.0-7 | 2023-02-28

* Fix premature deserialization of flex-context field for /sensors/<id>/schedules/trigger (POST).

4.28.13 v3.0-6 | 2023-02-01

 Sunset all fields that were moved to f1lex-model and flex-context fields to /sensors/<id>/schedules/trigger
(POST). See v3.0-5.

4.28. API change log 131

FlexMeasures Documentation, Release 0.20.1.dev11

4.28.14 v3.0-5 | 2023-01-04

* Introduced flex-model and flex-context fields to /sensors/<id>/schedules/trigger (POST). They are dictio-
naries and group pre-existing fields:

soc-at-start -> send in flex-model instead

soc-min -> send in flex-model instead

soc-max -> send in flex-model instead

soc-targets -> send in flex-model instead

soc-unit -> send in flex-model instead
roundtrip-efficiency -> send in flex-model instead
prefer-charging-sooner -> send in £lex-model instead
consumption-price-sensor -> send in flex-context instead
production-price-sensor -> send in flex-context instead

inflexible-device-sensors -> send in flex-context instead

* Introduced the duration field to /sensors/<id>/schedules/trigger (POST) for setting a planning horizon explic-

itly.

» Allow posting soc-targets to /sensors/<id>/schedules/trigger (POST) that exceed the default planning hori-
zon, and ignore posted targets that exceed the max planning horizon.

* Added a subsection on deprecating and sunsetting to the Introduction section.

Added a subsection on describing flexibility to the Notation section.

4.28.15 v3.0-4 | 2022-12-08

* Allow posting null values to /sensors/data (POST) to correctly space time series that include missing values
(the missing values are not stored).

¢ Introduced the source field to /sensors/data (GET) to obtain data for a given source (ID).

* Fixed the JSON wrapping of the return message for /sensors/data (GET).

* Changed the Notation section:

Rewrote the section on filtering by source (ID) with a deprecation notice on filtering by account role and
user ID.

4.28.16 v3.0-3 | 2022-08-28

e Introduced consumption_price_sensor, production_price_sensor and
inflexible_device_sensors fields to /sensors/<id>/schedules/trigger (POST).

132

Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.28.17 v3.0-2 | 2022-07-08

* Introduced the “resolution” field to /sensors/data (GET) to obtain data in a given resolution.

4.28.18 v3.0-1 | 2022-05-08

* Added REST endpoint for checking application health (readiness to accept requests): /health/ready (GET).

4.28.19 v3.0-0 | 2022-03-25

* Added REST endpoint for listing sensors: /sensors (GET).
* Added REST endpoints for managing sensor data: /sensors/data (GET, POST).
¢ Added REST endpoints for managing assets: /assets (GET, POST) and /assets/<id> (GET, PATCH, DELETE).

* Added REST endpoints for triggering and getting schedules: /sensors/<id>/schedules/<uuid> (GET) and /sen-
sors/<id>/schedules/trigger (POST).

* [Breaking change] Switched to plural resource names for REST endpoints: /users/<id> (GET, PATCH) and
/users/<id>/password-reset (PATCH).

* [Breaking change] Deprecated the following endpoints (NB replacement endpoints mentioned below no longer
require the message “type” field):

— getConnection -> use /sensors (GET) instead

— getDeviceMessage -> use /sensors/<id>/schedules/<uuid> (GET) instead, where <id> is the sensor id from
the “event” field and <uuid> is the value of the “schedule” field returned by /sensors/<id>/schedules/trigger
(POST)

— getMeterData -> use /sensors/data (GET) instead, replacing the “connection” field with “sensor”
— getPrognosis -> use /sensors/data (GET) instead, replacing the “connection” field with “sensor”

— getService -> use /api/v3_0 (GET) instead (since v3.0-9), or consult the public API documentation instead,
at https://flexmeasures.readthedocs.io

— postMeterData -> use /sensors/data (POST) instead, replacing the “connection” field with “sensor”
— postPriceData -> use /sensors/data (POST) instead, replacing the “market” field with “sensor”
— postPrognosis -> use /sensors/data (POST) instead, replacing the “connection” field with “sensor”

— postUdiEvent -> use /sensors/<id>/schedules/trigger (POST) instead, where <id> is the sensor id from the
“event” field, and rename the following fields:

* “datetime” -> ““start”

% “value -> “soc-at-start”

* “unit” -> “soc-unit”

% “targets” -> “soc-targets”

* “soc_min” -> soc-min”

* “soc_max” -> soc-max’’

% “roundtrip_efficiency” -> “roundtrip-efficiency”
— postWeatherData -> use /sensors/data (POST) instead

— restoreData

4.28. API change log 133

https://flexmeasures.readthedocs.io

FlexMeasures Documentation, Release 0.20.1.dev11

* Changed the Introduction section:
— Rewrote the section on service listing for API versions to refer to the public documentation.
— Rewrote the section on entity addresses to refer to sensors instead of connections.

— Rewrote the sections on roles and sources into a combined section that refers to account roles rather than
USEEF roles.

— Deprecated the section on group notation.

4.28.20 v2.0-7 | 2022-05-05

APIv2.0 is removed.

4.28.21 v2.0-6 | 2022-04-26

APIv2.0 is sunset.

4.28.22 v2.0-5 | 2022-02-13

APIv2.0 is deprecated.

4.28.23 v2.0-4 | 2022-01-04

» Updated entity addresses in documentation, according to the fm1 scheme.
* Changed the Introduction section:

— Rewrote the subsection on entity addresses to refer users to where they can find the entity addresses of their
Sensors.

— Rewrote the subsection on sensor identification (formerly known as asset identification) to place the fml
scheme front and center.

* Fixed the categorisation of the postMeterData, postPrognosis, postPriceData and postWeatherData endpoints
from the User category to the Data category.

4.28.24 v2.0-3 | 2021-06-07

 Updated all entity addresses in documentation according to the fm0O scheme, preserving backwards compatibility.

¢ Introduced the fm1 scheme for entity addresses for connections, markets, weather sensors and sensors.

134 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.28.25 v2.0-2 | 2021-04-02

* [Breaking change] Switched the interpretation of horizons to rolling horizons.
* [Breaking change] Deprecated the use of ISO 8601 repeating time intervals to denote rolling horizons.

¢ Introduced the “prior” field for postMeterData, postPrognosis, postPriceData and postWeatherData endpoints.

Changed the Introduction section:
— Rewrote the subsection on prognoses to explain the horizon and prior fields.
* Changed the Simulation section:

— Rewrote relevant examples using horizon and prior fields.

4.28.26 v2.0-1|2021-02-19

e Added REST endpoints for managing users: /users/ (GET), /user/<id> (GET, PATCH) and
/user/<id>/password-reset (PATCH).

4.28.27 v2.0-0 | 2020-11-14

* Added REST endpoints for managing assets: /assets/ (GET, POST) and /asset/<id> (GET, PATCH, DELETE).

4.28.28 v1.3-14 | 2022-05-05

API v1.3 is removed.

4.28.29 v1.3-13 | 2022-04-26

API v1.3 is sunset.

4.28.30 v1.3-12 | 2022-02-13

APIv1.3 is deprecated.

4.28.31 v1.3-11 | 2022-01-05

Affects all versions since v1.3.
* Changed and extended the postUdiEvent endpoint:

— The recording time of new schedules triggered by calling the endpoint is now the time at which the endpoint
was called, rather than the datetime of the sent state of charge (SOC).

— Introduced the “prior” field for the purpose of communicating an alternative recording time, thereby keeping
support for simulations.

— Introduced an optional “roundtrip_efficiency” field, for use in scheduling.

4.28. API change log 135

FlexMeasures Documentation, Release 0.20.1.dev11

4.28.32 v1.3-10 | 2021-11-08

Affects all versions since v1.3.

* Fixed the getDeviceMessage endpoint for cases in which there are multiple schedules available, by returning only
the most recent one.

4.28.33 v1.3-9 | 2021-04-21

Affects all versions since v1.0.

* Fixed regression by partially reverting the breaking change of v1.3-8: Re-instantiated automatic inference of
horizons for Post requests for API versions below v2.0, but changed to inference policy: now inferring the data
was recorded right after each event took place (leading to a zero horizon for each data point) rather than after
the last event took place (which led to a different horizon for each data point); the latter had been the inference
policy before v1.3-8.

4.28.34 v1.3-8 | 2020-04-02

Affects all versions since v1.0.

* [Breaking change, partially reverted in v1.3-9] Deprecated the automatic inference of horizons for postMeter-
Data, postPrognosis, postPriceData and postWeatherData endpoints for API versions below v2.0.

4.28.35 v1.3-7 | 2020-12-16

Affects all versions since v1.0.

* Separated the dual purpose of the “horizon” field in the getMeterData and getPrognosis endpoints by introducing
the “prior” field:

— The “horizon” field in GET endpoints is now always interpreted as a rolling horizon, regardless of whether
it is stated as an ISO 8601 repeating time interval.

— The getMeterData and getPrognosis endpoints now accept an optional “prior” field to select only data
recorded before a certain ISO 8601 timestamp (replacing the unintuitive usage of the horizon field for
specifying a latest time of belief).

4.28.36 v1.3-6 | 2020-12-11

Affects all versions since v1.0.

* The getMeterData and getPrognosis endpoints now return the INVALID_SOURCE status 400 response in case
the optional “source” field is used and no relevant sources can be found.

136 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.28.37 v1.3-5 | 2020-10-29

Affects all versions since v1.0.

¢ Endpoints to POST meter data will now check incoming data to see if the required asset’s resolution is being used

— upsampling is done if possible. These endpoints can now return the REQUIRED_INFO_MISSING status 400
response.

* Endpoints to GET meter data will return data in the asset’s resolution — downsampling to the “resolution” field
is done if possible.

* As they need to determine the asset, all of the mentioned POST and GET endpoints can now return the UNREC-
OGNIZED_ASSET status 400 response.

4.28.38 v1.3-4 | 2020-06-18

» Improved support for use cases of the getDeviceMessage endpoint in which a longer duration, between posting
UDI events and retrieving device messages based on those UDI events, is required; the default time fo live of
UDI event identifiers is prolonged from 500 seconds to 7 days, and can be set as a config variable (FLEXMEA-
SURES_PLANNING_TTL)

4.28.39 v1.3-3 | 2020-06-07

* Changed backend support (API specifications unaffected) for scheduling charging stations to scheduling Electric
Vehicle Supply Equipment (EVSE), in accordance with the Open Charge Point Interface (OCPI).

4.28.40 v1.3-2 | 2020-03-11

* Fixed example entity addresses in simulation section

4.28.41 v1.3-1 | 2020-02-08

* Backend change: the default planning horizon can now be set in FlexMeasures’s configuration (FLEXMEA-
SURES_PLANNING_HORIZON)

4.28.42 v1.3-0 | 2020-01-28
¢ Introduced new event type “soc-with-targets” to support scheduling charging stations (see extra example for the
postUdiEvent endpoint)

» The postUdiEvent endpoint now triggers scheduling jobs to be set up (rather than scheduling directly triggered
by the getDeviceMessage endpoint)

* The getDeviceMessage now queries the job queue and database for an available schedule

4.28. API change log 137

FlexMeasures Documentation, Release 0.20.1.dev11

4.28.43 v1.2-6 | 2022-05-05

APIv1.2 is removed.

4.28.44 v1.2-5 | 2022-04-26

APIv1.2 is sunset.

4.28.45 v1.2-4 | 2022-02-13

APIv1.2 is deprecated.

4.28.46 v1.2-3 | 2020-01-28

» Updated endpoint descriptions with additional possible status 400 responses:
— INVALID_DOMAIN for invalid entity addresses
— UNKNOWN_PRICES for infeasible schedules due to missing prices

4.28.47 v1.2-2 | 2018-10-08

* Added a list of registered types of weather sensors to the Simulation section and postWeatherData endpoint

* Changed example for the postPriceData endpoint to reflect Korean situation

4.28.48 v1.2-1 | 2018-09-24

Added a local table of contents to the Simulation section

Added a description of the postPriceData endpoint in the Simulation section
* Added a description of the postWeatherData endpoint in the Simulation section
* Revised the subsection about posting power data in the Simulation section

* Revised the entity address for UDI events to include the type of the event

{
"type": "PostUdiEventRequest",
"event": "eal.2021-01.io.flexmeasures.company:7:10:203:soc",
}
rathier] than thel erfoneouisiy (doubile-Kelyed:
{
"type": "PostUdiEventRequest",
"event": "eal.2021-01.io.flexmeasures.company:7:10:203",
"type": IISOCH
}

138 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.28.49 v1.2-0 | 2018-09-08

* Added a description of the postUdiEvent endpoint in the Prosumer and Simulation sections

* Added a description of the getDeviceMessage endpoint in the Prosumer and Simulation sections

4.28.50 v1.1-8 | 2022-05-05

APIvi.1 is removed.

4.28.51 v1.1-7 | 2022-04-26

APIvi.1 is sunset.

4.28.52 v1.1-6 | 2022-02-13

APIv1.1 is deprecated.

4.28.53 v1.1-5 | 2020-06-18

* Fixed the gerConnection endpoint where the returned list of connection names had been unnecessarily nested

4.28.54 v1.1-4 | 2020-03-11

¢ Added support for posting daily and weekly prices for the postPriceData endpoint

4.28.55 v1.1-3 | 2018-09-08

* Added the Simulation section:
— Added information about setting up a new simulation
— Added examples for calling the postMeterData endpoint

— Added example for calling the getPrognosis endpoint

4.28.56 v1.1-2 | 2018-08-15

* Added the postPrognosis endpoint

* Added the postPriceData endpoint

* Added a description of the postPrognosis endpoint in the Aggregator section

* Added a description of the postPriceData endpoint in the Aggregator and Supplier sections

* Added the restoreData endpoint for servers in play mode

4.28. API change log 139

FlexMeasures Documentation, Release 0.20.1.dev11

4.28.57 v1.1-1 | 2018-08-06

Added the getConnection endpoint

Added the postWeatherData endpoint

Changed the Introduction section:
— Added information about the sign of power values (production is negative)
— Updated information about horizons (now anchored to the end of each time interval rather than to the start)

* Added an optional horizon to the postMeterData endpoint

4.28.58 v1.1-0 | 2018-07-15

* Added the getPrognosis endpoint
» Changed the getMeterData endpoint to accept an optional resolution, source, and horizon
¢ Changed the Introduction section:

— Added information about timeseries resolutions

— Added information about sources

— Updated information about horizons

* Added a description of the getPrognosis endpoint in the Supplier section

4.28.59 v1.0-4 | 2022-05-05

API v1.0 is removed.

4.28.60 v1.0-3 | 2022-04-26

APIv1.0 is sunset.

4.28.61 v1.0-2 | 2022-02-13

APIv1.0 is deprecated.

4.28.62 v1.0-1 | 2018-07-10

* Moved specifications to be part of the platform’s Sphinx documentation:
— Each API service is now documented in the docstring of its respective endpoint
— Added sections listing all endpoints per version

— Documentation includes specifications of all supported API versions (supported versions have a registered
Flask blueprint)

140 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.28.63 v1.0-0 | 2018-07-10

» Started change log

¢ Added Introduction section with notes regarding:

Authentication

Relevant roles for the API

Key notation

The addressing scheme for assets
Connection group notation
Timeseries notation

Prognosis notation

Units of timeseries data

* Added a description of the getService endpoint in the Introduction section

* Added a description of the postMeterData endpoint in the MDC section

* Added a description of the getMeterData endpoint in the Prosumer section

4.29 CLI Commands

FlexMeasures comes with a command-line utility, which helps to manage data. Below, we list all available commands.

Each command has more extensive documentation if you call it with --help.

We keep track of changes to these commands in FlexMeasures CLI Changelog. You can also get the current overview
over the commands you have available by:

flexmeasures --help
flexmeasures [command] --help

This also shows admin commands made available through Flask and installed extensions (such as Flask-Security and
Flask-Migrate), of which some are referred to in this documentation.

4.29. CLI Commands

141

https://flask-security-too.readthedocs.io
https://flask-migrate.readthedocs.io

FlexMeasures Documentation, Release 0.20.1.dev11

4.29.1 add - Add data

add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add

initial-structure
account-role

account

user

asset-type

asset

sensor

beliefs

source

forecasts

schedule for-storage
schedule for-process
holidays

annotation
toy-account

report

flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures

Initialize structural data like users, roles and asset types.
Create a FlexMeasures tenant account role.

Create a FlexMeasures tenant account.

Create a FlexMeasures user.

Create a new asset type.

Create a new asset.

Add a new sensor.

Load beliefs from file.

Add a new data source.

Create forecasts.

Create a charging schedule for a storage asset.
Create a schedule for a process asset.

Add holiday annotations to accounts and/or assets.
Add annotation to accounts, assets and/or sensors.
Create a toy account, for tutorials and trying things.
Create a report.

4.29.2 show - Show data

show
show
show
show
show
show
show
show
show

flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures

accounts
account

asset
roles

beliefs
reporters
schedulers

asset-types

data-sources

List accounts.

Show an account, its users and assets.
List available asset types.

Show an asset and its sensors.

List available account- and user roles.
List available data sources.

Plot time series data.

List available reporters.

List available schedulers.

4.29.3 edit - Edit data

flexmeasures edit attribute
flexmeasures edit resample-data

flexmeasures edit transfer-ownership

Edit (or add) an asset attribute or sensor attribute.

Assign a new event resolution to an existing sensor
and resample its data accordingly.

Transfer the ownership of an asset and its children to
a different account.

142

Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.29.4 delete - Delete data

flexmeasures delete structure
Delete all structural (non time-series) data,
like assets (types), roles and users.
flexmeasures delete account-role Delete a tenant account role.
flexmeasures delete account
Delete a tenant account & also their users
(with assets and power measurements).
flexmeasures delete user Delete a user & also their assets and power measure-
ments.
flexmeasures delete asset Delete an asset & also its sensors and data.
flexmeasures delete sensor Delete a sensor and all beliefs about it.
flexmeasures delete measurements Delete measurements (with horizon <= 0).
flexmeasures delete prognoses Delete forecasts and schedules (forecasts > 0).
flexmeasures delete unchanged-beliefs Delete unchanged beliefs.
flexmeasures delete nan-beliefs Delete NaN beliefs.

4.29.5 jobs - Job queueing

flexmeasures jobs run-worker Start a worker process for forecasting and/or scheduling jobs.
flexmeasures jobs show queues List job queues.
flexmeasures jobs clear-queue Clear ajob queue.

4.29.6 db-ops - Operations on the whole database

flexmeasures db-ops dump Create a dump of all current data (using pg_dump).
flexmeasures db-ops load Load backed-up contents (see db-ops save), run reset first.
flexmeasures db-ops reset Reset database data and re-create tables from data model.
flexmeasures db-ops restore Restore the dump file, see db-ops dump (run reset first).

flexmeasures db-ops save Backup db content to files.

4.30 FlexMeasures CLI Changelog

4.30.1 since v.0.21.0 | April 12, 2024

¢ Include started, deferred and scheduled jobs in the overview printed by the CLI command " flexmeasures jobs
show-queues’.

4.30. FlexMeasures CLI Changelog 143

FlexMeasures Documentation, Release 0.20.1.dev11

4.30.2 since v.0.20.0 | March 26, 2024

* Add command flexmeasures edit transfer-ownership to transfer the ownership of an asset and its chil-
dren.

* Add --offspring option to flexmeasures delete beliefs command, allowing to delete beliefs of chil-
dren, as well.

e Add support for providing a sensor definition to the --site-power-capacity,
--site-consumption-capacity and --site-production-capacity options of the flexmeasures
add schedule for-storage command.

4.30.3 since v0.19.1 | February 26, 2024

* Fix support for providing a sensor definition to the --storage-power-capacity option of the flexmeasures
add schedule for-storage command.

4.30.4 since v0.19.0 | February 18, 2024

* Enable the use of QuantityOrSensor fields for the flexmeasures add schedule for-storage CLI com-
mand:

— charging-efficiency

— discharging-efficiency
— soc-gain

— soc-usage

— power-capacity

— production-capacity

— consumption-capacity

— storage-efficiency

* Streamline CLI option naming by favoring --<entity> over --<entity>-id. This affects the following op-
tions:

— --account-id -> --account

--asset-id -> --asset
— --asset-type-id-> --asset-type

--sensor-id -> --sensor

--source-id -> --source

--user-id -> “—user’

144 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.30.5 since v0.18.1 | January 15, 2024

Fix the validation of the option --parent-asset of command flexmeasures add asset.

4.30.6 since v0.17.0 | November 8, 2023

Add --consultancy option to flexmeasures add account to create a consultancy relationship with another
account.

4.30.7 since v0.16.0 | September 29, 2023

Add command flexmeasures add sources to add the base DataSources for the DataGenerators.
Add command flexmeasures show chart to export sensor and asset charts in PNG or SVG formats.

Add --kind reporter option to flexmeasures add toy-account to create the asset and sensors for the
reporter tutorial.

Add --id option to flexmeasures show data-sources to show just one DataSource.

Add --show-attributes flag to flexmeasures show data-sources to select whether to show the at-
tributes field or not.

4.30.8 since v0.15.0 | August 9, 2023

Allow deleting multiple sensors with a single call to flexmeasures delete sensor by passing the --id
option multiple times.

Add flexmeasures add schedule for-process to create a new process schedule for a given power sensor.

Add support for describing config and parameters in YAML for the command flexmeasures add report,
editable in user’s code editor using the flags --edit-config or --edit-parameters.

Add --kind process option to create the asset and sensors for the ProcessScheduler tutorial.

4.30.9 since v0.14.1 | June 20, 2023

Avoid saving any NaN values to the database, when calling flexmeasures add report.

Fix defaults for the --start-offset and --end-offset’ options to ' flexmeasures add report,
which weren’t being interpreted in the local timezone of the reporting sensor.

4.30.10 since v0.14.0 | June 15, 2023

Allow setting a storage efficiency using the new --storage-efficiency option to the flexmeasures add
schedule for-storage CLI command.

Add CLI command flexmeasures add report to calculate a custom report from sensor data and save the
results to the database, with the option to export them to a CSV or Excel file.

Add CLI command flexmeasures show reporters to list available reporters, including any defined in reg-
istered plugins.

Add CLI command flexmeasures show schedulers to list available schedulers, including any defined in
registered plugins.

4.30.

FlexMeasures CLI Changelog 145

FlexMeasures Documentation, Release 0.20.1.dev11

e Make --account-id optional in flexmeasures add asset to support creating public assets, which are avail-
able to all users.

4.30.11 since v0.13.0 | May 1, 2023

* Add flexmeasures add source CLI command for adding a new data source.

* Add --inflexible-device-sensor option to flexmeasures add schedule.

4.30.12 since v0.12.0 | January 04, 2023

e Add --resolution, --timezone and --to-file options to flexmeasures show beliefs, to show beliefs
data in a custom resolution and/or timezone, and also to save shown beliefs data to a CSV file.

* Add options to flexmeasures add beliefs to 1) read CSV data with timezone naive datetimes (use
--timezone to localize the data), 2) read CSV data with datetime/timedelta units (use --unit datetime or
--unit timedelta, 3) remove rows with NaN values, and 4) add filter to read-in data by matching values in
specific columns (use --filter-column and --filter-value together).

e Fix flexmeasures db-ops dump and flexmeasures db-ops restore incorrectly reporting a success

when pg_dump and pg_restore are not installed.

¢ Add flexmeasures monitor last-seen.
¢ Rename flexmeasures monitor tasks to flexmeasures monitor last-run.

* Rename flexmeasures add schedule to flexmeasures add schedule for-storage (in expectation of

more scheduling commands, based on in-built flex models).

4.30.13 since v0.11.0 | August 28, 2022

e Add flexmeasures jobs show-queues to show contents of computation job queues.
* --name parameter in flexmeasures jobs run-worker is now optional.
* Add --custom-message param to flexmeasures monitor tasks.

¢ Rename -optimization-context-id to --consumption-price-sensor in flexmeasures add

schedule, and added --production-price-sensor.

4.30.14 since v0.9.0 | March 25, 2022

e Add CLI commands for showing data flexmeasures show accounts, flexmeasures show account,

flexmeasures show roles, flexmeasures show asset-types, flexmeasures show asset,
flexmeasures show data-sources, and flexmeasures show beliefs.

e Add flexmeasures db-ops resample-data CLI command to resample sensor data to a different resolution.
* Add flexmeasures edit attribute CLI command to edit/add an attribute on an asset or sensor.

e Add flexmeasures add toy-account for tutorials and trying things.

e Add flexmeasures add schedule to create a new schedule for a given power sensor.

* Add flexmeasures delete asset to delete an asset (including its sensors and data).

¢ Rename flexmeasures add structure to flexmeasures add initial-structure.

146

Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.30.15 since v0.8.0 | January 26, 2022

e Add flexmeasures add sensor, flexmeasures add asset-type, "~ flexmeasures add beliefs.
These were previously experimental features (under the dev-add command group).

e flexmeasures add asset now directly creates an asset in the new data model.

e Add flexmeasures delete sensor, flexmeasures delete nan-beliefs and flexmeasures delete
unchanged-beliefs.

4.30.16 since v0.6.0 | April 2, 2021

¢ Add flexmeasures add account, flexmeasures delete account, and the --account-id param to
flexmeasures add user.

4.30.17 since v0.4.0 | April 2, 2021

* Add the dev-add command group for experimental features around the upcoming data model refactoring.

4.30.18 since v0.3.0 | April 2, 2021

 Refactor CLI into the main groups add, delete, jobs and db-ops
¢ Add flexmeasures add asset, flexmeasures add user and flexmeasures add weather-sensor

* Split the populate-db command into flexmeasures add structureand flexmeasures add forecasts

4.31 Installation & First steps

This section walks you through the basics of installing FlexMeasures on a computer and running it continuously.

We’ll cover the most crucial settings you need to run FlexMeasures step-by-step, both for pip-based installation, as well
as running via Docker. In addition, we’ll explain some basics that you’ll need:

Table of contents

* Installing and running FlexMeasures
* Adding data

» Seeing it work and next steps

» Where to go from here?

4.31. Installation & First steps 147

FlexMeasures Documentation, Release 0.20.1.dev11

4.31.1 Installing and running FlexMeasures
In a nutshell, what does installation and running look like? Well, there are two major ways:
via pip

via docker

$ pip install flexmeasures
§ flexmeasures run # this won't work just yet

Note: Installation might cause some issues with latest Python versions and Windows, for some pip-dependencies (e.g.
rq-win). You might overcome this with a little research, e.g. by installing from the repo.

$ docker pull 1lfenergy/flexmeasures
$ docker run -d lfenergy/flexmeasures # this won't work just yet

The -d option keeps FlexMeasures running in the background (“detached”), as it should.

Note: For more information, see Running via Docker and Running a complete stack with docker-compose.

However, FlexMeasures is not a simple tool - it’s a web-app, with bells and whistles, like user access and databases.
We’ll need to add a few minimal preparations before running will work, see below.

Make a secret key for sessions and password salts

Set a secret key, which is used to sign user sessions and re-salt their passwords. The quickest way is with an environment
variable, like this:

via pip

via docker

[$ export SECRET_KEY=something-secret

(on Windows, use set instead of export)

Add the SECRET_KEY as an environment variable:

[$ docker run -d --env SECRET_KEV=something-secret lfenergy/flexmeasures

This suffices for a quick start. For an actually secure secret, here is a Pythonic way to generate a good secret key:

[$ python -c "import secrets; print(secrets.token_urlsafe())"

148 Chapter 4. Where to start reading?

https://github.com/michaelbrooks/rq-win#installation-and-use

FlexMeasures Documentation, Release 0.20.1.dev11

Choose the environment

Set an environment variable to indicate in which environment you are operating (one out of develop-
ment|testing|documentation|production). We’ll go with development here:

via pip

via docker

[$ export FLEXMEASURES_ENV=development]

(on Windows, use set instead of export)

[$ docker run -d --env FLEXMEASURES_ENV=development lfenergy/flexmeasures }

The default environment setting is production, which will probably not work well on your localhost, as FlexMeasures
then expects SSL-encrypted communication.

Tell FlexMeasures where the time series database is
* Make sure you have a Postgres (Version 9+) database for FlexMeasures to use. See Postgres database (section
“Getting ready to use”) for deeper instructions on this.
e Tell flexmeasures about it:
via pip

via docker

$ export SQLALCHEMY_DATABASE_URI="postgresql://<user>:<password>@<host-address>[:
—<port>]/<db-name>"

(on Windows, use set instead of export)

$ docker run -d --env SQLALCHEMY_ DATABASE_URI=postgresql://<user>:<password>@<host-
—.address>:<port>/<db-name> lfenergy/flexmeasures

If you install this on localhost, host-address is 127.0.0. 1 and the port can be left out.
* On a fresh database, you can create the data structure for FlexMeasures like this:
via pip

via docker

[$ flexmeasures db upgrade]

Go into the container to create the structure:

{$ docker exec -it <your-container-id> -c "flexmeasures db upgrade"]

4.31. Installation & First steps 149

FlexMeasures Documentation, Release 0.20.1.dev11

Use a config file

If you want to consistently use FlexMeasures, we recommend you add the settings we introduced above into a FlexMea-
sures config file. See Configuration for a full explanation where that file can live and all the settings.

So far, our config file would look like this:

SECRET_KEY = "something-secret"
FLEXMEASURES_ENV = "development"
SQLALCHEMY_DATABASE_URI = "postgresql://<user>:<password>@<host-address>[:<port>]/<db>"

via pip
via docker
Place the file at ~/ . flexmeasures.cfg. FlexMeasures will look for it there.

Save the file as flexmeasures-instance/flexmeasures.cfg and load it into the container like this (more at Con-
figuration and customization):

[$ docker run -v $(pwd)/flexmeasures-instance:/app/instance:ro lfenergy/flexmeasures]

4.31.2 Adding data

Let’s add some data.

From here on, we will not differentiate between pip and docker installation. When using docker, here are two ways to
run these commands:

$ docker exec -it <your-container-name> -c "<command>"
$ docker exec -it <your-container-name> bash # then issue the data-generating.,
—scommands in the container

Add an account & user

FlexMeasures is a tenant-based platform — multiple clients can enjoy its services on one server. Let’s create a tenant
account first:

[$ flexmeasures add account --name "Some company"

This command will tell us the ID of this account. Let’s assume it was 2.

FlexMeasures is also a web-based platform, so we need to create a user to authenticate:

$ flexmeasures add user --username <your-username> --email <your-email-address> --
—,account-id 2 --roles=admin

* This will ask you to set a password for the user.

* Giving the first user the admin role is probably what you want.

150 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

Add initial structure

Populate the database with some standard asset types, user roles etc.:

[$ flexmeasures add initial-structure

Add your first asset

There are three ways to add assets:

First, you can use the flexmeasures CLI Commands:

$ flexmeasures add asset --name "my basement battery pack" --asset-type-id 3 --latitude.
65 --longitude 123.76 --account-id 2

For the asset type ID, I consult flexmeasures show asset-types.

For the account ID, I looked at the output of flexmeasures add account (the command we issued above) — I could
also have consulted flexmeasures show accounts.

The second way to add an asset is the Ul — head over to https://localhost:5000/assets (after you started
FlexMeasures, see step “Run FlexMeasures” further down) and add a new asset there in a web form.

Finally, you can also use the POST /api/v3_0/assets endpoint in the FlexMeasures API to create an asset.
Add your first sensor

Usually, we are here because we want to measure something with respect to our assets. Each assets can have sensors
for that, so let’s add a power sensor to our new battery asset, using the flexmeasures CLI Commands:

$ flexmeasures add sensor --name power --unit MW --event-resolution 5 --timezone Europe/
—Amsterdam --asset-id 1 --attributes '{"capacity_in mw": 7}'

The asset ID I got from the last CLI command, or I could consult flexmeasures show account --account-id
<my-account-id>.

4.31.3 Seeing it work and next steps
It’s finally time to start running FlexMeasures. This here is the direct form you can use to see if it’s working:
via pip

via docker

[$ flexmeasures run

assuming you loaded flexmeasures.cfg (see above)
$ docker run lfenergy/flexmeasures

or everything on the terminal

$ docker run -d --env FLEXMEASURES_ENV=development --env SECRET_KEV=something-secret --
—env SQLALCHEMY DATABASE_URI=postgresql://<user>:<password>@<host-address>:<port>/<db-
—.name> lfenergy/flexmeasures

4.31. Installation & First steps 151

../api/v3_0.html#post--api-v3_0-assets

FlexMeasures Documentation, Release 0.20.1.dev11

This might print some warnings, see the next section where we go into more detail. For instance, when you see the
dashboard, the map will not work. For that, you’ll need to get your MAPBOX_ACCESS_TOKEN and add it to your
config file.

You can visit http://localhost: 5000 now to see if the app’s UI works. You should be asked to log in (here you
can use the admin user created above) and then see the dashboard.

We achieved the main goal of this page, to get FlexMeasures to run. Below are some additional steps you might
consider.

Add time series data (beliefs)

There are three ways to add data:

First, you can load in data from a file (CSV or Excel) via the flexmeasures CLI Commands:

§ flexmeasures add beliefs --file my-data.csv --skiprows 2 --delimiter ";" --source.
—.OurLegacyDatabase --sensor-id 1

This assumes you have a file my-data.csv with measurements, which was exported from some legacy database, and that
the data is about our sensor with ID 1. This command has many options, so do use its --help function. For instance,
to add data as forecasts, use the --beliefcol parameter, to say precisely when these forecasts were made. Or add
--horizon for rolling forecasts if they all share the same horizon.

Second, you can use the POST /api/v3_0/sensors/data endpoint in the FlexMeasures API to send meter data.

You can also use the API to send forecast data. Similar to the add beliefs commands, you would use here the fields
prior (to denote time of knowledge of data) or horizon (for rolling forecast data with equal horizon). Consult the
documentation at Posting sensor data.

Finally, you can tell FlexMeasures to compute forecasts based on existing meter data with the flexmeasures add
forecasts command, here is an example:

§ flexmeasures add forecasts --from-date 2020-03-08 --to-date 2020-04-08 --asset-type.
—,Asset --asset my-solar-panel

This obviously depends on some conditions (like the right underlying data) being right, consult Forecasting & schedul-
ing.

Set mail settings

For FlexMeasures to be able to send email to users (e.g. for resetting passwords), you need an email service that can
do that (e.g. GMail). Set the MAIL_* settings in your configuration, see Mail.

Install an LP solver

For computing schedules, the FlexMeasures platform uses a linear program solver. Currently that is the HIGHS or CBC
solvers.

It’s already installed in the Docker image. For yourself, you can simply install it like this:

[$ pip install highspy J

Read more on solvers (e.g. how to install a different one) at Install the linear solver on the server.

152 Chapter 4. Where to start reading?

../api/v3_0.html#post--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.20.1.dev11

Install and configure Redis

To let FlexMeasures queue forecasting and scheduling jobs, install a Redis server (or rent one) and configure access to
it within FlexMeasures’ config file (see above). You can find the necessary settings in Redis.

Then, start workers in a console (or some other method to keep a long-running process going):

$ flexmeasures jobs run-worker --queue forecasting
$ flexmeasures jobs run-worker --queue scheduling

4.31.4 Where to go from here?
If your data structure is good, you should think about (continually) adding measurement data. This tutorial mentioned
how to add data, but Posting data goes deeper with examples and terms & definitions.

Then, you probably want to use FlexMeasures to generate forecasts and schedules! For this, read further in Forecasting
& scheduling.

One more consideration is to run FlexMeasures in a more professional ways as a we service. Head on to How to deploy
FlexMeasures.

4.32 Running via Docker

FlexMeasures can be run via its docker image.

Docker is great to save developers from installation trouble, but also for running FlexMeasures inside modern cloud
environments in a scalable manner.

Note: We also support running all needed parts of a FlexMeasures web service setup via docker-compose, which is
helpful for developers and might inform hosting efforts. See Running a complete stack with docker-compose.

4.32.1 Getting the flexmeasures image

You can use versions we host at Docker Hub, e.g.:

[$ docker pull lfenergy/flexmeasures:latest }

You can also build the FlexMeasures image yourself, from source:

[$ docker build -t flexmeasures/my-version .

The tag is your choice.

4.32. Running via Docker 153

https://redis.io/
https://hub.docker.com/repository/docker/lfenergy/flexmeasures
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/

FlexMeasures Documentation, Release 0.20.1.dev11

4.32.2 Running

Running the image (as a container) might work like this (remember to get the image first, see above):

$ docker run --env SQLALCHEMY_DATABASE_URI=postgresql://user:pass@localhost:5432/dbname -
—-env SECRET_KEY=blabla --env FLEXMEASURES_ENV=development -d --net=host lfenergy/
—flexmeasures

Note: Don’t know what your image is called (its “tag”)? We used 1fenergy/flexmeasures here, as that should be
the name when pulling it from Docker Hub. You can run docker images to see which images you have.

The two minimal environment variables to run the container successfully are SQLALCHEMY_DATABASE_URI and the
SECRET_KEY, see Configuration. FLEXMEASURES_ENV=development is needed if you do not have an SSL certificate
set up (the default mode is production, and in that mode FlexMeasures requires https for security reasons). If you
see too much output, you can also set LOGGING_LEVEL=INFO.

In this example, we connect to a postgres database running on our local computer, so we use the host network. In the
docker-compose section below, we use a Docker container for the database, as well.

Browsing http://localhost: 5000 should work now and ask you to log in.

Of course, you might not have created a user. You can use docker exec -it <flexmeasures-container-name>
bash to go inside the container and use the CLI Commands to create everything you need.

4.32.3 Configuration and customization

Using Configuration by file is usually what you want to do. It’s easier than adding environment variables to docker
run. Also, not all settings can be given via environment variables. A good example is the MAPBOX_ACCESS_TOKEN,
so you can load maps on the dashboard.

To load a configuration file into the container when starting up, we make use of the instance folder. You can put a
configuration file called flexmeasures.cfg into a local folder called flexmeasures-instance and then mount
that folder into the container, like this:

$ docker run -v $(pwd)/flexmeasures-instance:/app/instance:ro -d --net=host lfenergy/
—.flexmeasures

Warning: The location of the instance folder depends on how we serve FlexMeasures. The above works with
gunicorn. See the compose file for an alternative (for the FlexMeasures CLI), and you can also read the above link
about the instance folder.

Installing plugins within the container

At this point, the FlexMeasures container is up and running without including any plugins you might need to use. To
integrate a plugin into the container, follow these steps:

1. Copy the plugin into your active FlexMeasures container by executing the following command:

[docker cp </path/to/plugin-directory> <flexmeasures-container-name>:/app]

154 Chapter 4. Where to start reading?

https://flask.palletsprojects.com/en/2.1.x/config/#instance-folders

FlexMeasures Documentation, Release 0.20.1.dev11

2. Once the plugin is successfully copied proceed to install it, for instance using pip docker exec
-it <flexmeasures-container-name> bash -c "pip install <path/to-package>". In-
stead, you just need to install the requirements, then run this command docker exec -it
<flexmeasures-container-name> bash -c "pip install -r <path/to-package/requirements.
txt.

3. After completing the installation, create a directory named instance in the container working directory and
transfer the FlexMeasures configuration file, flexmeasures.cfg, into it using the docker cp command. Ad-
ditionally, ensure that you incorporate your plugin details into the flexmeasures.cfg file as outlined in the
FLEXMEASURES PLUGINS section.

4. Once these steps are finished, halt the container using the docker stop <flexmeasures-container-name>
command, followed by restarting it using docker start <flexmeasures-container-name>. This ensures
that the changes take effect. Now, you can make use of the installed plugins within the FlexMeasures Docker
container.

4.33 Postgres database

This document describes how to get the postgres database ready to use and maintain it (do migrations / changes to the
structure).

Note: This is about a stable database, useful for longer development work or production. A super quick way to get a
postgres database running with Docker is described in 7oy example I: Scheduling a battery, from scratch. In Running
a complete stack with docker-compose we use both postgres and redis.

We also spend a few words on coding with database transactions in mind.

Table of contents

* Getting ready to use
— Install

— Make sure postgres represents datetimes in UTC timezone

Create “flexmeasures” and “flexmeasures_test” databases and users

Add Postgres Extensions to your database(s)

Configure FlexMeasures app for that database

Get structure (and some data) into place
* Visualize the data model
* Maintenance

— Make first migration

Make another migration

Get database structure updated

Working with the migration history

— Check out database status

* Transaction management

4.33. Postgres database 155

FlexMeasures Documentation, Release 0.20.1.dev11

4.33.1 Getting ready to use

Notes:
¢ We assume flexmeasures for your database and username here. You can use anything you like, of course.

* The name flexmeasures_test for the test database is good to keep this way, as automated tests are looking
for that database / user / password.

Install

We believe FlexMeasures works with Postgres above version 9 and we ourselves have run it with versions up to 14.

On Linux:

$ # On Ubuntu and Debian, you can install postgres like this:

$ sudo apt-get install postgresql-12 # replace 12 with the version available in your.
—packages

$ pip install psycopg2-binary

$ # On Fedora, you can install postgres like this:
$ sudo dnf install postgresql postgresql-server
$ sudo postgresql-setup --initdb --unit postgresql

On Windows:
* Download postgres here: https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
¢ Install and remember your postgres user password

e Add the lib and bin directories to your Windows path: http://bobbyong.com/blog/
installing-postgresql-on-windoes/

e conda install psycopg2

On Macos:

$ brew update

$ brew doctor

$ # Need to specify postgres version, in this example we use 13

$ brew install postgresql@l3

$ brew link postgresql@l3 --force

$ # Start postgres (you can change /usr/local/var/postgres to any directory you like)
$ pg_ctl -D /usr/local/var/postgres -1 logfile start

Using Docker Compose:

Alternatively, you can use Docker Compose to run a postgres database. You can use the following docker-compose.
yml as a starting point:

version: '3.7'

services:
postgres:
image: postgres:latest
restart: always
environment:

(continues on next page)

156 Chapter 4. Where to start reading?

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
http://bobbyong.com/blog/installing-postgresql-on-windoes/
http://bobbyong.com/blog/installing-postgresql-on-windoes/

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

POSTGRES_USER: flexmeasures
POSTGRES_PASSWORD: this-is-your-secret-choice
POSTGRES_DB: flexmeasures
ports:
- 5432:5432
volumes:
- ./postgres-data:/var/lib/postgresql/data
network_mode: host

To run this, simply type docker-compose up in the directory where you saved the docker-compose.yml file. Pass
the -d flag to run it in the background.

This will create a postgres database in a directory postgres-data in your current working directory. You can change
the password and database name to your liking. You can also change the port mapping to e.g. 5433:5432 if you already
have a postgres database running on your host machine.

Make sure postgres represents datetimes in UTC timezone

(Otherwise, pandas can get confused with daylight saving time.)

Luckily, many web hosters already have timezone= 'UTC' set correctly by default, but local postgres installations
often use timezone="'localtime’.

In any case, check both your local installation and the server, like this:

Find the postgres.conf file. Mine is at /etc/postgresql/9.6/main/postgresql.conf. You can also type
SHOW config_file; in a postgres console session (as superuser) to find the config file.

Find the timezone setting and set it to ‘UTC’.
Then restart the postgres server.
Linux

Macos

[$ sudo service postgresql restart

[$ pg_ctl -D /usr/local/var/postgres -1 logfile restart

Note: If you are using Docker to run postgres, the timezone setting is already set to UTC by default.

Create “flexmeasures” and “flexmeasures_test” databases and users

From the terminal:

Open a console (use your Windows key and type cmd). Proceed to create a database as the postgres superuser (using
your postgres user password):

$ sudo -i -u postgres

$ createdb -U postgres flexmeasures

$ createdb -U postgres flexmeasures_test

$ createuser --pwprompt -U postgres flexmeasures # enter your password

(continues on next page)

4.33. Postgres database 157

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)
$ createuser --pwprompt -U postgres flexmeasures_test # enter "flexmeasures_test" as.
—password
$ exit

Note: In case you encounter the following “FAILS: sudo: unknown user postgres” you need to create “postgres” OS
user with sudo rights first - better done via System preferences -> Users & Groups.

Or, from within Postgres console:

CREATE USER flexmeasures WITH PASSWORD 'this-is-your-secret-choice';
CREATE DATABASE flexmeasures WITH OWNER = flexmeasures;

CREATE USER flexmeasures_test WITH PASSWORD 'flexmeasures_test';
CREATE DATABASE flexmeasures_test WITH OWNER = flexmeasures_test;

Finally, test if you can log in as the flexmeasures user:

[$ psql -U flexmeasures --password -h 127.0.0.1 -d flexmeasures J
N J

Add Postgres Extensions to your database(s)

To find the nearest sensors, FlexMeasures needs some extra Postgres support. Add the following extensions while
logged in as the postgres superuser:

[$ sudo -u postgres psql]

Nconnect flexmeasures
CREATE EXTENSION cube;
CREATE EXTENSION earthdistance;

Note: Lines from above should be run seperately

If you have it, connect to the flexmeasures_test database and repeat creating these extensions there. Then exit.

Configure FlexMeasures app for that database

Write:

[SQLALCHEMY_DATABASE_URI = "postgresql://flexmeasures:<password>@127.0.0.1/flexmeasures"”]

into the config file you are using, e.g. ~/.flexmeasures.cfg

158 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

Get structure (and some data) into place

You need data to enjoy the benefits of FlexMeasures or to develop features for it. In this section, there are some ways
to get started.

Import from another database

Here is a short recipe to import data from a FlexMeasures database (e.g. a demo database) into your local system.

On the to-be-exported database:

[$ flexmeasures db-ops dump]

Note: Only the data gets dumped here.

Then, we create the structure in our database anew, based on the data model given by the local codebase:

[$ flexmeasures db-ops reset]

Then we import the data dump we made earlier:

[$ flexmeasures db-ops restore <DATABASE DUMP FILENAME> J

A potential alembic_version error should not prevent other data tables from being restored. You can also choose to
import a complete db dump into a freshly created database, of course.

Note: To make sure passwords will be decrypted correctly when you authenticate, set the same SECU-
RITY_PASSWORD_SALT value in your config as the one that was in use when the dumped passwords were encrypted!

Create data manually

First, you can get the database structure with:

[$ flexmeasures db upgrade]

Note: If you develop code (and might want to make changes to the data model), you should also check out the
maintenance section about database migrations.

You can create users with the add user command. Check it out:

$ flexmeasures add account --help
$ flexmeasures add user --help

You can create some pre-determined asset types and data sources with this command:

[$ flexmeasures add initial-structure]

You can also create assets in the FlexMeasures Ul

On the command line, you can add many things. Check what data you can add yourself:

4.33. Postgres database 159

FlexMeasures Documentation, Release 0.20.1.dev11

[$ flexmeasures add --help J

For instance, you can create forecasts for your existing metered data with this command:

[$ flexmeasures add forecasts --help }

Check out it’s --help content to learn more. You can set which assets and which time window you want to forecast.
Of course, making forecasts takes a while for a larger dataset. You can also simply queue a job with this command (and
run a worker to process the Redis Queues).

Just to note, there are also commands to get rid of data. Check:

[$ flexmeasures delete --help]

Check out the CLI Commands documentation for more details.

4.33.2 Visualize the data model

You can visualise the data model like this:

[$ make show-data-model]

This will generate a picture based on the model code. You can also generate picture based on the actual database, see
inside the Makefile.

Note: If you encounter “error: externally-managed-environment” when running make test and you do it in venv, try
pip cache purge or use pipXx.

4.33.3 Maintenance

Maintenance is supported with the alembic tool. It reacts automatically to almost all changes in the SQLAlIchemy code.
With alembic, multiple databases, such as development, staging and production databases can be kept in sync.

Make first migration

Run these commands from the repository root directory (read below comments first):

$ flexmeasures db init
$ flexmeasures db migrate
§ flexmeasures db upgrade

The first command (flexmeasures db init) is only needed here once, it initialises the alembic migration tool. The
second command generates the SQL for your current db model and the third actually gives you the db structure.

With every migration, you get a new migration step in migrations/versions. Be sure to add that to git, as future
calls to flexmeasures db upgrade will need those steps, and they might happen on another computer.

Hint: You can edit these migrations steps, if you want.

160 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

Make another migration

Just to be clear that the db init command is needed only at the beginning - you usually do, if your model changed:

§ flexmeasures db migrate --message "Please explain what you did, it helps for later"
§$ flexmeasures db upgrade

Get database structure updated

The goal is that on any other computer, you can always execute

[$ flexmeasures db upgrade

to have the database structure up-to-date with all migrations.

Working with the migration history

The history of migrations is at your fingertips:

$ flexmeasures db current
§ flexmeasures db history

You can move back and forth through the history:

§ flexmeasures db downgrade
$ flexmeasures db upgrade

Both of these accept a specific revision id parameter, as well.

Check out database status

Log in into the database:

[$ psql -U flexmeasures --password -h 127.0.0.1 -d flexmeasures

with the password from flexmeasures/development_config.py. Check which tables are there:

[th

To log out:

e

4.33. Postgres database 161

FlexMeasures Documentation, Release 0.20.1.dev11

4.33.4 Transaction management

It is really useful (and therefore an industry standard) to bundle certain database actions within a transaction. Trans-
actions are atomic - either the actions in them all run or the transaction gets rolled back. This keeps the database in a
sane state and really helps having expectations during debugging.

Please see the package flexmeasures.data.transactional for details on how a FlexMeasures developer should
make use of this concept. If you are writing a script or a view, you will find there the necessary structural help to bundle
your work in a transaction.

4.34 How to deploy FlexMeasures

Here you can learn how to get FlexMeasures onto a server.

Note: FlexMeasures can be deployed via Docker, where the solver is already installed and there are cloud infrastruc-
tures like Kubernetes you’d use. Read more at Running via Docker. You need other components (e.g. postgres and
redis) which are not handled here. See Running a complete stack with docker-compose for inspiration.

4.34.1 WSGI configuration
On your own computer, flexmeasures run is a nice way to start FlexMeasures. On a production web server, you
want it done the WSGI (Web Server Gateway Interface) way.

Here, you’d want to hand FlexMeasures’ app object to a WSGI process, as your platform of choice describes. Often,
that requires a WSGI script. Below is a minimal example.

use this if you run from source, not needed if you pip-installed FlexMeasures
project_home = u'/path/to/your/code/flexmeasures’
if project_home not in sys.path:

sys.path = [project_home] + sys.path

create flask app - the name "application" has to be passed to the WSGI server
from flexmeasures.app import create as create_app
application = create_app()

The web server is told about the WSGI script, but also about the object that represents the application. For instance, if
this script is called wsgi.py, then the relevant argument to the gunicorn server is wsgi:application.

A more nuanced one from our practice is this:

This file contains the WSGI configuration required to serve up your

web application.

It works by setting the variable 'application’ to a WSGI handler of some description.
The crucial part are the last two lines. We add some ideas for possible other logic.

import os

project_home = u'/path/to/your/code/flexmeasures'’

use this if you want to load your own “.env " file.
from dotenv import load_dotenv

load_dotenv(os.path. join(project_home, '.env'))

use this if you run from source

(continues on next page)

162 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

if project_home not in sys.path:

sys.path = [project_home] + sys.path
adapt PATH to find our LP solver if it is installed from source
os.environ["PATH"] = os.environ.get("PATH") + ":/home/seita/Chc-2.9/bin"

create flask app - the name "application" has to be passed to the WSGI server
from flexmeasures.app import create as create_app
application = create_app(Q)

Keep in mind that FlexMeasures is based on Flask, so almost all knowledge on the web on how to deploy a Flask app
also helps with deploying FlexMeasures.

4.34.2 Install the linear solver on the server

To compute schedules, FlexMeasures uses the HIGHS mixed integer linear optimization solver (FlexMeasures solver
by default) or Cbc. Solvers are used through Pyomo, so in principle supporting a different solver would be possible.
You tell FlexMeasures with the config setting FLEXMFEASURES_LP_SOLVER which solver to use.

However, the solver also needs to be installed - in addition to FlexMeasures (the Docker image already has it). Here is
advice on how to install the two solvers we test internally:

Note: We default to HIGHS, as it seems more powerful

HiGHS can be installed using pip:

[$ pip install highspy

More information on the HIGHS website.
Cbc needs to be present on the server where FlexMeasures runs, under the cbc command.

You can install it on Debian like this:

[$ apt-get install coinor-cbc

(also available in different popular package managers).
More information is on the CBC website.

If you can’t use the package manager on your host, the solver has to be installed from source. We provide an example
script in ci/install-cbc-from-source. sh to do that, where you can also pass a directory for the installation.

In case you want to install a later version, adapt the version in the script.

4.34. How to deploy FlexMeasures 163

https://flask.palletsprojects.com/
https://highs.dev/
https://github.com/coin-or/Cbc
http://www.pyomo.org
https://pyomo.readthedocs.io/en/stable/solving_pyomo_models.html#supported-solvers
https://highs.dev/
https://projects.coin-or.org/Cbc

FlexMeasures Documentation, Release 0.20.1.dev11

4.35 Configuration

The following configurations are used by FlexMeasures.

Required settings (e.g. postgres db) are marked with a double star (**). To enable easier quickstart tutorials, continuous
integration use cases and basic usage of FlexMeasures within other projects, these required settings, as well as a few
others, can be set by environment variables — this is also noted per setting. Recommended settings (e.g. mail, redis)
are marked by one star (*).

Note: FlexMeasures is best configured via a config file. The config file for FlexMeasures can be placed in one of two
locations:

* in the user’s home directory (e.g. ~/.flexmeasures.cfg on Unix). In this case, note the dot at the beginning
of the filename!

* inthe app’s instance directory (e.g. /path/to/your/flexmeasures/code/instance/flexmeasures.cfg).
The path to that instance directory is shown to you by running flexmeasures (e.g. flexmeasures run) with
required settings missing or otherwise by running flexmeasures shell. Under Configuration and customiza-
tion, we explain how to load a config file into a FlexMeasures Docker container.

4.35.1 Basic functionality

LOGGING_LEVEL

Level above which log messages are added to the log file. See the 1ogging package in the Python standard library.
Default: logging.WARNING

Note: This setting is also recognized as environment variable.

FLEXMEASURES_MODE

The mode in which FlexMeasures is being run, e.g. “demo” or “play”. This is used to turn on certain extra behaviours,
see Modes for details.

Default: ""

FLEXMEASURES_ALLOW_DATA_OVERWRITE

Whether to allow overwriting existing data when saving data to the database.

Default: False

164 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

FLEXMEASURES_LP_SOLVER

The command to run the scheduling solver. This is the executable command which FlexMeasures calls via the pyomo
library. Potential values might be cbc, cplex, glpk or appsi_highs. Consult their documentation to learn more.
We have tested FlexMeasures with HIGHS and Cbc. Note that you need to install the solver, read more at Install the
linear solver on the server.

Default: "appsi_highs"

FLEXMEASURES_HOSTS_AND_AUTH_START
Configuration used for entity addressing. This contains the domain on which FlexMeasures runs and the first month
when the domain was under the current owner’s administration.

Default: {"flexmeasures.io": "2021-01"}

FLEXMEASURES_PLUGINS

A list of plugins you want FlexMeasures to load (e.g. for custom views or CLI functions). This can be a Python list
(e.g. ["pluginl", "plugin2"]) or a comma-separated string (e.g. "pluginl, plugin2").

Two types of entries are possible here:

« File paths (absolute or relative) to plugins. Each such path needs to point to a folder, which should contain an
__init__.py file where the Blueprint is defined.

» Names of installed Python modules.

Added functionality in plugins needs to be based on Flask Blueprints. See Writing Plugins for more information and
examples.

Default: []

Note: This setting is also recognized as environment variable (since v0.14, which is also the version required to pass
this setting as a string).

FLEXMEASURES_DB_BACKUP_PATH

Relative path to the folder where database backups are stored if that feature is being used.

Default: "migrations/dumps"”

FLEXMEASURES_PROFILE_REQUESTS

If True, the processing time of requests are profiled.

The overall time used by requests are logged to the console. In addition, if pyinstrument is installed, then a profiling
report is made (of time being spent in different function calls) for all Flask API endpoints.

The profiling results are stored in the profile_reports folder in the instance directory.
Note: Profile reports for API endpoints are overwritten on repetition of the same request.
Interesting for developers.

Default: False

4.35. Configuration 165

http://www.pyomo.org/
http://www.pyomo.org/
https://pyomo.readthedocs.io/en/stable/solving_pyomo_models.html#supported-solvers
https://highs.dev/
https://coin-or.github.io/Cbc/intro

FlexMeasures Documentation, Release 0.20.1.dev11

4.35.2 Ul

FLEXMEASURES_PLATFORM_NAME

Name being used in headings and in the menu bar.

For more fine-grained control, this can also be a list, where it’s possible to set the platform name for certain account
roles (as a tuple of view name and list of applicable account roles). In this case, the list is searched from left to right,
and the first fitting name is used.

For example, ("MyMDCApp", ["MDC"]), "MyApp"] would show the name “MyMDCApp” for users connected to
accounts with the account role “MDC”, while all others would see the name “/MyApp”.

Note: This fine-grained control requires FlexMeasures version 0.6.0

Default: "FlexMeasures"

FLEXMEASURES_MENU_LOGO_PATH

A URL path to identify an image being used as logo in the upper left corner (replacing some generic text made from
platform name and the page title). The path can be a complete URL or a relative from the app root.

Default: ""

FLEXMEASURES_EXTRA_CSS_PATH

A URL path to identify a CSS style-sheet to be added to the base template. The path can be a complete URL or a
relative from the app root.

Note: You can also add extra styles for plugins with the usual Blueprint method. That is more elegant but only applies
to the Blueprint’s views.

Default: ""

FLEXMEASURES_ROOT_VIEW

Root view (reachable at ““/”’). For example "/dashboard".

For more fine-grained control, this can also be a list, where it’s possible to set the root view for certain account roles
(as a tuple of view name and list of applicable account roles). In this case, the list is searched from left to right, and
the first fitting view is shown.

For example, [("metering-dashboard", ["MDC", "Prosumer"]), "default-dashboard"] would route to
“/metering-dashboard” for users connected to accounts with account roles “MDC” or “Prosumer”, while all others
would be routed to *“/default-dashboard”.

If this setting is empty or not applicable for the current user, the “/” view will be shown (FlexMeasures’ default dash-
board or a plugin view which was registered at “/").

Default []

Note: This setting was introduced in FlexMeasures version 0.6.0

166 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

FLEXMEASURES_MENU_LISTED_VIEWS

A list of the view names which are listed in the menu.

Note: This setting only lists the names of views, rather than making sure the views exist.

For more fine-grained control, the entries can also be tuples of view names and list of applicable account roles. For
example, the entry ("details": ["MDC", "Prosumer"]) would add the “/details” link to the menu only for users
who are connected to accounts with roles “MDC” or “Prosumer”. For clarity: the title of the menu item would read
“Details”, see also the FLEXMEASURES_LISTED_VIEW_TITLES setting below.

Note: This fine-grained control requires FlexMeasures version 0.6.0

Default: ["dashboard"]

FLEXMEASURES_MENU_LISTED_VIEW_ICONS

A dictionary containing a Font Awesome icon name for each view name listed in the menu. For example,
{"freezer-view": "snowflake-o"} putsa snowflake icon () next to your freezer-view menu item.

Default: {3}

Note: This setting was introduced in FlexMeasures version 0.6.0

FLEXMEASURES_MENU_LISTED_VIEW_TITLES

A dictionary containing a string title for each view name listed in the menu. For example, {"freezer-view":
freezer"} lists the freezer-view in the menu as “Your freezer”.

Default: {3}

"Your

Note: This setting was introduced in FlexMeasures version 0.6.0

FLEXMEASURES_HIDE_NAN_IN_UI

Whether to hide the word “nan” if any value in metrics tables is NaN.

Default: False

4.35. Configuration 167

FlexMeasures Documentation, Release 0.20.1.dev11

RQ_DASHBOARD_POLL_INTERVAL

Interval in which viewing the queues dashboard refreshes itself, in milliseconds.

Default: 3000 (3 seconds)

FLEXMEASURES_ASSET _TYPE_GROUPS

How to group asset types together, e.g. in a dashboard.

Default: {"renewables": ["solar", "wind"], "EVSE": ["one-way_evse", "two-way_evse"]}
FLEXMEASURES_JS_VERSIONS

Default: {"vega": "5.22.1", "vegaembed": "6.20.8", "vegalite": "5.2.0"}

4.35.3 Timing

FLEXMEASURES_TIMEZONE

Timezone in which the platform operates. This is useful when datetimes are being localized.
Default: "Asia/Seoul"

FLEXMEASURES_JOB_TTL

Time to live for jobs (e.g. forecasting, scheduling) in their respective queue.
A job that is passed this time to live might get cleaned out by Redis” memory manager.

Default: timedelta(days=1)

FLEXMEASURES_PLANNING_TTL

Time to live for schedule UUIDs of successful scheduling jobs. Set a negative timedelta to persist forever.

Default: timedelta(days=7)

FLEXMEASURES_JOB_CACHE_TTL
Time to live for the job caching keys in seconds. The default value of 1h responds to the reality that within an hour,
there is not much change, other than the input arguments, that justifies recomputing the schedules.

In an hour, we will have more accurate forecasts available and the situation of the power grid might have changed
(imbalance prices, distribution level congestion, activation of FCR or aFRR reserves, ...).

Set a negative value to persist forever.

Warning: Keep in mind that unless a proper clean up mechanism is set up, the number of caching keys will grow
with time if the TTL is set to a negative value.

Default: 3600

168 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

FLEXMEASURES_DEFAULT_DATASOURCE

The default DataSource of the resulting data from DataGeneration classes.

Default: "FlexMeasures"

FLEXMEASURES_PLANNING_HORIZON

The default horizon for making schedules. API users can set a custom duration if they need to.

Default: timedelta(days=2)

FLEXMEASURES_MAX_PLANNING_HORIZON

The maximum horizon for making schedules. API users are not able to request longer schedules. Can be set to a specific

datetime.timedelta or to an integer number of planning steps, where the duration of a planning step is equal to the
resolution of the applicable power sensor. Set to None to forgo this limitation altoghether.

Default: 2520 (e.g. 7 days for a 4-minute resolution sensor, 105 days for a 1-hour resolution sensor)
4.35.4 Access Tokens

MAPBOX_ACCESS_TOKEN

Token for accessing the MapBox API (for displaying maps on the dashboard and asset pages). You can learn how to
obtain one here

Default: None

Note: This setting is also recognized as environment variable.

SENTRY_SDN

Set tokenized URL, so errors will be sent to Sentry when app.env is not in debug or testing mode. E.g.: https://
<examplePublicKey>@o<something>.ingest.sentry.io/<project-Id>

Default: None

Note: This setting is also recognized as environment variable.

4.35.5 SQLAIchemy

This is only a selection of the most important settings. See the Flask-SQLAlchemy Docs for all possibilities.

4.35. Configuration 169

https://docs.mapbox.com/help/glossary/access-token/
https://flask-sqlalchemy.palletsprojects.com/en/master/config

FlexMeasures Documentation, Release 0.20.1.dev11

SQLALCHEMY_DATABASE_URI (**)

Connection string to the postgres database, format: postgresql://<user>:<password>@<host-address>[:<port>]/
<db>

Default: None

Note: This setting is also recognized as environment variable.

SQLALCHEMY_ENGINE_OPTIONS

Configuration of the SQLAlchemy engine.
Default:

{
"pool_recycle": 299,
"pool_pre_ping": True,
"connect_args": {"options": "-c timezone=utc"},

SQLALCHEMY_TEST_DATABASE_URI

When running tests (make test, which runs pytest), the default database URI is setin utils.config_defaults.
TestingConfig. You can use this setting to overwrite that URI and point the tests to an (empty) database of your
choice.

Note: This setting is only supported as an environment variable, not in a config file, and only during testing.

4.35.6 Security

Settings to ensure secure handling of credentials and data.

For Flask-Security and Flask-Cors (setting names start with “SECURITY” or “CORS”), this is only a selection of the
most important settings. See the Flask-Security Docs as well as the Flask-CORS docs for all possibilities.

SECRET_KEY (*¥)
Used to sign user sessions and also as extra salt (a.k.a. pepper) for password salting if SECURITY_PASSWORD_SALT is
not set. This is actually part of Flask - but is also used by Flask-Security to sign all tokens.

It is critical this is set to a strong value. For python3 consider using: secrets.token_urlsafe() You can also set
this in a file (which some Flask tutorials advise).

Note: Leave this setting set to None to get more instructions when you attempt to run FlexMeasures.

Default: None

170 Chapter 4. Where to start reading?

https://flask-security-too.readthedocs.io/en/stable/configuration.html
https://flask-cors.readthedocs.io/en/latest/configuration.html

FlexMeasures Documentation, Release 0.20.1.dev11

SECURITY_PASSWORD_SALT

Extra password salt (a.k.a. pepper)

Default: None (falls back to SECRET_KEY)
SECURITY_TOKEN_AUTHENTICATION_HEADER

Name of the header which carries the auth bearer token in API requests.
Default: Authorization

SECURITY_TOKEN_MAX_AGE

Maximal age of security tokens in seconds.

Default: 60 * 60 * 6 (six hours)

SECURITY_TRACKABLE

Whether to track user statistics. Turning this on requires certain user fields. We do not use this feature, but we do track
number of logins.

Default: False
CORS_ORIGINS

Allowed cross-origins. Set to “*” to allow all. For development (e.g. JavaScript on localhost) you might use “null” in
this list.

Default: []
CORS_RESOURCES:

FlexMeasures resources which get cors protection. This can be a regex, a list of them or a dictionary with all possible
options.

Default: [r"/api/*"

CORS_SUPPORTS_CREDENTIALS

Allows users to make authenticated requests. If true, injects the Access-Control-Allow-Credentials header in responses.
This allows cookies and credentials to be submitted across domains.

Note: This option cannot be used in conjunction with a “*” origin.

Default: True

4.35. Configuration 171

FlexMeasures Documentation, Release 0.20.1.dev11

FLEXMEASURES_FORCE_HTTPS

Set to True if all requests should be forced to be HTTPS.
Default: False

FLEXMEASURES_ENFORCE_SECURE_CONTENT_POLICY

When FLEXMEASURES_ENFORCE_SECURE_CONTENT_POLICY is set to True, the <meta> tag with the
Content-Security-Policy directive, specifically upgrade-insecure-requests, is included in the HTML
head. This directive instructs the browser to upgrade insecure requests from http to https. One example of a use
case for this is if you have a load balancer in front of FlexMeasures, which is secured with a certificate and only accepts
https.

Default: False

4.35.7 Mail

For FlexMeasures to be able to send email to users (e.g. for resetting passwords), you need an email account which can
do that (e.g. GMail).

This is only a selection of the most important settings. See the Flask-Mail Docs for others.

Note: The mail settings are also recognized as environment variables.

MAIL_SERVER (*)

Email name server domain.

Default: "localhost"

MAIL_PORT (*)

SMTP port of the mail server.
Default: 25
MAIL_USE_TLS

Whether to use TLS.
Default: False

172 Chapter 4. Where to start reading?

https://flask-mail.readthedocs.io/en/latest/#configuring-flask-mail

FlexMeasures Documentation, Release 0.20.1.dev11

MAIL_USE_SSL

Whether to use SSL.
Default: False

MAIL_USERNAME (*)

Login name of the mail system user.

Default: None

MAIL_DEFAULT_SENDER (*)

Tuple of shown name of sender and their email address.

Note: Some recipient mail servers will refuse emails for which the shown email address (set under
MAIL_DEFAULT_SENDER) differs from the sender’s real email address (registered to MAIL_USERNAME). Match them
to avoid SMTPRecipientsRefused errors.

Default:

(
"FlexMeasures",
"no-reply@example.com",

MAIL_PASSWORD

Password of mail system user.

Default: None

4.35.8 Monitoring

Monitoring potential problems in FlexMeasure’s operations.

SENTRY_DSN

Set tokenized URL, so errors will be sent to Sentry when app.env is not in debug or testing mode. E.g.: https://
<examplePublicKey>@o<something>.ingest.sentry.io/<project-Id>

Default: None

4.35. Configuration 173

FlexMeasures Documentation, Release 0.20.1.dev11

FLEXMEASURES_SENTRY_CONFIG
A dictionary with values to configure reporting to Sentry. Some options are taken care of by FlexMeasures (e.g.

environment and release), but not all. See here <https://docs.sentry.io/platforms/python/configuration/options/>_ for
a complete list.

Default: {3}

FLEXMEASURES_TASK_CHECK_AUTH_TOKEN

Token which external services can use to check on the status of recurring tasks within FlexMeasures.

Default: None

FLEXMEASURES_MONITORING_MAIL_RECIPIENTS

E-mail addresses to send monitoring alerts to from the CLI task flexmeasures monitor tasks. For example
["fred@one.com", "wilma@two.com"]

Default: []

4.35.9 Redis

FlexMeasures uses the Redis database to support our forecasting and scheduling job queues.

Note: The redis settings are also recognized as environment variables.

FLEXMEASURES REDIS URL (*)
URL of redis server.

Default: "localhost"
FLEXMEASURES REDIS PORT (%)
Port of redis server.

Default: 6379
FLEXMEASURES REDIS DB NR (%)

Number of the redis database to use (Redis per default has 16 databases, numbered 0-15)
Default:

174 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

FLEXMEASURES_REDIS_PASSWORD (*)

Password of the redis server.

Default: None

4.35.10 Demonstrations

FLEXMEASURES PUBLIC_DEMO_ CREDENTIALS
When FLEXMEASURES_MODE=demo, this can hold login credentials (demo user email and password, e.g. ("demo at
seita.nl", "flexdemo")), so anyone can log in and try out the platform.

Default: None

4.35.11 Sunset
FLEXMEASURES_API_SUNSET_ACTIVE

Allow control over the effect of sunsetting API versions. Specifically, if True, the endpoints of sunset API versions
will return HTTP status 410 (Gone) status codes. If False, these endpoints will either return HTTP status 410
(Gone) status codes, or work like before (including Deprecation and Sunset headers in their response), depending
on whether the installed FlexMeasures version still contains the endpoint implementations.

Default: False

FLEXMEASURES_API_SUNSET_DATE

Allow to override the default sunset date for your clients.

Default: None (defaults are set internally for each sunset API version, e.g. "2023-05-01" for v2.0)

FLEXMEASURES_API_SUNSET_LINK

Allow to override the default sunset link for your clients.

Default: None (defaults are set internally for each sunset API version, e.g. "https://flexmeasures.readthedocs.
io/en/v0.13.0/api/v2_0.html" for v2.0)

4.36 Redis Queues

4.36.1 Requirements
The hard computation work (e.g. forecasting, scheduling) should happen outside of web requests (asynchronously), in
job queues accessed by worker processes.

This queueing relies on a Redis server, which has to be installed locally, or used on a separate host. In the latter case,
configure Redis details in your FlexMeasures config file.

Here we assume you have access to a Redis server and configured it (see Redis). The FlexMeasures unit tests use
fakeredis to simulate this task queueing, with no configuration required.

4.36. Redis Queues 175

FlexMeasures Documentation, Release 0.20.1.dev11

Note: See also Running a complete stack with docker-compose for usage of Redis via Docker and a more hands-on
tutorial on the queues.

4.36.2 Run workers

Here is how to run one worker for each kind of job (in separate terminals):

[$ flexmeasures jobs run-worker --name our-only-worker --queue forecasting|scheduling]

Running multiple workers in parallel might be a great idea.

$ flexmeasures jobs run-worker --name forecaster --queue forecasting
$ flexmeasures jobs run-worker --name scheduler --queue scheduling

You can also clear the job queues:

$ flexmeasures jobs clear-queue --queue forecasting
$ flexmeasures jobs clear-queue --queue scheduling

When the main FlexMeasures process runs (e.g. by flexmeasures run), the queues of forecasting and schedul-
ing jobs can be visited at http://localhost:5000/tasks/forecasting and http://localhost:5000/tasks/
schedules, respectively (by admins).

4.36.3 Inspect the queue and jobs

The first option to inspect the state of the forecasting queue should be via the formidable RQ dashboard. If you have
admin rights, you can access it at your-flexmeasures-url/rq/, so for instance http://localhost:5000/rq/.
You can also start RQ dashboard yourself (but you need to know the redis server credentials):

$ pip install rg-dashboard
$ rq-dashboard --redis-host my.ip.addr.ess --redis-password secret --redis-database 0

RQ dashboard shows you ongoing and failed jobs, and you can see the error messages of the latter, which is very useful.

Finally, you can also inspect the queue and jobs via a console (see the nice RQ documentation), which is more powerful.
Here is an example of inspecting the finished jobs and their results:

from redis import Redis

from rq import Queue

from rq.job import Job

from rq.registry import FinishedJobRegistry

r = Redis("my.ip.addr.ess", port=6379, password="secret", db=2)
g = Queue("forecasting"”, connection=r)
finished = FinishedJobRegistry(queue=q)

finished_job_ids = finished.get_job_ids()
print (" jobs finished successfully." % len(finished_job_ids))

jobl = Job.fetch(finished_job_ids[0], connection=r)
print("Result of job : " % (jobl.id, jobl.result))

176 Chapter 4. Where to start reading?

https://github.com/Parallels/rq-dashboard
http://python-rq.org/docs/

FlexMeasures Documentation, Release 0.20.1.dev11

4.36.4 Redis queues on Windows

On Unix, the rq system is automatically set up as part of FlexMeasures’s main setup (the rq dependency).
However, rq is not functional on Windows without the Windows Subsystem for Linux.

On these versions of Windows, FlexMeasures’s queuing system uses an extension of Redis Queue called rq-win. This
is also an automatically installed dependency of FlexMeasures.

However, the Redis server needs to be set up separately. Redis itself does not work on Windows, so it might be easiest
to commission a Redis server in the cloud (e.g. on kamatera.com).

If you want to install Redis on Windows itself, it can be set up on a virtual machine as follows:
* Install Vagrant on Windows and VirtualBox
* Download the vagrant-redis vagrant configuration
» Extract vagrant-redis.zip in any folder, e.g. in c:\vagrant-redis

» Set config.vm.box = "hashicorp/precise64" in the Vagrantfile, and remove the line with config.vm.
box_url

* Run vagrant up in Command Prompt

* In case vagrant up fails because VT-x is not available, enable it in your bios if you can (more debugging tips
here if needed)

4.37 Error monitoring

When you run a FlexMeasures server, you want to stay on top of things going wrong. We added two ways of doing
that:

* You can connect to Sentry, so that all errors will be sent to your Sentry account. Add the token you got from
Sentry in the config setting SENTRY_SDN and you’re up and running!

» Another source of crucial errors are things that did not even happen! For instance, a (bot) user who is supposed
to send data regularly, fails to connect with FlexMeasures. Or, a task to import prices from a day-ahead market,
which you depend on later for scheduling, fails silently.

Let’s look at how to monitor for things not happening in more detail:

4.37.1 Monitoring the time users were last seen

The CLI task flexmeasures monitor last-seen lets you be alerted if a user has contacted your FlexMeasures
instance longer ago than you expect. This is most useful for bot users (a.k.a. scripts).

Here is an example for illustration:

$ flexmeasures monitor last-seen --account-role SubscriberToServiceXYZ --user-role bot --
o maximum-minutes-since-last-seen 100

As you see, users are filtered by roles. You might need to add roles before this works as you want.

Todo: Adding roles and assigning them to users and/or accounts is not supported by the CLI or UI yet (besides
flexmeasures add account-role). Thisis work in progress. Right now, it requires you to add roles on the database
level.

4.37. Error monitoring 177

http://python-rq.org/docs
https://www.vagrantup.com/intro/getting-started/
https://www.virtualbox.org/
https://raw.github.com/ServiceStack/redis-windows/master/downloads/vagrant-redis.zip
https://www.howali.com/2017/05/enable-disable-intel-virtualization-technology-in-bios-uefi.html
https://www.intel.com/content/www/us/en/support/articles/000005486/processors.html
https://forums.virtualbox.org/viewtopic.php?t=92111
https://github.com/FlexMeasures/flexmeasures/projects/18

FlexMeasures Documentation, Release 0.20.1.dev11

4.37.2 Monitoring task runs

The CLI task flexmeasures monitor latest-run lets you be alerted when tasks have not successfully run at least
so-and-so many minutes ago. The alerts will come in via Sentry, but you can also send them to email addresses with
the config setting FLEXMEASURES_MONITORING_MAIL_RECIPIENTS.

For illustration, here is one example of how we monitor the latest run times of tasks on a server — the below is run in
a cron script every hour and checks if every listed task ran 60, 6 or 1440 minutes ago, respectively:

$ flexmeasures monitor latest-run --task get_weather_forecasts 60 --task get_recent_
—meter_data 6 --task import_epex_prices 1440

The first task (get_weather_forecasts) is actually supported within FlexMeasures, while the other two sit in plugins we
wrote.

This task status monitoring is enabled by decorating the functions behind these tasks with:

@task_with_status_report
def my_function():

Then, FlexMeasures will log if this task ran, and if it succeeded or failed. The resultis in the table 1atest_task_runs,
and that’s where the flexmeasures monitor latest-run will look.

Note: The decorator should be placed right before the function (after all other decorators).

Per default the function name is used as task name. If the number of tasks accumulate (e.g. by using multiple plugins
that each define a task or two), it is useful to come up with more dedicated names. You can add a custom name as
argument to the decorator:

@task_with_status_report("pluginA_myFunction")
def my_function():

4.38 Modes

FlexMeasures can be run in specific modes (see the FLEXMEASURES_MODE config setting). This is useful for certain
special situations. Two are supported out of the box and we document here how FlexMeasures behaves differently in
these modes.

4.38.1 Demo
In this mode, the server is assumed to be used as a demonstration tool. The following adaptations therefore happen in
the UI:

* [UI] Logged-in users can view queues on the demo server (usually only admins can do that)

* [UI] Demo servers often display login credentials, so visitors can try out functionality. Use the FLEXMEA-
SURES_PUBLIC_DEMO_CREDENTIALS config setting to do this.

178 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.38.2 Play

In this mode, the server is assumed to be used to run simulations.
* [API] The restoreData endpoint is registered, enabling database resets through the APL

* [UI] On the asset page, the sensors_to_show attribute can be used to show any sensor from any account, rather
than only sensors from assets owned by the user’s organization.

Note: A former feature of play mode is now a separate config setting. To allow overwriting existing data when saving
data to the database, use FLEXMEASURES ALLOW_DATA _OVERWRITE.

4.39 Writing Plugins

You can extend FlexMeasures with functionality like UI pages, API endpoints, CLI functions and custom scheduling
algorithms. This is eventually how energy flexibility services are built on top of FlexMeasures!

In an nutshell, a FlexMeasures plugin adds functionality via one or more Flask Blueprints.

4.39.1 How to make FlexMeasures load your plugin

Use the config setting FLEXMEASURES_PLUGINS to list your plugin(s).
A setting in this list can:
1. point to a plugin folder containing an __init__.py file
2. be the name of an installed module (i.e. in a Python console import <module_name> would work)

Each plugin defines at least one Blueprint object. These will be registered with the Flask app, so their functionality
(e.g. routes) becomes available.

We’ll discuss an example below.

In that example, we use the first option from above to tell FlexMeasures about the plugin. It is the simplest way to start
playing around.

The second option (the plugin being an importable Python package) allows for more professional software development.
For instance, it is more straightforward in that case to add code hygiene, version management and dependencies (your
plugin can depend on a specific FlexMeasures version and other plugins can depend on yours).

To hit the ground running with that approach, we provide a CookieCutter template. It also includes a few Blueprint
examples and best practices.

Continue reading the Plugin showcase or possibilities to do Plugin Customizations.

4.39. Writing Plugins 179

https://flask.palletsprojects.com/en/1.1.x/tutorial/views/
https://github.com/FlexMeasures/flexmeasures-plugin-template

FlexMeasures Documentation, Release 0.20.1.dev11

4.40 Plugin showcase

Here is a showcase file which constitutes a FlexMeasures plugin called our_client.
* We demonstrate adding a view, which can be rendered using the FlexMeasures base templates.

* We also showcase a CLI function which has access to the FlexMeasures app object. It can be called via
flexmeasures our-client test.

We first create the file <some_folder>/our_client/__init__.py. This means that our_client is the plugin
folder and becomes the plugin name.

With the __init__.py below, plus the custom Jinja2 template, our_client is a complete plugin.

__version__ = "2.0"
from flask import Blueprint, render_template, abort
from flask_security import login_required

from flexmeasures.ui.utils.view_utils import render_flexmeasures_template

our_client_bp = Blueprint('our-client', __name
template_folder="'templates"')

Showcase: Adding a view

@our_client_bp.route('/")
@our_client_bp.route('/my-page')
@login_required
def my_page():
msg = "I am a FlexMeasures plugin !"
Note that we render via the in-built FlexMeasures way
return render_flexmeasures_template(
"my_page.html",
message=msg,

Showcase: Adding a CLI command

import click
from flask import current_app
from flask.cli import with_appcontext

our_client_bp.cli.help = "Our client commands"

@our_client_bp.cli.command("test")
@with_appcontext
def our_client_test():
print(f"I am a CLI command, part of FlexMeasures: {current_app}")

Note: You can overwrite FlexMeasures routing in your plugin. In our example above, we are using the root route /.

180 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

FlexMeasures registers plugin routes before its own, so in this case visiting the root URL of your app will display this
plugged-in view (the same you’d see at /my-page).

Note: The __version__ attribute on our module is being displayed in the standard FlexMeasures Ul footer, where
we show loaded plugins. Of course, it can also be useful for your own maintenance.

The template would live at <some_folder>/our_client/templates/my_page.html, which works just as other
FlexMeasures templates (they are Jinja2 templates):

{% extends "base.html" %}
{% set active_page = "my-page" %}
{% block title %} Our client dashboard {% endblock %}
{% block divs %}
<!-- This is where your custom content goes... -->

{{ message }}

{% endblock %}

Note: Plugin views can also be added to the FlexMeasures Ul menu — just name them in the config setting FLEXMEA-
SURES_MENU_LISTED_VIEWS. In this example, add my-page. This also will make the active_page setting in the
above template useful (highlights the current page in the menu).

Starting the template with {% extends "base.html" %} integrates your page content into the FlexMeasures Ul
structure. You can also extend a different base template. For instance, we find it handy to extend base.html with a
custom base template, to extend the footer, as shown below:

s N

{% extends "base.html" %}
{% block copyright_notice %}

Created by Seita Energy Flexibility,

in cooperation with 0Our Client

8copy

<script>var CurrentYear = new Date().getFullYear(); document.write(CurrentYear)
—</script>.

{% endblock copyright_notice %}

We’d name this file our_client_base.html. Then, we’d extend our page template from our_client_base.html,
instead of base.html.

4.40. Plugin showcase 181

FlexMeasures Documentation, Release 0.20.1.dev11

4.40.1 Using other code files in your non-package plugin

Say you want to include other Python files in your plugin, importing them in your __init__.py file. With this file-only
version of loading the plugin (if your plugin isn’t imported as a package), this is a bit tricky.

But it can be achieved if you put the plugin path on the import path. Do it like this in your __init__.py:

import os
import sys

HERE = os.path.dirname(os.path.abspath(__file_))
sys.path.insert (0, HERE)

from my_other_file import my_function

4.40.2 Notes on writing tests for your plugin

Good software practice is to write automatable tests. We encourage you to also do this in your plugin. We do, and our
CookieCutter template for plugins (see above) has simple examples how that can work for the different use cases (i.e.
UL, API, CLI).

However, there are two caveats to look into:

* Your tests need a FlexMeasures app context. FlexMeasure’s app creation function provides a way to inject a list of
plugins directly. The following could be used for instance in your app fixture within the top-level conftest.py
if you are using pytest:

from flexmeasures.app import create as create_flexmeasures_app
from .. import __name__

test_app = create_flexmeasures_app(env="testing", plugins=[f"../"{__name__3}])

¢ Test frameworks collect tests from your code and therefore might import your modules. This can interfere with the
registration of routes on your Blueprint objects during plugin registration. Therefore, we recommend reloading
your route modules, after the Blueprint is defined and before you import them. For example:

my_plugin_ui_bp: Blueprint = Blueprint(
"MyPlugin-UI",
__name__,
template_folder="my_plugin/ui/templates",
static_folder="my_plugin/ui/static",
url_prefix="/MyPlugin",

)

Now, before we import this dashboard module, in which the "/dashboard" route is.

—attached to my_plugin_ui_bp,

we make sure it's being imported now, *after* the Blueprint's creation.

importlib.reload(sys.modules["my_plugin.my_plugin.ui.views.dashboard"])

from my_plugin.ui.views import dashboard

The packaging path depends on your plugin’s package setup, of course.

182 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.41 Plugin Customizations

4.41.1 Adding your own scheduling algorithm
FlexMeasures comes with in-built scheduling algorithms for often-used use cases. However, you can use your own
algorithm, as well.

The idea is that you’d still use FlexMeasures’ API to post flexibility states and trigger new schedules to be computed
(see Posting flexibility states), but in the background your custom scheduling algorithm is being used.

Let’s walk through an example!

First, we need to write a a class (inhering from the Base Scheduler) with a schedule function which accepts arguments
just like the in-built schedulers (their code is here). The following minimal example gives you an idea of some meta
information you can add for labeling your data, as well as the inputs and outputs of such a scheduling function:

from datetime import datetime, timedelta

import pandas as pd

from pandas.tseries.frequencies import to_offset
from flexmeasures import Scheduler, Sensor

class DummyScheduler (Scheduler):

__author__ = "My Company"
__version__ = "2"

def compute(
self,
*args,
**kwargs

i

Just a dummy scheduler that always plans to consume at maximum capacity.
(Schedulers return positive values for consumption, and negative values for.
—production)
return pd.Series(
self.sensor.get_attribute("capacity_in_mw"),
index=pd.date_range(self.start, self.end, freq=self.resolution, inclusive=
—"left™),
)

def deserialize_config(self):
"""Do not care about any flex config sent in.
self.config_deserialized = True

o

Note: It’s possible to add arguments that describe the asset flexibility model and the flexibility (EMS) context in more
detail. For example, for storage assets we support various state-of-charge parameters. For details on flexibility model
and context, see Describing flexibility and the [POST] /sensors/(id)/schedules/trigger endpoint.

Finally, make your scheduler be the one that FlexMeasures will use for certain sensors:

4.41. Plugin Customizations 183

https://github.com/FlexMeasures/flexmeasures/tree/main/flexmeasures/data/models/planning
../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger

FlexMeasures Documentation, Release 0.20.1.dev11

from flexmeasures import Sensor

scheduler_specs = {

"module": "flexmeasures.data.tests.dummy_scheduler", # or a file path, see note.
—below

"class": "DummyScheduler",
3
my_sensor = Sensor.query.filter(Sensor.name == "My power sensor on a flexible asset").

—one_or_none()
my_sensor.attributes["custom-scheduler"] = scheduler_specs

From now on, all schedules (see Forecasting & scheduling) which are requested for this sensor should get computed
by your custom function! For later lookup, the data will be linked to a new data source with the name “My Opinion”.

Note: To describe the module, we used an importable module here (actually a custom scheduling function we use to
test this). You can also provide a full file path to the module, e.g. “/path/to/my_file.py”.

Todo: We’re planning to use a similar approach to allow for custom forecasting algorithms, as well.

4.41.2 Deploying your plugin via Docker

You can extend the FlexMeasures Docker image with your plugin’s logic.

Imagine your plugin package (with an __init__.py file, one of the setups we discussed in Plugin showcase) is called
flexmeasures_testplugin. Then, this is a minimal possible Dockerfile — containers based on this will serve
FlexMeasures (see the original Dockerfile in the FlexMeasures repository) with the plugin logic, like endpoints:

FROM 1fenergy/flexmeasures

COPY flexmeasures_testplugin/ /app/flexmeasures_testplugin
ENV FLEXMEASURES_PLUGINS="/app/flexmeasures_testplugin"

You can of course also add multiple plugins this way.

If you also want to install your requirements, you could for instance add these layers:

COPY requirements/app.in /app/requirements/flexmeasures_testplugin.txt
RUN pip3 install --no-cache-dir -r requirements/flexmeasures_testplugin.txt

Note: No need to install flexmeasures here, as the Docker image we are based on already installed FlexMeasures from
code. If you pip3-install your plugin here (assuming it’s on Pypi), check if it recognizes that FlexMeasures installation
as it should.

184 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.41.3 Adding your own style sheets

You can style your plugin’s pages in a distinct way by adding your own style-sheet. This happens by overwriting
FlexMeasures styles block. Add to your plugin’s base template (see above):

{% block styles %}

{{ super() 1}

<!-- Our client styles -->

<link rel="stylesheet" href="{{ url_for('our_client_bp.static', filename='css/style.
—~css')} ">
{% endblock %}

This will find css/styles.css if you add that folder and file to your Blueprint’s static folder.

Note: This styling will only apply to the pages defined in your plugin (to pages based on your own base template).
To apply a styling to all other pages which are served by FlexMeasures, consider using the config setting FLEXMFEA-
SURES_EXTRA_CSS_PATH.

4.41.4 Adding config settings

FlexMeasures can automatically check for you if any custom config settings, which your plugin is using, are present.
This can be very useful in maintaining installations of FlexMeasures with plugins. Config settings can be registered by
setting the (optional) __settings__ attribute on your plugin module:

__settings__ = {

"MY_PLUGIN_URL": {
"description": "URL used by my plugin for x.",
"level": "error",

3

"MY_PLUGIN_TOKEN": {
"description": "Token used by my plugin for y.",
"level": "warning",
"message_if_missing": "Without this token, my plugin will not do y.",
"parse_as": str,

3

"MY_PLUGIN_COLOR": {
"description": "Color used to override the default plugin color.",
"level": "info",

b,

Alternatively, use from my_plugin import __settings__ in your plugin module, and create __settings__.py
with:

MY_PLUGIN_URL = {
"description": "URL used by my plugin for x.",

"level": "error",

}

MY_PLUGIN_TOKEN = {
"description": "Token used by my plugin for y.",
"level": "warning",

(continues on next page)

4.41. Plugin Customizations 185

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

"message_if_missing": "Without this token, my plugin will not do y.",
"parse_as'": str,

}

MY_PLUGIN_COLOR = {
"description": "Color used to override the default plugin color.",
"level”: "info",

3

Finally, you might want to override some FlexMeasures configuration settings from within your plugin. Some examples
for possible settings are named on this page, e.g. the custom style (see above) or custom logo (see below). There is a
record_once function on Blueprints which can help with this. An example:

@our_client_bp.record_once
def record_logo_path(setup_state):
setup_state.app.config[
"FLEXMEASURES_MENU_LOGO_PATH"
] = "/path/to/my/logo.svg"

4.41.5 Using a custom favicon icon

The favicon might be an important part of your customisation. You probably want your logo to be used.

First, your blueprint needs to know about a folder with static content (this is fairly common — it’s also where you’d put
your own CSS or JavaScript files):

our_client_bp = Blueprint(
"our_client",
"our_client",
static_folder="our_client/ui/static",

Put your icon file in that folder. The exact path may depend on how you set your plugin directories up, but this is how
a blueprint living in its own directory could work.

Then, overwrite the /favicon.ico route which FlexMeasures uses to get the favicon from:

from flask import send_from_directory

@our_client_bp.route("/favicon.ico")
def favicon(Q:
return send_from_directory(
our_client_bp.static_folder,
"img/favicon.png",
mimetype="image/png",

Here we assume your favicon is a PNG file. You can also use a classic .ico file, then your mime type probably works
best as image/x-icon.

186 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

4.41.6 Validating arguments in your CLI commands with marshmallow

Arguments to CLI commands can be validated using marshmallow. FlexMeasures is using this functionality (via the
MarshmallowClickMixin class) and also defines some custom field schemas. We demonstrate this here, and also
show how you can add your own custom field schema:

from datetime import datetime

import click

from flexmeasures.data.schemas import AwareDateTimeField

from flexmeasures.data.schemas.utils import MarshmallowClickMixin
from marshmallow import fields

class CLIStrField(fields.Str, MarshmallowClickMixin):
String field validator, made usable for CLI functions.
You could also define your own validations here.

e

@click.command("'meet")
@click.option(

"--where",

required=True,

type=CLIStrField(),

help="(Required) Where we meet",
)
@click.option(

"--when",

required=False,

type=AwareDateTimeField(format="iso0"), # FlexMeasures already made this field.
—suitable for CLI functions

help="[Optional] When we meet (expects timezone-aware ISO 8601 datetime format)",
)
def schedule_meeting(

where: str,

when: datetime | None = None,

print(£f"Okay, see you {where} on {when}.")

4.41.7 Customising the login page teaser

FlexMeasures shows an image carousel next to its login form (see ui/templates/admin/login_user.html).

You can overwrite this content by adding your own login template and defining the teaser block yourself, e.g.:

{% extends "admin/login_user.html" %}
{% block teaser %}
<hl>Welcome to my plugin!</hl>

{% endblock %}

4.41. Plugin Customizations 187

https://marshmallow.readthedocs.io/

FlexMeasures Documentation, Release 0.20.1.dev11

Place this template file in the template folder of your plugin blueprint (see above). Your template must have a different
filename than “login_user”, so FlexMeasures will find it properly!

Finally, add this config setting to your FlexMeasures config file (using the template filename you chose, obviously):

[SECURITY_LOGIN_USER_TEMPLATE = "my_user_login.html" J

4.42 Why FlexMeasures adds value for software developers

FlexMeasures is designed to help with three basic needs of developers in the energy flexibility domain:

4.42.1 | need help with integrating real-time data and continuously computing new
data

FlexMeasures is designed to make decisions based on data in an automated way. Data pipelining and dedicated machine
learning tooling is crucial.

* API/CLI functionality to read in time series data

» Extensions for integrating 3rd party data, e.g. from ENTSO-E or OpenWeatherMap
¢ Forecasting for the upcoming hours

* Schedule optimization for flexible assets

* Reporters to combine time series data and create KPIs

4.42.2 It’s hard to correctly model data with different sources, resolutions, horizons
and even uncertainties

Much developer time is spent correcting data and treating it correctly, so that you know you are computing on the right
knowledge.
FlexMeasures is built on the timely-beliefs framework, so we model this real-world aspect accurately:

» Expected data properties are explicit (e.g. unit, time resolution)

* Incoming data is converted to fitting unit and time resolution automatically

* FlexMeasures also stores who thought that something happened (or that it will happen), and when they thought
SO

* Uncertainty can be modelled (useful for forecasting)

4.42.3 | want to build new features quickly, not spend days solving basic problems

Building customer-facing apps & services is where developers make impact. We make their work easy.
* FlexMeasures has well-documented API endpoints and CLI commands to interact with its model and data
* You can extend it easily with your own logic by writing plugins

* A backend UI shows you your assets in maps and your data in plots. There is also support for plots to be available
per API, for integration in your own frontend

* Multi-tenancy — model multiple accounts on one server. Data is only seen/editable by authorized users in the
right account

188 Chapter 4. Where to start reading?

https://github.com/SeitaBV/flexmeasures-entsoe
https://github.com/SeitaBV/flexmeasures-openweathermap
https://github.com/SeitaBV/timely-beliefs

FlexMeasures Documentation, Release 0.20.1.dev11

For more on FlexMeasures, head right over to Getting started.

4.43 Developing for FlexMeasures

This page instructs developers who work on FlexMeasures how to set up the development environment. Furthermore,
we discuss several guidelines and best practices.

Table of contents

* Getting started

* Logfile

o Tests

e Versioning

* Auto-applying formatting and code style suggestions
» Using Visual Studio, including spell checking

* A hint about using notebooks

* A hint for Unix developers

Note: Are you implementing code based on FlexMeasures, you're probably interested in The FlexMeasures data
model.

4.43.1 Getting started

Virtual environment

Using a virtual environment is best practice for Python developers. We also strongly recommend using a dedicated
one for your work on FlexMeasures, as our make target (see below) will use pip-sync to install dependencies, which
could interfere with some libraries you already have installed.

e Make a virtual environment: python3.10 -m venv flexmeasures-venv or use a different tool like
mkvirtualenv or virtualenvwrapper. You can also use an Anaconda distribution as base with conda create
-n flexmeasures-venv python=3.10.

* Activate it, e.g.: source flexmeasures-venv/bin/activate

Download FlexMeasures

Clone the FlexMeasures repository from GitHub.

[$ git clone https://github.com/FlexMeasures/flexmeasures.git]

4.43. Developing for FlexMeasures 189

https://conda.io/docs/user-guide/tasks/manage-environments.html
https://github.com/FlexMeasures/flexmeasures.git

FlexMeasures Documentation, Release 0.20.1.dev11

Dependencies

Go into the flexmeasures folder and install all dependencies including the ones needed for development:

$ cd flexmeasures
$ make install-for-dev

Install the LP solver. On Linux, the HIGHS solver can be installed with:

[$ pip install highspy

On MacOS it will be installed locally by make install-for-test and no actions are required on your part
Besides highs, the CBC solver is required for tests as well:
Linux

MacOS

[$ apt-get install coinor-cbc

[$ brew install cbc

Configuration

Most configuration happens in a config file, see Configuration on where it can live and all supported settings.

For now, we let it live in your home directory and we add the first required setting: a secret key:

- flexmeasures.cfg

echo "SECRET_KEY=\" python3 -c 'import secrets; print(secrets.token_hex(24))' \"" >> ~/.

Also, we add some env settings in an .env file. Create that file in the flexmeasures directory (from where you’ll run

flexmeasures) and enter:

FLEXMEASURES_ENV="development"
LOGGING_LEVEL="INFQ"

The development mode makes sure we don’t need SSL to connect, among other things.

Database

See Postgres database for tips on how to install and upgrade databases (postgres and redis).

Loading data

If you have a SQL Dump file, you can load that:

[$ psql -U {user_name} -h {host_name} -d {database_name} -f {file_path}

One other possibility is to add a toy account (which owns some assets and a battery):

[$ flexmeasures add toy-account

190 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

Run locally

Now, to start the web application, you can run:

[$ flexmeasures run

Or:

[$ python run-local.py

And access the server at http://localhost:5000
If you added a toy account, you could log in with foy-user@flexmeasures.io, password toy-password.

Otherwise, you need to add some other user first. Here is how we add an admin:

$ flexmeasures add account --name MyCompany
$ flexmeasures add user --username admin --account 1 --email admin@mycompany.io --roles..
—admin

(The account you need in the 2nd command is printed by the 1st)

Note: If you are on Windows, then running & developing FlexMeasures will not work 100%. For instance,
the queueing only works if you install rq-win (https://github.com/michaelbrooks/rg-win) manually and the make
tooling is difficult to get to work as well. We recommend to use the Windows Sub-system for Linux (https:
/Nearn.microsoft.com/en-us/windows/wsl/install) or work via Docker-compose (https://flexmeasures.readthedocs.io/
en/latest/dev/docker-compose.html).

4.43.2 Logfile

FlexMeasures logs to a file called flexmeasures.log. You’ll find this in the application’s context folder, e.g. where
you called flexmeasures run.

A rolling log file handler is used, so if flexmeasures.log gets to a few megabytes in size, it is copied to flexmea-
sures.log.1 and the original file starts over empty again.

The default logging level is WARNING. To see more, you can update this with the config setting LOGGING_LEVEL, e.g.
to INFO or DEBUG

4.43.3 Tests

You can run automated tests with:

[$ make test

which behind the curtains installs dependencies and calls pytest.

However, a test database (postgres) is needed to run these tests. If you have postgres, here is the short version on how
to add the test database:

$ make clean-db db_name=flexmeasures_test db_user=flexmeasures_test
$ # the password for the db user is "flexmeasures_test"

4.43. Developing for FlexMeasures 191

http://localhost:5000
https://github.com/michaelbrooks/rq-win
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://flexmeasures.readthedocs.io/en/latest/dev/docker-compose.html
https://flexmeasures.readthedocs.io/en/latest/dev/docker-compose.html

FlexMeasures Documentation, Release 0.20.1.dev11

Note: The section Postgres database has more details on using postgres for FlexMeasures.

Alternatively, if you don’t feel like installing postgres for the time being, here is a docker command to provide a test
database:

$ docker run --rm --name flexmeasures-test-db -e POSTGRES_PASSWORD=flexmeasures_test -e.
—POSTGRES_DB=flexmeasures_test -e POSTGRES_USER=flexmeasures_test -p 5432:5432 -v ./ci/
—load-psql-extensions.sql:/docker-entrypoint-initdb.d/load-psql-extensions.sql -d.
—postgres:latest

Warning: This assumes that the port 5432 is not being used on your machine (for instance by an existing postgres
database service).

If you want the tests to create a coverage report (printed on the terminal), you can run the pytest command like this:

[$ pytest --cov=flexmeasures --cov-config .coveragerc]

You can add —cov-report=html, after which a file called htmlcov/index.html is generated. Or, after a test run with
coverage turned on as shown above, you can still generate it in another form:

[$ python3 -m coverage [html|lcov|json]]

4.43.4 Versioning

We use setuptool_scm for versioning, which bases the FlexMeasures version on the latest git tag and the commits since
then.

So as a developer, it’s crucial to use git tags for versions only.

We use semantic versioning, and we always include the patch version, not only max and min, so that setuptools_scm
makes the correct guess about the next minor version. Thus, we should use 2.0.0 instead of 2.0.

See to_pypi . sh for more commentary on the development versions.

Our API has its own version, which moves much slower. This is important to explicitly support outside apps who were
coded against older versions.

4.43.5 Auto-applying formatting and code style suggestions
We use Black to format our Python code and Flake8 to enforce the PEPS style guide and linting. We also run mypy on
many files to do some static type checking.

We do this so real problems are found faster and the discussion about formatting is limited. All of these can be installed
by using pip, but we recommend using them as a pre-commit hook. To activate that behaviour, do:

$ pip install pre-commit
$ pre-commit install

in your virtual environment.

Now each git commit will first run flake8, then black and finally mypy over the files affected by the commit
(pre-commit will install these tools into its own structure on the first run).

192 Chapter 4. Where to start reading?

https://github.com/pypa/setuptools_scm/
https://github.com/ambv/black
https://flake8.pycqa.org
http://mypy-lang.org/

FlexMeasures Documentation, Release 0.20.1.dev11

This is also what happens automatically server-side when code is committed to a branch (via GitHub Actions), but
having those tests locally as well will help you spot these issues faster.

If flake8, black or mypy propose changes to any file, the commit is aborted (saying that it “failed”). The changes
proposed by black are implemented automatically (you can review them with git diff). Some of them might even
resolve the flake8 warnings :)

4.43.6 Using Visual Studio, including spell checking

Are you using Visual Studio Code? Then the code you just cloned also contains the editor configuration (part of) our
team is using (see .vscode)!

We recommend installing the flake8 and spellright extensions.

For spellright, the FlexMeasures repository contains the project dictionary. Here are steps to link main dictionaries,
which usually work on a Linux system:

$ mkdir $HOME/.config/Code/Dictionaries
$ 1n -s /usr/share/hunspell/* ~/.config/Code/Dictionaries

Consult the extension’s Readme for other systems.

4.43.7 A hint about using notebooks

If you edit notebooks, make sure results do not end up in git:

$ conda install -c conda-forge nbstripout
$ nbstripout --install

(on Windows, maybe you need to look closer at https://github.com/kynan/nbstripout)

4.43.8 A hint for Unix developers

I added this to my ~/.bashrc, so I only need to type fm to get started and have the ssh agent set up, as well as up-to-date
code and dependencies in place.

addssh(){
eval "“ssh-agent -s°
ssh-add ~/.ssh/id_github

}
fmO{
addssh
cd ~/workspace/flexmeasures
git pull # do not use if any production-like app runs from the git code
workon flexmeasures-venv # this depends on how you created your virtual environment
make install-for-dev
3

Note: All paths depend on your local environment, of course.

4.43. Developing for FlexMeasures 193

https://github.com/kynan/nbstripout

FlexMeasures Documentation, Release 0.20.1.dev11

4.44 Developing on the API

The FlexMeasures API is the main way that third-parties can automate their interaction with FlexMeasures, so it’s
highly important.

This is a small guide for creating new versions of the API and its docs.

Warning: This guide was written for API versions below v3.0 and is currently out of date.

Todo: A guide for endpoint design, e.g. using Marshmallow schemas and common validators.

Table of contents

* Introducing a new API version

Set up new module with routes

Set up a new blueprint

New or updated endpoint implementations

Testing
Ul Crud

Documentation

4.44.1 Introducing a new API version

Larger changes to the API, other than fixes and refactoring, should be done by creating a new API version. In the guide
we’re assuming the new version is v1. 1.

Whether we need a new API version or not, doesn’t have a clear set of rules yet. Certainly backward-incompatible
changes should require one, but as you’ll see, there is also certain overhead in creating a new version, so a careful
trade-off is advised.

Note: For the rest of this guide we’ll assume your new API version is v1_1.

Set up new module with routes

In flexmeasures/api create a new module (folder with __init__.py). Copy over the routes.py from the previous
API version. By default we import all routes from the previous version:

from flexmeasures.api.vl import routes as vl_routes, implementations as vi1_
—.implementations

Set the service listing for this version (or overwrite completely if needed):

vl_1_service_listing = copy.deepcopy(vl_routes.vl_service_listing)
vl_1_service_listing["version"] = "1.1"

194 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

Then update and redecorate each API endpoint as follows:

@flexmeasures_api.route("/getService", methods=["GET"])
@as_response_type(''GetServiceResponse")
@append_doc_of(vl_routes.get_service)
def get_service():

return vl_implementations.get_service_response(vl_1_service_listing)

Set up a new blueprint

In the new module’s flexmeasures/api/v1_1/__init.py__, copy the contents of flexmeasures/api/v1l/
__init.py__ (previous API version). Change all references to the version name in the new file (for example:
flexmeasures_api_vl1 should become flexmeasures_api_v1_1).

In flexmeasures/api/__init__.py update the version listing in get_versions() and register a blueprint for the
new api version by adding:

from flexmeasures.api.vl_1 import register_at as vl_1_register_at
vl_1_register_at(app)

New or updated endpoint implementations

Write functionality of new or updated endpoints in:

[flexmeasures/api/v1_1/imp1ementations .py

Utility functions that are commonly shared between endpoint implementations of different versions should go in:

[flexmeasure s/api/common/utils

where we distinguish between response decorators, request validators and other utils.

Testing

If you changed an endpoint in the new version, write a test for it. Usually, there is no need to copy the tests for unchanged
endpoints, if not a major API version is being released.

Test the entire api or just your new version:

$ pytest -k api
$ pytest -k vi_1

Ul Crud

In ui/crud, we support FlexMeasures’ in-built Ul with Flask endpoints, which then talk to our internal API. The
routes used there point to an API version. You should consider updating them to point to your new version.

4.44. Developing on the API 195

FlexMeasures Documentation, Release 0.20.1.dev11

Documentation

In documentation/api start a new specification v1_1.rst with contents like this:

_vl_1:

Version 1.1

. qrefflask:: flexmeasures.app:create()

:blueprints: flexmeasures_api, flexmeasures_api_v1_1
:order: path

:include-empty-docstring:

API Details

. autoflask:: flexmeasures.app:create()

:blueprints: flexmeasures_api, flexmeasures_api_v1_1
:order: path

:include-empty-docstring:

If you are ready to publish the new specifications, enter your changes in documentation/api/change_log.rst and
update the api toctree in documentation/index.rst to include the new version in the table of contents.

You’re not done. Several sections in the API documentation list endpoints as examples. If you want other developers to
use your new API version, make sure those examples reference the latest endpoints. Remember that Sphinx autoflask
likes to prefix the names of endpoints with the blueprint’s name, for example:

. autoflask:: flexmeasures.app:create()
:endpoints: flexmeasures_api_vl1_1.post_meter_data

4.45 Continuous integration

4.45.1 Automate deployment via Github actions and Git

At FlexMeasures headquarters, we implemented a specific workflow to automate our deployment. It uses the Github
action workflow (see the . github/workflows directory), which pushes to a remote upstream repository. We use this
workflow to build and deploy the project to our staging server.

Documenting this might be useful for self-hosters, as well. The GitHub Actions workflows are triggered by commits
being pushed to the repository, but it can also inspire your custom deployment script.

We'll refer to Github Actions as our “CI environment” and our staging server as the “deployment server”.

e In lint-and-test.yml, we set up the app, then run the tests and linters. If testing succeeds and if the commit
was on the main branch, deploy.yml deploys the code from the CI environment to the deployment server.

* Of course, the CI environment needs to properly authenticate at the deployment server.

* With the hooks functionality of Git, a post-receive script can then (re-)start the FlexMeasures app on the deploy-
ment server.

196 Chapter 4. Where to start reading?

https://sphinxcontrib-httpdomain.readthedocs.io/en/stable/#module-sphinxcontrib.autohttp.flask

FlexMeasures Documentation, Release 0.20.1.dev11

Let’s review these three steps in detail:

Using git to deploy code (remote upstream)

We support deployment of the FlexMeasures project on a staging server via Git checkout.

The deployment uses git’s ability to push code to a remote upstream repository. This repository needs to be installed
on your staging server.

We trigger this deployment in deploy.yml and it’s being done in DEPLOY . sh. There, we add the remote and then push
the current branch to it.

We thus need to tell the deployment environment two things:

e Add the setting STAGING_REMOTE_REPO as an environment variable on the CI environment (e.g. deploy.
yml expects it in the Github repository secrets). An example value is seita@ssh.our-server.com: /home/
seita/flexmeasures-staging/flexmeasures.git. So in this case, ssh.our-server.com is the deploy-
ment server, which we’ll also use below. seifa needs to become your ssh username on that server and the rest is
the path to where you want to check out the repo.

* Make sure the env variable BRANCH_NAME is set, e.g. to “main”, so that the CI environment knows what exact
code to push to your deployment server.

Authenticate at the deployment server (with an ssh key)

For CI environment and deployment server to interact securely, we of course need to put in place some authentication
measures.

First, they need to know each other. Let the deployment server know it’s okay to talk to the CI environment, by adding
an entry to ~/.ssh/known_hosts. Similarly, you might need to let the CI environment know it’s okay to talk to the
deployment server (e.g. in our Github Actions config, deploy.yml expects this entry in the Github repository secrets
as KNOWN_DEPLOYMENT_HOSTYS).

You can create these entries with ssh-keyscan -t rsa <your host>, where host might be github.com or ssh.our-
server.com (see above).

Second, the CI environment needs to authenticate at the deployment server using an SSH key pair.
Use ssh-keygen to create one, using no password.

* Add the private part of this ssh key pair to the CI environment, so that the deployment server can accept the
pushed code. (e.g. as ~/.ssh/id_rsa). In deploy.yml, we expect it as the secret SSH_DEPLOYMENT_KEY,
which adds the key for us.

* Finally, the public part of the key pair should be in ~/. ssh/authorized_keys on your deployment server.

(Re-)start FlexMeasures on the deployment server (install Post-Receive Hook)

Only pushing the code will not actually deploy the updated FlexMeasures into a usable web app on the deployment
server. For this, we need to trigger a script.

Log on to the deployment server (via SSH) and install a script to (re-)start FlexMeasures as a Git Post Receive Hook
in the remote repo where we deployed the code (see above). This hook will be triggered whenever a push is received
from the deployment environment.

The example script below can be a Post Receive Hook (save as hooks/post-receive in your remote origin repo and
update paths). It will force a checkout of the main branch into our working directory, update dependencies, upgrade
the database structure and finally touch the wsgi.py file.

4.45. Continuous integration 197

FlexMeasures Documentation, Release 0.20.1.dev11

Note: Note that we are not installing FlexMeasures itself (that would require make install-flexmeasures, which
essentially is python setup.py develop), as that is not needed for our base requirement here: to run this checked-
out code with a web server that uses a WSGI file to define the app. Running CLI commands will not work without
installation. Also, installing FlexMeasures requires a version, which is gotten from the git status (via setuptool_scm).
We are working on a checked-out copy of the git code here without git meta information, so installing would fail
anyways.

The last step, touching a wsgi.py file, is often used as a way to soft-restart the running application — here you need to
adapt to your circumstances.

#!/bin/bash

PATH_TO_GIT_WORK_TREE=/path/to/where/you/want/to/checkout/code/to
ACTIVATE_VENV="command-to-activate-your-venv"
PATH_TO_WSGI=/path/to/wsgi/script/for/the/app

echo "CHECKING OUT CODE TO GIT WORK TREE ($PATH_TO_GIT_WORK_TREE) ..."
GIT_WORK_TREE=$PATH_TO_GIT_WORK_TREE git checkout -f

cd $PATH_TO_GIT_WORK_TREE
PATH=$PATH_TO_VENV/bin: $PATH

echo "INSTALLING DEPENDENCIES ..."
make install-deps

echo "UPGRADING DATABASE STRUCTURE ..."
make upgrade-db

echo "RESTARTING APPLICATION ..."
touch $PATH_TO_WSGI

A WSGI file can do various things, as well, but the simplest form is shown below.

from flexmeasures.app import create as create_app

application = create_app()

The web server is told about the WSGI script, but also about the object which represents the application. For instance,
if this script is called wsgi . py, then the relevant argument to the gunicorn server is wsgi:application.

4.46 Custom authorization

Our Authorization section describes general authorization handling in FlexMeasures.

If you are creating your own API endpoints for a custom energy flexibility service (on top of FlexMeasures), you
should also get your authorization right. It’s recommended to get familiar with the decorators we provide. Here are
some pointers, but feel free to read more in the flexmeasures.auth package.

In short, we recommend to use the @permission_required_for_context decorator (more explanation below).

FlexMeasures also supports role-based decorators, e.g. @account_roles_required. These authorization decorators
are more straightforward to use than the @permission_required_for_context decorator. However, they are a bit

198 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

crude as they do not distinguish on what the context is, nor do they qualify on the required permission(e.g. read versus
write).!

Finally, all decorators available through Flask-Security-Too can be used, e.g. @auth_required (that’s technically only
checking authentication) or @permissions_required.

4.46.1 Permission-based authorization
Via permissions, it’s possible to define authorization access to data, distinguishing between create, read, update and
delete access. It’s a finer model than simply allowing per role.

The data models codify under which conditions a user can have certain permissions to work with their data. You, as
the endpoint author, need to make sure this is checked. Here is an example (taken from the decorator docstring):

@app.route("/resource/<resource_id>", methods=["GET"])
@use_kwargs (
{"the_resource": ResourceldField(data_key="resource_id")},
location="path",
)
@permission_required_for_context("read", ctx_arg_name="the_resource™)
@as_json
def view(resource_id: int, resource: Resource):
return dict(name=resource.name)

As you see, there is some sorcery with @use_kwargs going on before we check the permissions. That decorator is
relaying to a Marshmallow field definition. Here, ResourceIdField is a definition which de-serializes an ID (passed
in as a request parameter) into a Resource instance. This instance can then be asked if the current user may read it.
That last part is what @permission_required_for_context is doing. You can find these Marshmallow fields in
flexmeasures.api.common.schemas.

4.46.2 Account roles

Another way to implement custom authorization is to define custom account roles. E.g. if several services run on one
FlexMeasures server, each service could define a “MyService-subscriber” account role.

To make sure that only users of such accounts can use the endpoints:

@flexmeasures_ui.route("/bananas")
@account_roles_required("MyService-subscriber")
def bananas_view:

pass

Note: This endpoint decorator lists required roles, so the authenticated user’s account needs to have each role. You
can also use the @Gaccount_roles_accepted decorator. Then the user’s account only needs to have at least one of
the roles.

! Some authorization features are not possible for endpoints decorated in this way. For instance, we have an admin-reader role who should be
able to read but not write everything — with only role-based decorators we can not allow this user to read (as we don’t know what permission the
endpoint requires).

4.46. Custom authorization 199

https://flask-security-too.readthedocs.io/en/stable/patterns.html#authentication-and-authorization
https://webargs.readthedocs.io
https://marshmallow.readthedocs.io/

FlexMeasures Documentation, Release 0.20.1.dev11

4.46.3 User roles

There are also decorators to check user roles. Here is an example:

@flexmeasures_ui.route("/bananas")
@roles_required("account-admin')
def bananas_view:

pass

Note: You can also use the @roles_accepted decorator.

4.47 Running a complete stack with docker-compose

To install FlexMeasures, plus the libraries and databases it depends on, on your computer is some work, and can have
unexpected hurdles, e.g. depending on the operating system. A nice alternative is to let that happen within Docker.
The whole stack can be run via Docker compose, saving the developer much time.

For this, we assume you are in the directory (in the FlexMeasures git repository) housing docker-compose.yml.

Note: The minimum Docker version is 17.09 and for docker-compose we tested successfully at version 1.25. You can
check your versions with docker[-compose] --version.

Note: The command might also be docker compose (no dash), for instance if you are using Docker Desktop.

4.47.1 Build the compose stack

Run this:

[$ docker-compose build J

This pulls the images you need, and re-builds the FlexMeasures ones from code. If you change code, re-running this
will re-build that image.

This compose script can also serve as an inspiration for using FlexMeasures in modern cloud environments (like Ku-
bernetes). For instance, you might want to not build the FlexMeasures image from code, but simply pull the image
from DockerHub.

If you wanted, you could stop building from source, and directly use the official flexmeasures image for the server and
worker container (set image: lfenergy/flexmeasures in the file docker-compose.yml).

200 Chapter 4. Where to start reading?

https://docs.docker.com/compose/
https://github.com/FlexMeasures/flexmeasures
https://docs.docker.com/desktop

FlexMeasures Documentation, Release 0.20.1.dev11

4.47.2 Run the compose stack

Start the stack like this:

[$ docker-compose up

Warning: This might fail if ports 5000 (Flask) or 6379 (Redis) are in use on your system. Stop these processes
before you continue.

Check docker ps or docker-compose ps to see if your containers are running:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS oo
. PORTS NAMES

beb9b£567303 flexmeasures_server "bash -c 'flexmeasur..." 44 seconds ago Up 38.
—.seconds (health: starting) 0.0.0.0:5000->5000/tcp flexmeasures-server-1
e36cd54a7fd5 flexmeasures_worker "flexmeasures jobs r..." 44 seconds ago Up 5.
—.seconds 5000/tcp flexmeasures-worker-1
c9985de27£f68 postgres "docker-entrypoint.s..." 45 seconds ago Up 40.
—.seconds 5432/tcp flexmeasures-test-db-1
03582d37230e postgres "docker-entrypoint.s..." 45 seconds ago Up 40.
—.seconds 5432/tcp flexmeasures-dev-db-1
792ec3d86e71 redis "docker-entrypoint.s..." 45 seconds ago Up 40.
—.seconds 0.0.0.0:6379->6379/tcp flexmeasures-queue-db-1

The FlexMeasures server container has a health check implemented, which is reflected in this output and you can see
which ports are available on your machine to interact.

You can use the terminal or docker-compose logs to look at output. docker inspect <container> and docker
exec -it <container> bash can be quite useful to dive into details. We’ll see the latter more in this tutorial.

4.47.3 Configuration

You can pass in your own configuration (e.g. for MapBox access token, or db URI, see below) like we described in
Configuration and customization — put a file f1exmeasures. cfginto alocal folder called flexmeasures-instance
(the volume should be already mapped).

In case your configuration loads FlexMeasures plugins that have additional dependencies, you can add a require-
ments.txt file to the same local folder. The dependencies listed in that file will be freshly installed each time you
run docker-compose up.

4.47.4 Data

The postgres database is a test database with toy data filled in when the flexmeasures container starts. You could also
connect it to some other database (on your PC, in the cloud), by setting a different SQLALCHEMY_DATABASE_URI in the
config.

4.47. Running a complete stack with docker-compose 201

FlexMeasures Documentation, Release 0.20.1.dev11

4.47.5 Seeing it work: Running the toy tutorial
A good way to see if these containers work well together, and maybe to inspire how to use them for your own purposes,
is the Toy example I: Scheduling a battery, from scratch.

The flexmeasures-server container already creates the toy account when it starts (see its initial command). We’ll now
walk through the rest of the toy tutorial, with one twist at the end, when we create the battery schedule.

Let’s go into the flexmeasures-worker container:

[$ docker exec -it flexmeasures-worker-1 bash]

There, we’ll now add the price data, as described in Add some price data. Copy the commands from that section and
run them in the container’s bash session, to create the prices and add them to the FlexMeasures DB.

Next, we put a scheduling job in the worker’s queue. This only works because we have the Redis container running —
the toy tutorial doesn’t have it. The difference is that we’re adding --as- job:

$ flexmeasures add schedule for-storage --sensor 2 --consumption-price-sensor 1 \
--start TOMORROW }TO7:00+01:00 --duration PT12H --soc-at-start 50% \
--roundtrip-efficiency 90% --as-job

We should now see in the output of docker logs flexmeasures-worker-1 something like the following:

Running Scheduling Job d3el10f6d-31d2-46c6-8308-01ede48f8fdd: discharging, from 2022-07-
06 07:00:00+01:00 to 2022-07-06 19:00:00+01:00

So the job had been queued in Redis, was then picked up by the worker process, and the result should be in our SQL
database container. Let’s check!

We’ll not go into the server container this time, but simply send a command:

$ TOMORROW=$(date --date="next day" '+%Y-%m-%d')
$ docker exec -it flexmeasures-server-1 bash -c "flexmeasures show beliefs --sensor 2 --
—start TOMORROW}TO7:00:00+01:00 --duration PT12H"
The charging/discharging schedule should be there:
| 0.5MW
0.0MW
| -0.5MW

(continues on next page)

202 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

10 20 30 40
discharging

Like in the original toy tutorial, we can also check in the server container’s web Ul (username is “toy-
user @flexmeasures.io”, password is “toy-password”):

Discharging (MW)
0.5

0.4
0.3
0.2
01 |
0.0 'mn
-01 |
-0.2
-0.3
-0.4-

-0.5
Fri 28 02:00 04:00 06:00 08:00 10:00 12:00 14:00 Y 16:00 18:00 20:00 22:00 Sat 29

Source
Seita

4.47.6 Scripting with the Docker stack

A very important aspect of this stack is if it can be put to interesting use. For this, developers need to be able to script
things — like we just did with the toy tutorial.

Note that instead of starting a console in the containers, we can also send commands to them right away. For instance,
we sent the complete flexmeasures show beliefs command and then viewed the output on our own machine.
Likewise, we send the pytest command to run the unit tests (see below).

Used this way, and in combination with the powerful list of CLI Commands, this FlexMeasures Docker stack is script-
able for interesting applications and simulations!

4.47.7 Running tests

You can run tests in the flexmeasures docker container, using the database service test-db in the compose file (per
default, we are using the dev-db database service).

After you’ve started the compose stack with docker-compose up, run:

$ docker exec -it -e SQLALCHEMY_TEST_DATABASE_URI="postgresql://fm-test-db-user:fm-test-
—db-pass@test-db:5432/fm-test-db" flexmeasures-server-1 pytest

This rounds up the developer experience offered by running FlexMeasures in Docker. Now you can develop FlexMea-
sures and also run your tests. If you develop plugins, you could extend the command being used, e.g. bash -c "cd

/path/to/my/plugin && pytest".

4.47. Running a complete stack with docker-compose 203

http://localhost:5000/sensors/1/
mailto:toy-user@flexmeasures.io
mailto:toy-user@flexmeasures.io

FlexMeasures Documentation, Release 0.20.1.dev11

4.48 Dependency Management

4.48.1 Requirements
FlexMeasures is built on the shoulder of giants, namely other open source libraries. Look into the requirements folder
to see what is required to run FlexMeasures (app.in) or to test it, or to build this documentation.

The .in files specify our general demands, and in .zxt files, we keep a set of pinned dependency versions, so we can all
work on the same background (crucial to compare behavior of installations to each other).

To install these pinned requirements, run:

[$ make install-for-dev

Check out Makefile for other useful commands, but this should get you going.

To upgrade the pinned versions, we can run:

[$ make upgrade-deps

4.48.2 Python versions

In addition, we support a range of Python versions (as you can see in the requirements folder.

Now — you probably have only one Python version installed. Let’s say you add a dependency, or update the minimum
required version. How to update the pinned sets of requirements across all Python versions?

[$ cd ci; ./update-packages.sh; cd ../

This script will use docker to do these upgrades per Python version.

Still, we’d also like to be able to test FlexMeasures across all these versions. We’ve added that capability to our CI
pipeline (GitHub Actions), so you could clone it an make a PR, in order to run them.

flexmeasures.api FlexMeasures API routes and implementations.
flexmeasures.app Starting point of the Flask application.
flexmeasures.auth Authentication and authorization policies and helpers.
flexmeasures.cli CLI functions for FlexMeasures hosts.
flexmeasures.data Models & schemata, as well as business logic (queries
& services).
flexmeasures. ui Backoffice user interface & charting support.
flexmeasures.utils Utilities for the FlexMeasures project.

4.49 flexmeasures.api

204 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

Modules
flexmeasures.api.common Functionality common to all API versions.
flexmeasures.api.dev Endpoints under development.
flexmeasures.api.play Endpoints to support "play" mode, data restoration
flexmeasures.api.sunset A place to keep all routes to endpoints that previously
existed and are now sunset.
flexmeasures.api.v3_0 FlexMeasures API v3

4.49.1 flexmeasures.api.common

Modules

flexmeasures.api.common.implementations
flexmeasures. api.common. responses
flexmeasures. api.common.routes
flexmeasures.api.common.schemas

flexmeasures.api.common.utils

flexmeasures.api.common.implementations
Functions

flexmeasures.api.common.implementations.get_task_run()

Get latest task runs. This endpoint returns output conforming to the task monitoring tool (bobbydams/py-pinger)

flexmeasures.api.common.implementations.ping()

flexmeasures.api.common.implementations.post_task_run()

Post that a task has been (attempted to) run. Form fields to send in: name: str, status: bool [defaults to True],
datetime: datetime [defaults to now]

flexmeasures.api.common.responses
Functions

flexmeasures.api.common.responses.already_received_and_successfully_processed(message: str)
— Tuple[dict,
int] |
Tuple[dict, int,
dict]

4.49. flexmeasures.api 205

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures

flexmeasures.

flexmeasures.

flexmeasures.

flexmeasures.

flexmeasures.

flexmeasures.

flexmeasures

flexmeasures.

flexmeasures

flexmeasures.

flexmeasures.

flexmeasures.

flexmeasures.

flexmeasures.

flexmeasures.

flexmeasures.api.common.

.api.

api.

api.

api.

api.

api.

api.

.api.

api.

.api.

api.

api.

api.

api.

api.

api.

common

common.

common.

common.

common.

common.

common.

common

common.

common

common.

common.

common.

common.

common.

common.

.responses

.responses.

responses

responses

responses.

responses.

responses.

responses

.responses.

responses.

responses.

responses.

responses.

responses

responses

responses.

responses.

conflicting_resolutions(message: str) — Tuple[dict, int] |
Tuple[dict, int, dict]

.deprecated_api_version(message: str) — Tuple[dict, int] |

Tuple[dict, int, dict]

.fallback_schedule_redirect (message: str, location: str) —

Tuple[dict, int] | Tuple[dict, int, dict]

incomplete_event (requested_event_id, requested_event_type,
message) — Tuple[dict, int] | Tuple[dict, int, dict]

invalid_datetime (message: str) — Tuple[dict, int] | Tuple[dict, int,
dict]

invalid_domain(message: str) — Tuple[dict, int] | Tuple[dict, int,
dict]

.invalid_flex_config(message: str) — Tuple[dict, int] | Tuple[dict,

int, dict]

invalid_horizon(message: str) — Tuple[dict, int] | Tuple[dict, int,
dict]

invalid_market () — Tuple[dict, int] | Tuple[dict, int, dict]

.invalid_message_type (message_type: str) — Tuple[dict, int] |

Tuple[dict, int, dict]

invalid_method (request_method) — Tuple[dict, int] | Tuple[dict, int,
dict]

invalid_period(message: str) — Tuple[dict, int] | Tuple[dict, int,
dict]

invalid_ptu_duration(message: str) — Tuple[dict, int] | Tuple[dict,
int, dict]

.invalid_replacement (message: str) — Tuple[dict, int] | Tuple[dict,

int, dict]

.invalid_resolution_str (message: str) — Tuple[dict, int] |

Tuple[dict, int, dict]

invalid_role(requested_access_role: str) — Tuple[dict, int] |
Tuple[dict, int, dict]

invalid_sender (required_permissions: list[str] | None = None) —
ResponseTuple

Signify that the sender is invalid to perform the request. Fits well with 403 errors. Optionally tell the user which
permissions they should have.

flexmeasures.api.common.responses.invalid_source(message: str) — Tuple[dict, int] | Tuple[dict, int,

dict]

flexmeasures.api.common.responses.invalid_timezone (message: str) — Tuple[dict, int] | Tuple[dict, int,

dict]

206

Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.api.common.responses.invalid_unit (quantity: str| None, units: Sequence(str] | tuple[str] |
None) — ResponseTuple

flexmeasures.api.common.responses.is_response_tuple (value) — bool
Check if an object qualifies as a ResponseTuple

flexmeasures.api.common.responses.no_backup (message: str) — Tuple[dict, int] | Tuple[dict, int, dict]

flexmeasures.api.common.responses.no_message_type(message: str) — Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.outdated_event_id(requested_event_id, existing_event_id) —
Tuple[dict, int] | Tuple[dict, int, dict]

flexmeasures.api.common.responses.pluralize (usef _role_name: str) — str
Adding a trailing ‘s’ works well for USEF roles.
flexmeasures.api.common.responses.power_value_too_big(message: str) — Tuple[dict, int] | Tuple[dict,

int, dict]

flexmeasures.api.common.responses.power_value_too_small (message: str) — Tuple[dict, int] |
Tuple[dict, int, dict]

flexmeasures.api.common.responses.ptus_incomplete (message: str) — Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.request_processed(message: str) — Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.required_info_missing(fields: Sequence[str], message: str=""7 —
Tuple[dict, int] | Tuple[dict, int, dict]

flexmeasures.api.common.responses.unapplicable_resolution(message: str) — Tuple[dict, int] |
Tuple[dict, int, dict]

flexmeasures.api.common.responses.unknown_prices(message: str) — Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures. api.common.responses.unknown_schedule (message: str) — Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.unrecognized_asset (message: str) — Tuple[dict, int] | Tuple[dict,
int, dict]

flexmeasures. api.common.responses.unrecognized_backup (message: str) — Tuple[dict, int] | Tuple[dict,
int, dict]

flexmeasures.api.common.responses.unrecognized_connection_group (message: str) — Tuple[dict, int]
| Tuple[dict, int, dict]

flexmeasures.api.common.responses.unrecognized_event (requested_event_id, requested_event_type) —
Tuple[dict, int] | Tuple[dict, int, dict]

flexmeasures.api.common.responses.unrecognized_event_type (requested_event_type) — Tuple[dict, int]
| Tuple[dict, int, dict]

4.49. flexmeasures.api 207

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.api.common.responses.unrecognized_market (requested_market) — Tuple[dict, int] |

Tuple[dict, int, dict]

flexmeasures.api.common.responses.unrecognized_sensor (lat: float | None = None, Ing: float | None =

Classes

None) — ResponseTuple

class flexmeasures.api.common.responses.BaseMessage (base_message="")

Set a base message to which extra info can be added by calling the wrapped function with additional string

arguments. This is a decorator implemented as a class.

__init__(base_message="")

flexmeasures.api.common.routes

Functions

flexmeasures.api.common.routes.get_ping()

flexmeasures.api.common.routes.get_task_run()

flexmeasures.api.common.routes.post_task_run()

flexmeasures.api.common.schemas

Modules

flexmeasures.api.

generic_assets

flexmeasures.api.

sensor_data

flexmeasures.api.

flexmeasures.api.

common.

common.

common.

common.

schemas.

schemas.

schemas. sensors

schemas.users

flexmeasures.api.common.schemas.generic_assets

Classes

class flexmeasures.api.common.schemas.generic_assets.AssetIdField(*, strict: bool = False,

**kwargs)

Field that represents a generic asset ID. It de-serializes from the asset id to an asset instance.

_deserialize(asset_id: int, attr, obj, **kwargs) — GenericAsset

Deserialize value. Concrete Field classes should implement this method.

Parameters

208

Chapter 4. Where to start reading?

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

¢ value — The value to be deserialized.

attr — The attribute/key in data to be deserialized.
* data — The raw input data passed to the Schema.load.
» kwargs — Field-specific keyword arguments.

Raises
ValidationError — In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.
Changed in version 3.0.0: Added **kwargs to signature.

_serialize(asset: GenericAsset, attr, data, **kwargs) — int

Return a string if self.as_string=True, otherwise return this field’s num_type.

flexmeasures.api.common.schemas.sensor_data

Functions

flexmeasures.api.common.schemas.sensor_data.select_schema_to_ensure_list_of_floats(values:

list[float]
| float,
-
fields.List
| Single-
Value-
Field

Allows both a single float and a list of floats. Always returns a list of floats.

Meant to improve user experience by not needing to make a list out of a single item, such that:

{

“values”: [3.7]
}

can be written as:

{

“values”: 3.7

}
Either will be de-serialized to [3.7].

Note that serialization always results in a list of floats. This ensures that we are not requiring the same flexibility
from users who are retrieving data.

4.49. flexmeasures.api 209

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

FlexMeasures Documentation, Release 0.20.1.dev11

Classes

class flexmeasures.api.common.schemas.sensor_data.GetSensorDataSchema (*, only:

static load_data_and_make_response (sensor_data_description: dict) — dict

Turn the de-serialized and validated data description into a response.

types.StrSequenceOrSet |
None = None, exclude:
types.StrSequenceOrSet
= (), many: bool = False,
context: dict | None =
None, load_only:
types.StrSequenceOrSet
= (), dump_only:
types.StrSequenceOrSet
= (), partial: bool |
types.StrSequenceOrSet |
None = None, unknown.:
str | None = None)

Specifically, this function: - queries data according to the given description - converts to a single deter-
ministic belief per event - ensures the response respects the requested time frame - converts values to the

requested unit - converts values to the requested resolution

class flexmeasures.api.common.schemas.sensor_data.PostSensorDataSchema(*, only:

This schema includes data, so it can be used for POST requests or GET responses.

types.StrSequenceOrSet
| None = None, exclude:
types.StrSequenceOrSet
= (), many: bool =
False, context: dict |
None = None,
load_only:
types.StrSequenceOrSet
= (), dump_only:
types.StrSequenceOrSet
= (), partial: bool |
types.StrSequenceOrSet
| None = None,
unknown: str | None =
None)

TODO: For the GET use case, look at api/common/validators.py::get_data_downsampling_allowed

(sets a resolution parameter which we can pass to the data collection function).

check_resolution_compatibility_of_sensor_data(data, **kwargs)
Ensure event frequency is compatible with the sensor’s event resolution.

For a sensor recording instantaneous values, any event frequency is compatible. For a sensor recording non-
instantaneous values, the event frequency must fit the sensor’s event resolution. Currently, only upsampling

is supported (e.g. converting hourly events to 15-minute events).

static load_bdf (sensor_data: dict) — BeliefsDataFrame
Turn the de-serialized and validated data into a BeliefsDataFrame.

static possibly_convert_units(data)

Convert values if needed, to fit the sensor’s unit. Marshmallow runs this after validation.

210

Chapter 4. Where to start reading?

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

static possibly_upsample_values (data)
Upsample the data if needed, to fit to the sensor’s resolution. Marshmallow runs this after validation.

post_load_sequence (data: dict, **kwargs) — BeliefsDataFrame
If needed, upsample and convert units, then deserialize to a BeliefsDataFrame.

class flexmeasures.api.common.schemas.sensor_data.SensorDataDescriptionSchema(*, only:

types.StrSequenceOrSet

| None =
None, exclude:

types.StrSequenceOrSet

= (), many:
bool = False,
context: dict |
None = None,
load_only:

types.StrSequenceOrSet

= () b
dump_only:

types.StrSequenceOrSet

= (), partial:
bool |

types.StrSequenceOrSet

| None =
None,
unknown: str |
None = None)

Schema describing sensor data (specifically, the sensor and the timing of the data).

check_schema_unit_against_sensor_unit (dara, **kwargs)

Allows units compatible with that of the sensor. For example, a sensor with W units allows data to be posted
with units: - W, kW, MW, etc. (i.e. units with different prefixes) - J/s, Nm/s, etc. (i.e. units that can be
converted using some multiplier) - Wh, kWh, etc. (i.e. units that represent a stock delta, which knowing
the duration can be converted to a flow) For compatible units, the SensorDataSchema converts values to
the sensor’s unit.

class flexmeasures.api.common.schemas.sensor_data.SingleValueField(*, allow_nan: bool = False,
as_string: bool = False,
**kwargs)

Field that both de-serializes and serializes a single value to a list of floats (length 1).

_deserialize(value, attr, obj, **kwargs) — list[float]
Deserialize value. Concrete Field classes should implement this method.

Parameters
* value — The value to be deserialized.
e attr - The attribute/key in data to be deserialized.
¢ data - The raw input data passed to the Schema.load.
» kwargs — Field-specific keyword arguments.

Raises
ValidationError — In case of formatting or validation failure.

Returns
The deserialized value.

4.49. flexmeasures.api 211

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

FlexMeasures Documentation, Release 0.20.1.dev11

Changed in version 2.0.0: Added attr and data parameters.
Changed in version 3.0.0: Added **kwargs to signature.

_serialize (value, attr, data, **kwargs) — list[float]
Return a string if self.as_string=True, otherwise return this field’s num_type.

flexmeasures.api.common.schemas.sensors

Classes
class flexmeasures.api.common.schemas.sensors.SensorField(entity_type: str = 'sensor', fm_scheme:
str="fml’', *args, **kwargs)
Field that de-serializes to a Sensor, and serializes a Sensor into an entity address (string).

__init__(entity_type: str = 'sensor', fm_scheme: str = 'fml’', *args, **kwargs)
Parameters

e entity_type — “sensor” (in the future, possibly also another type of resource that is as-
signed an entity address)

¢ fm_scheme — “fm0” or “fm1”

_deserialize (value, attr, obj, **kwargs) — Sensor
De-serialize to a Sensor.

_serialize(value: Sensor, attr, data, **kwargs)

Serialize to an entity address.

class flexmeasures.api.common.schemas.sensors.SensorIdField(*, strict: bool = False, **kwargs)

Field that represents a sensor ID. It de-serializes from the sensor id to a sensor instance.

_deserialize(sensor_id: int, attr, obj, **kwargs) — Sensor
Deserialize value. Concrete Field classes should implement this method.

Parameters
* value — The value to be deserialized.
e attr — The attribute/key in data to be deserialized.
* data — The raw input data passed to the Schema.load.
» kwargs — Field-specific keyword arguments.

Raises
ValidationError — In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.
Changed in version 3.0.0: Added **kwargs to signature.

_serialize(sensor: Sensor, attr, data, **kwargs) — int

Return a string if self.as_string=True, otherwise return this field’s num_type.

212 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

Exceptions

exception flexmeasures.api.common.schemas.sensors.EntityAddressValidationError (message: str
| list | dict,
field_name:
str =
"_schema’,
data:
Mapping[str,
Any] | Iter-
able[Mapping[str,
Any]] | None
= None,
valid_data:
list[dict[str,
Any]] |
dict[str, Any]
| None =
None,
**kwargs)

flexmeasures.api.common.schemas.users

Classes

class flexmeasures.api.common.schemas.users.AccountIdField(*, strict: bool = False, **kwargs)

Field that represents an account ID. It deserializes from the account id to an account instance.

_deserialize(account_id: str, attr, obj, **kwargs) — Account

Deserialize value. Concrete Field classes should implement this method.
Parameters
* value - The value to be deserialized.
e attr - The attribute/key in data to be deserialized.
¢ data — The raw input data passed to the Schema.load.
» kwargs — Field-specific keyword arguments.

Raises
ValidationError — In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.
Changed in version 3.0.0: Added **kwargs to signature.

_serialize (account: Account, attr, data, **kwargs) — int
Return a string if self.as_string=True, otherwise return this field’s num_type.
classmethod load_current()

Use this with the load_default arg to __init__ if you want the current user’s account by default.

4.49. flexmeasures.api 213

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

class flexmeasures.api.common.schemas.users.UserIdField(*args, **kwargs)

Field that represents a user ID. It deserializes from the user id to a user instance.

__init__(*args, **kwargs)

_deserialize(user_id: int, attr, obj, **kwargs) — User

Deserialize value. Concrete Field classes should implement this method.

Parameters

¢ value — The value to be deserialized.

e attr — The attribute/key in data to be deserialized.

* data — The raw input data passed to the Schema.load.

* kwargs — Field-specific keyword arguments.

Raises

ValidationError — In case of formatting or validation failure.

Returns

The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.
Changed in version 3.0.0: Added **kwargs to signature.

_serialize(user: User, attr, data, **kwargs) — int

Return a string if self.as_string=True, otherwise return this field’s num_type.

flexmeasures.api.common.utils

Modules

flexmeasures.api.common.
flexmeasures.api.common.

flexmeasures.api.common.

deprecation_utils

flexmeasures.api.common.

utils

utils

.api_utils

.args_parsing

utils.

utils

.validators

flexmeasures.api.common.utils.api_utils

Functions

flexmeasures.api.common.utils.api_utils.catch_timed_belief_replacements(error: IntegrityError)

Catch IntegrityErrors due to a UniqueViolation on the TimedBelief primary key.

Return a more informative message.

214

Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.api.common.utils.api_utils.enqueue_forecasting_jobs (forecasting_jobs: list[Job] |
None = None)

Enqueue forecasting jobs.

Parameters
forecasting_jobs — list of forecasting Jobs for redis queues.

flexmeasures.api.common.utils.api_utils.save_and_enqueue (data: BeliefsDataFrame |
list[BeliefsDataFrame], forecasting_jobs:
list[Job] | None = None,
save_changed_beliefs_only: bool = True)
— ResponseTuple

flexmeasures.api.common.utils.api_utils.unique_ever_seen(iterable: Sequence, selector: Sequence)

Return unique iterable elements with corresponding lists of selector elements, preserving order.

>>> a, b = unique_ever_seen([[10, 20], [10, 20], [20, 40]1]1, [1, 2, 3]1)
>>> print(a)

[[10, 20], [20, 40]]

>>> print(b)

[f1, 21, 3]

flexmeasures.api.common.utils.api_utils.upsample_values (value_groups: list[list[float]] | list[float],
from_resolution: timedelta, to_resolution:
timedelta) — list[list[float]] | list[float]

Upsample the values (in value groups) to a smaller resolution. from_resolution has to be a multiple of
to_resolution

flexmeasures.api.common.utils.args_parsing

Functions

flexmeasures.api.common.utils.args_parsing.handle_error (error, req, schema, *, error_status_code,
error_headers)

Replacing webargs’s error parser, so we can throw custom Exceptions.

flexmeasures.api.common.utils.args_parsing.load_data(request, schema)

We allow parameters to come from either GET args or POST JSON, as validators can be attached to either.

flexmeasures.api.common.utils.args_parsing.validation_error_handler (error: FMValidationError)

Handles errors during parsing. Aborts the current HTTP request and responds with a 422 error. FM Validation-
Error attributes “result” and “status” are packaged in the response.

flexmeasures.api.common.utils.deprecation_utils

Functions

4.49. flexmeasures.api 215

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.api.common.utils.deprecation_utils.deprecate_blueprint (blueprint: Blueprint,

deprecation_date:
pd.Timestamp | str | None =
None, deprecation_link: str
| None = None,
sunset_date: pd.Timestamp
| str | None = None,
sunset_link: str | None =
None, **kwargs)

Deprecates every route on a blueprint by adding the “Deprecation” header with a deprecation date.

Also logs a warning when a deprecated endpoint is called.

-

—notice",

>>> from flask import Flask, Blueprint

>>> app = Flask('some_app')

>>> deprecated_bp = Blueprint('API version 1', 'vl_bp")

>>> app.register_blueprint(deprecated_bp, url _prefix='/v1'")

>>> deprecate_blueprint(
deprecated_bp,
deprecation_date="2022-12-14",
deprecation_link="https://flexmeasures.readthedocs.io/some-deprecation-

sunset_date="2023-02-01",
sunset_link="https://flexmeasures.readthedocs.io/some-sunset-notice",

Parameters

References

blueprint — The blueprint to be deprecated

deprecation_date — date indicating when the API endpoint was deprecated, used for the
“Deprecation” header if no date is given, defaults to “true” see https://datatracker.ietf.org/
doc/html/draft-ietf-httpapi-deprecation-header#section-2- 1

deprecation_link — url providing more information about the deprecation
sunset_date — date indicating when the API endpoint is likely to become unresponsive

sunset_link — url providing more information about the sunset

* Deprecation header: https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header

» Sunset header: https://www.rfc-editor.org/rfc/rfc8594

flexmeasures.api.common.utils.deprecation_utils.deprecate_fields(fields: str| list[str],

deprecation_date:
pd.Timestamp | str | None =
None, deprecation_link: str |
None = None, sunset_date:
pd.Timestamp | str | None =
None, sunset_link: str | None =
None)

Deprecates a field (or fields) on a route by adding the “Deprecation” header with a deprecation date.

216

Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header#section-2-1
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header#section-2-1
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header
https://www.rfc-editor.org/rfc/rfc8594
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

Also logs a warning when a deprecated field is used.

>>> from flask_classful import route
>>> @route("/item/", methods=["POST"])
@Quse_kwargs(
{
"color": ColorField,
"length": LengthField,
b
)
def post_item(color, length):
deprecate_field(
"color",
deprecation_date="2022-12-14",
deprecation_link="https://flexmeasures.readthedocs.io/some-deprecation-
—notice",
sunset_date="2023-02-01",
sunset_link="https://flexmeasures.readthedocs.io/some-sunset-notice",

Parameters
o fields — The fields (as a list of strings) to be deprecated

* deprecation_date — date indicating when the field was deprecated, used for the “Depre-
cation” header if no date is given, defaults to “true” see https://datatracker.ietf.org/doc/html/
draft-ietf-httpapi-deprecation-header#section-2- 1

* deprecation_link — url providing more information about the deprecation
» sunset_date — date indicating when the field is likely to become unresponsive

» sunset_link — url providing more information about the sunset

References

* Deprecation header: https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header

¢ Sunset header: https://www.rfc-editor.org/rfc/rfc8594

flexmeasures.api.common.utils.deprecation_utils.override_from_config(setting: Any,
config_setting_name: str)
— Any

Override setting by config setting, unless the latter is None or is missing.

flexmeasures.api.common.utils.deprecation_utils.sunset_blueprint (blueprint,
api_version_being_sunset: str,
sunset_link: str,
api_version_upgrade_to: str =
'3.0', rollback_possible: bool =
True, **kwargs)

Sunsets every route on a blueprint by returning 410 (Gone) responses, if sunset is active.

Whether the sunset is active can be toggled wusing the config setting “FLEXMEA-
SURES_API_SUNSET_ACTIVE”. If the sunset is inactive, this function will not affect any requests in
this blueprint. If the endpoint implementations have been removed, set rollback_possible=False.

4.49. flexmeasures.api 217

https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header#section-2-1
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header#section-2-1
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header
https://www.rfc-editor.org/rfc/rfc8594
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.20.1.dev11

Errors will be logged by utils.error_utils.error_handling_router.

flexmeasures.api.common.utils.validators

Functions

flexmeasures.api.common.utils.validators.optional_duration_accepted(default_duration:
timedelta)

Decorator which specifies that a GET or POST request accepts an optional duration. It parses relevant form data
and sets the “duration” keyword param.

Example:

@app.route(‘/getDeviceMessage’) @optional_duration_accepted(timedelta(hours=6)) def
get_device_message(duration):

return ‘Here is your message’
The message may specify a duration to overwrite the default duration of 6 hours.

flexmeasures.api.common.utils.validators.parse_duration(duration_str: str, start: datetime | None =
None) — timedelta | isodate.Duration |
None

Parses the ‘duration’ string into a Duration object. If needed, try deriving the timedelta from the actual time span
(e.g. in case duration is 1 year). If the string is not a valid ISO 8601 time interval, return None.

TODO: Deprecate for DurationField.

flexmeasures.api.common.utils.validators.parse_horizon(horizon_str: str) — tuple[timedelta | None,
bool]

Validates whether a horizon string represents a valid ISO 8601 (repeating) time interval.
Examples:
horizon = “PT6H” horizon = “R/PT6H” horizon = “-PT10M”

Returns horizon as timedelta and a boolean indicating whether the repetitive indicator “R/” was used. If hori-
zon_str could not be parsed with various methods, then horizon will be None

Functionality common to all API versions.

Functions

flexmeasures.api.common.register_at(app: Flask)

This can be used to register this blueprint together with other api-related things

4.49.2 flexmeasures.api.dev

Modules

flexmeasures.api.dev.sensors

218 Chapter 4. Where to start reading?

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.api.dev.sensors
Functions

flexmeasures.api.dev.sensors.get_sensor_or_abort(id: int) — Sensor
Util function to help the GET requests. Will be obsolete..

Classes

class flexmeasures.api.dev.sensors.AssetAPI

This view exposes asset attributes through API endpoints under development. These endpoints are not yet part
of our official API, but support the FlexMeasures UL

get(id: int, asset: GenericAsset)
GET from /asset/<id>

class flexmeasures.api.dev.sensors.SensorAPI

This view exposes sensor attributes through API endpoints under development. These endpoints are not yet part
of our official API, but support the FlexMeasures UL

get(id: int, sensor: Sensor)

GET from /sensor/<id>

get_chart (id: int, sensor: Sensor, **kwargs)
GET from /sensor/<id>/chart

Optional fields
» “event_starts_after” (see the timely-beliefs documentation)
» “event_ends_before” (see the timely-beliefs documentation)
* “beliefs_after” (see the timely-beliefs documentation)
* “beliefs_before” (see the timely-beliefs documentation)

* “include_data” (if true, chart specs include the data; if false, use the GET
/api/dev/sensor/(id)/chart_data endpoint to fetch data)

* “chart_type” (currently ‘bar_chart’ and ‘daily_heatmap’ are supported types)

* “width” (an integer number of pixels; without it, the chart will be scaled to the full width of the con-
tainer (hint: use <div style="width: 100%;"> to set a div width to 100%)

* “height” (an integer number of pixels; without it, FlexMeasures sets a default, currently 300)

get_chart_annotations(id: int, sensor: Sensor, **kwargs)
GET from /sensor/<id>/chart_annotations

Annotations for use in charts (in case you have the chart specs already).

get_chart_data(id: int, sensor: Sensor, **kwargs)
GET from /sensor/<id>/chart_data

Data for use in charts (in case you have the chart specs already).
Optional fields
» “event_starts_after” (see the timely-beliefs documentation)

* “event_ends_before” (see the timely-beliefs documentation)

4.49. flexmeasures.api 219

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
../api/dev.html#get--api-dev-sensor-(id)-chart_data-
../api/dev.html#get--api-dev-sensor-(id)-chart_data-
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors

FlexMeasures Documentation, Release 0.20.1.dev11

* “beliefs_after” (see the timely-beliefs documentation)
* “beliefs_before” (see the timely-beliefs documentation)
¢ “resolution” (see resolutions)

* “most_recent_beliefs_only” (if true, returns the most recent belief for each event; if false, returns each
belief for each event; defaults to true)

Endpoints under development. Use at your own risk.

Functions

flexmeasures.api.dev.register_at(app: Flask)

This can be used to register FlaskViews.

4.49.3 flexmeasures.api.play

Modules

flexmeasures.api.play.implementations

flexmeasures.api.play.routes

flexmeasures.api.play.implementations
Functions

flexmeasures.api.play.implementations.restore_data_response()

flexmeasures.api.play.routes
Functions

flexmeasures.api.play.routes.restore_data()

API endpoint to restore the database to one of the saved backups.
Example request

This message restores the database to a backup named demo_vO0.

{

"backup": "demo_v0"
}

Example response

This message indicates that the backup has been restored without any error.

220 Chapter 4. Where to start reading?

https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors

FlexMeasures Documentation, Release 0.20.1.dev11

"message": "Request has been processed. Database restored to demo_ve.",

"status": "PROCESSED"

Regheader Authorization
The authentication token

Regheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
NO_BACKUP, UNRECOGNIZED_BACKUP

Status 401
UNAUTHORIZED

Status 405
INVALID_METHOD

Endpoints to support “play” mode, data restoration

Functions

flexmeasures.api.play.register_at(app.: Flask)
This can be used to register this blueprint together with other api-related things

4.49.4 flexmeasures.api.sunset

Modules

flexmeasures.api.sunset.routes

flexmeasures.api.sunset.routes
Functions

flexmeasures.api.sunset.routes.implementation_gone()

A place to keep all routes to endpoints that previously existed and are now sunset.

4.49. flexmeasures.api

221

FlexMeasures Documentation, Release 0.20.1.dev11

Functions

flexmeasures.api.sunset.register_at(app: Flask)

This can be used to register this blueprint together with other api-related things

4.49.5 flexmeasures.api.v3_0

Modules

flexmeasures.api.v3_0.accounts
flexmeasures.api.v3_0.assets
flexmeasures.api.v3_0.health
flexmeasures.api.v3_0.public
flexmeasures.api.v3_0.sensors

flexmeasures.api.v3_0.users

flexmeasures.api.v3_0.accounts
Classes

class flexmeasures.api.v3_0.accounts.AccountAPI
get (id: int, account: Account)
API endpoint to get an account.

This endpoint retrieves an account, given its id. Only admins, consultants and users belonging to the account
itself can use this endpoint.

Example response

{
id: 1,
"name]'|: ['Telst Alddount]'|
'alcc int| rolels!': [1, 37,
'|consul tandyl lalddount[lild": 2,
}

Reqheader Authorization
The authentication token

Reqgheader Content-Type
application/json

Resheader Content-Type
application/json

222 Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

Status 200
PROCESSED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

index()

API endpoint to list all accounts accessible to the current user.

This endpoint returns all accessible accounts. Accessible accounts are your own account and accounts you
are a consultant for, or all accounts for admins.

Example response

An example of one account being returned:

[
{
s 1,
"name]'|: ['Test Aldcount]']
'ajccoutnt_r lies|'(: [1, 31,
'|consultancyl lalddont fild"]: 2,
}
]

Regheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

4.49. flexmeasures.api 223

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.api.v3_0.assets
Classes

class flexmeasures.api.v3_0.assets.AssetAPI

This API view exposes generic assets. Under development until it replaces the original Asset API.
delete(id: int, asset: GenericAsset)

Delete an asset given its identifier.

This endpoint deletes an existing asset, as well as all sensors and measurements recorded for it.

Regheader Authorization
The authentication token

Regheader Content-Type
application/json

Resheader Content-Type
application/json

Status 204
DELETED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

fetch_one(id, asset)

Fetch a given asset.
This endpoint gets an asset.

Example response

{
"generic_asset_type_id": 2,
"name": "Test battery",
"id": 1,

"latitude": 10,
"longitude": 100,
"account_id": 1,

Reqheader Authorization
The authentication token

Reqgheader Content-Type
application/json

Resheader Content-Type
application/json

224 Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

Status 200
PROCESSED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

get_chart (id: int, asset: GenericAsset, **kwargs)
GET from /assets/<id>/chart

get_chart_data(id: int, asset: GenericAsset, **kwargs)
GET from /assets/<id>/chart_data

Data for use in charts (in case you have the chart specs already).

index (account: Account)

List all assets owned by a certain account.

This endpoint returns all accessible assets for the account of the user. The account_id query parameter can
be used to list assets from a different account.

Example response

An example of one asset being returned:

L

"id": 1,

"name": "Test battery",
"latitude": 10,
"longitude": 100,
"account_id": 2,
"generic_asset_type_id": 1

Reqgheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type

application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

4.49. flexmeasures.api 225

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

patch(assetr_data: dict, id: int, db_asset: GenericAsset)

Update an asset given its identifier.

This endpoint sets data for an existing asset. Any subset of asset fields can be sent.

The following fields are not allowed to be updated: - id - account_id

Example request

{

}

"latitude": 11.1,
"longitude": 99.9,

Example response

The whole asset is returned in the response:

{

"generic_asset_type_id": 2,
"id": 1,

"latitude": 11.1,
"longitude": 99.9,

name": "Test battery",
"account_id": 2,

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
UPDATED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

226

Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

post (asset_data: dict)

Create new asset.
This endpoint creates a new asset.

Example request

{
"name": "Test battery",
"generic_asset_type_id": 2,
"account_id": 2,
"latitude": 40,
"longitude": 170.3,

1

The newly posted asset is returned in the response.

Reqheader Authorization
The authentication token

Reqgheader Content-Type
application/json

Resheader Content-Type
application/json

Status 201
CREATED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

public()
Return all public assets.
This endpoint returns all public assets.

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

4.49. flexmeasures.api

227

https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

Status 422
UNPROCESSABLE_ENTITY

flexmeasures.api.v3_0.health
Classes

class flexmeasures.api.v3_0.health.HealthAPI

is_ready()
Get readiness status

Example response:

tabjalslel Isigfl]'|: Tirule],
tablasel Ineldils|'|: [Falllse

{

Q

flexmeasures.api.v3_0.public
Functions

flexmeasures.api.v3_0.public.quickref_directive(content)

Adapted from sphinxcontrib/autohttp/flask_base.py:quickref_directive.

flexmeasures.api.v3_0.public.removeprefix(text: str, prefix: str) — str

Remove a prefix from a text.

todo: use text.removeprefix(prefix) instead of this method, after dropping support for Python 3.8
See https://docs.python.org/3.9/library/stdtypes.html#str.removeprefix

flexmeasures.api.v3_0.public.removesuffix(text: str, suffix: str) — str

Remove a suffix from a text.

todo: use text.removesuffix(suffix) instead of this method, after dropping support for Python 3.8
See https://docs.python.org/3.9/library/stdtypes.html#str.removesuffix

Classes

class flexmeasures.api.v3_0.public.ServicesAPI

index()
API endpoint to get a service listing for this version.
Resheader Content-Type
application/json

Status 200
PROCESSED

228 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str.removeprefix
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str.removesuffix

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.api.v3_0.sensors
Classes

class flexmeasures.api.v3_0.sensors.SensorAPI
delete(id: int, sensor: Sensor)
Delete a sensor given its identifier.
This endpoint deletes an existing sensor, as well as all measurements recorded for it.

Reqheader Authorization
The authentication token

Regheader Content-Type
application/json

Resheader Content-Type
application/json

Status 204
DELETED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

fetch_one (id, sensor)

Fetch a given sensor.
This endpoint gets a sensor.

Example response

{
"name": "some gas sensor",
"unit": "m’/h",
"entity_address": "eal.2023-08.localhost:fml.1",
"event_resolution": "PT10M",
"generic_asset_id": 4,
"timezone": "UTC",
"id": 2
}

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

4.49. flexmeasures.api 229

https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

Status 200
PROCESSED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

get_data(sensor_data_description: dict)
Get sensor data from FlexMeasures.

Example request

{
"sensor": "eal.2021-01.io.flexmeasures:fml.1",
"start": "2021-06-07T00:00:00+02:00",
"duration": "PT1H",
"resolution": "PT15M",
"unit": "m’/h"

3

The unit has to be convertible from the sensor’s unit.
Optional fields

* “resolution” (see Frequency and resolution)

* “horizon” (see Tracking the recording time of beliefs)

 “prior” (see Tracking the recording time of beliefs)

e “source” (see Sources)

Reqgheader Authorization
The authentication token

Regheader Content-Type
application/json

Resheader Content-Type

application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

230 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

Status 422
UNPROCESSABLE_ENTITY

get_schedule (sensor: Sensor, job_id: str, duration: timedelta, **kwargs)
Get a schedule from FlexMeasures.

Optional fields
* “duration” (6 hours by default; can be increased to plan further into the future)
Example response

This message contains a schedule indicating to consume at various power rates from 10am UTC onwards
for a duration of 45 minutes.

{
"values": [
2.15,
3g
2
1,
"start": "2015-06-02T10:00:00+00:00",
"duration": "PT45M",
"unit": "MW"

Regheader Authorization
The authentication token

Regheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_TIMEZONE, INVALID_DOMAIN, INVALID_UNIT, UN-
KNOWN_SCHEDULE, UNRECOGNIZED_CONNECTION_GROUP

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 405
INVALID_METHOD

Status 422
UNPROCESSABLE_ENTITY

index (account: Account)
API endpoint to list all sensors of an account.
This endpoint returns all accessible sensors. Accessible sensors are sensors in the same account as the

current user. Only admins can use this endpoint to fetch sensors from a different account (by using the
account_id query parameter).

4.49. flexmeasures.api 231

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta

FlexMeasures Documentation, Release 0.20.1.dev11

Example response

An example of one sensor being returned:

[
{
"entity_address": "eal.2021-01.io.flexmeasures.company:fml.42",
"event_resolution": PT15Y,
"generic_asset_id": 1,
"name": "Gas demand",
"timezone": "Europe/Amsterdam",
"unit": "m3/h"
"id": 2
}
]

Reqheader Authorization
The authentication token

Reqgheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

patch(sensor_data: dict, id: int, sensor: Sensor)

Update a sensor given its identifier.
This endpoint updates the descriptive data of an existing sensor.

Any subset of sensor fields can be sent. However, the following fields are not allowed to be updated: - id -
generic_asset_id - entity_address

Only admin users have rights to update the sensor fields. Be aware that changing unit, event resolution and
knowledge horizon should currently only be done on sensors without existing belief data (to avoid a serious
mismatch), or if you really know what you are doing.

Example request

{
"name": "POWER",

}

Example response

232 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

The whole sensor is returned in the response:

{
"name": "some gas sensor",
"unit": "m’/h",
"entity_address": "eal.2023-08.localhost:fml.1",
"event_resolution": "PT10M",
"generic_asset_id": 4,
"timezone": "UTC",
"id": 2
}

Regheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
UPDATED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

post(sensor_data: dict)
Create new asset.

This endpoint creates a new Sensor.

Example request

{
"name": "power",
"event_resolution": "PT1H",
"unit": "kwh",
"generic_asset_id": 1,

}

Example response

The whole sensor is returned in the response:

{

name": "power",
"lmit": llkwhll ,
"entity_address": "eal.2023-08.localhost:fml.1",

(continues on next page)

4.49. flexmeasures.api 233

https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

"event_resolution": "PT1H",
"generic_asset_id": 1,
"timezone": "UTC",

"id": 2

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 201
CREATED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

post_data(bdf: BeliefsDataFrame)
Post sensor data to FlexMeasures.

Example request

{
"sensor": "eal.2021-01.io.flexmeasures:fml.1",
"values": [-11.28, -11.28, -11.28, -11.28],
"start": "2021-06-07T00:00:00+02:00",
"duration": "PTI1H",
"unit": "m’/h"

1

The above request posts four values for a duration of one hour, where the first event start is at the given start
time, and subsequent events start in 15 minute intervals throughout the one hour duration.

The sensor is the one with ID=1. The unit has to be convertible to the sensor’s unit. The resolution of
the data has to match the sensor’s required resolution, but FlexMeasures will attempt to upsample lower
resolutions. The list of values may include null values.

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

234 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

Status 200
PROCESSED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

trigger_schedule (sensor: Sensor, start_of_schedule: datetime, duration: timedelta, belief_time: datetime |
None = None, flex_model: dict | None = None, flex_context: dict | None = None,
**kwargs)

Trigger FlexMeasures to create a schedule.

Trigger FlexMeasures to create a schedule for this sensor. The assumption is that this sensor is the power
sensor on a flexible asset.

In this request, you can describe:

* the schedule’s main features (when does it start, what unit should it report, prior to what time can we
assume knowledge)

* the flexibility model for the sensor (state and constraint variables, e.g. current state of charge of a
battery, or connection capacity)

* the flexibility context which the sensor operates in (other sensors under the same EMS which are
relevant, e.g. prices)

For details on flexibility model and context, see Describing flexibility. Below, we’ll also list some examples.

Note: This endpoint does not support to schedule an EMS with multiple flexible sensors at once. This will
happen in another endpoint. See https://github.com/FlexMeasures/flexmeasures/issues/485. Until then, it
is possible to call this endpoint for one flexible endpoint at a time (considering already scheduled sensors
as inflexible).

The length of the schedule can be set explicitly through the ‘duration’ field. Otherwise, it is set by the config
setting FLEXMEASURES_PLANNING _HORIZON , which defaults to 48 hours. If the flex-model contains
targets that lie beyond the planning horizon, the length of the schedule is extended to accommodate them.
Finally, the schedule length is limited by max_planning_horizon_config, which defaults to 2520 steps of
the sensor’s resolution. Targets that exceed the max planning horizon are not accepted.

The appropriate algorithm is chosen by FlexMeasures (based on asset type). It’s also possible to use custom
schedulers and custom flexibility models, see Plugin Customizations.

If you have ideas for algorithms that should be part of FlexMeasures, let us know: https://flexmeasures.io/
get-in-touch/

Example request A

This message triggers a schedule for a storage asset, starting at 10.00am, at which the state of charge (soc)
is 12.1 kWh.

4.49. flexmeasures.api 235

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://github.com/FlexMeasures/flexmeasures/issues/485
https://flexmeasures.io/get-in-touch/
https://flexmeasures.io/get-in-touch/

FlexMeasures Documentation, Release 0.20.1.dev11

{
"start": "2015-06-02T10:00:00+00:00",
"flex-model": {
"soc-at-start": 12.1,
"soc-unit": "kWh"
3
1

Example request B

This message triggers a 24-hour schedule for a storage asset, starting at 10.00am, at which the state of
charge (soc) is 12.1 kWh, with a target state of charge of 25 kWh at 4.00pm.

The charging efficiency is constant (120%) and the discharging efficiency is determined by the contents of
sensor with id 98. If just the roundtrip-efficiency is known, it can be described with its own field.
The global minimum and maximum soc are set to 10 and 25 kWh, respectively. To guarantee a minimum
SOC in the period prior, the sensor with ID 300 contains beliefs at 2.00pm and 3.00pm, for 15kWh and
20kWh, respectively. Storage efficiency is set to 99.99%, denoting the state of charge left after each time
step equal to the sensor’s resolution. Aggregate consumption (of all devices within this EMS) should be
priced by sensor 9, and aggregate production should be priced by sensor 10, where the aggregate power flow
in the EMS is described by the sum over sensors 13, 14 and 15 (plus the flexible sensor being optimized,
of course).

The battery consumption power capacity is limited by sensor 42 and the production capacity is constant
(30 kW). Finally, the site consumption capacity is limited by sensor 32.

Note that, if forecasts for sensors 13, 14 and 15 are not available, a schedule cannot be computed.

{
"start": "2015-06-02T10:00:00+00:00",
"duration": "PT24H",

"flex-model": {
"soc-at-start": 12.1,
"soc-unit": "kWh",
"soc-targets": [

{
"value": 25,
"datetime": "2015-06-02T16:00:00+00:00"
e
15
"soc-minima": {"sensor" : 300},

"soc-min": 10,

"soc-max": 25,

"charging-efficiency": "120%",
"discharging-efficiency": {"sensor": 98},
"storage-efficiency": 0.9999,

"power-capacity": "25kW",
"consumption-capacity" : {"sensor": 42},
"production-capacity" : "30 kW"

be
"flex-context": {
"consumption-price-sensor": 9,
"production-price-sensor": 10,
"inflexible-device-sensors": [13, 14, 15],
"site-power-capacity": "100kW",
(continues on next page)

236

Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

(continued from previous page)

"site-production-capacity": "80kW",
"site-consumption-capacity": {"sensor": 32}

Example response

This message indicates that the scheduling request has been processed without any error. A scheduling job
has been created with some Universally Unique Identifier (UUID), which will be picked up by a worker.
The given UUID may be used to obtain the resulting schedule: see /sensors/<id>/schedules/<uuid>.

{
"status": "PROCESSED",
"schedule": "364bfd06-cl1fa-430b-8d25-8f5a547651fb",
"message": "Request has been processed."

}

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_DATA

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 405
INVALID_METHOD

Status 422
UNPROCESSABLE_ENTITY

flexmeasures.api.v3_0.users
Classes

class flexmeasures.api.v3_0.users.UserAPI
get (id: int, user: User)
API endpoint to get a user.
This endpoint gets a user. Only admins or the members of the same account can use this endpoint.

Example response

4.49. flexmeasures.api 237

https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

{
"lalddolu tL_ﬂid' 1,
"Alctive': e,
"emalill]: ["test/pidosumelidsilital.n1]",
'lf1exmeldlsurels inolles'|: [1, 31,
id'l: 1,
'tlime i: 'Euﬂl e Ams‘teli'dq?',
"usernamel'|: |'Melst Prosumel Uselr'|
}

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

index (account: Account, include_inactive: bool = False)

API endpoint to list all users of an account.

This endpoint returns all accessible users. By default, only active users are returned. The include_inactive
query parameter can be used to also fetch inactive users. Accessible users are users in the same account as
the current user. Only admins can use this endpoint to fetch users from a different account (by using the
account_id query parameter).

Example response

An example of one user being returned:

[
t
"llctive]'|: [T,
"lemalifl]'|: ['[test/piiosumer@slelital.n1/'],
"alacount] lild']: 13,
'flexmelsures, olles['|: [1, 31,
d': 1,
"Cine | o A e,
'usernamel'|: |'Telst Prosumelr] User'
}
]

238 Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.20.1.dev11

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

patch(id: int, user: User, **user_data)

API endpoint to patch user data.

This endpoint sets data for an existing user. It has to be used by the user themselves, admins or account-
admins (of the same account). Any subset of user fields can be sent. If the user is not an (account-)admin,
they can only edit a few of their own fields.

The following fields are not allowed to be updated at all:
*id
e account_id

Example request

{

"active": false,

}

Example response

The following user fields are returned:

{
"Talddopint[Kd"): 1,
"Alctive'|: e,
"lemali[l]']: ['[test/pifojsumer@sleliital.nl/'],
"lf1exmelalsuries molles': [1, 31,
id': 1,
'time iﬂ: 'Euﬁ. e AmS‘teli‘d ",
e+ st ProstieE Use)
3

Regheader Authorization
The authentication token

4.49. flexmeasures.api 239

https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

Reqheader Content-Type
application/json

Resheader Content-Type
application/json
Status 200
UPDATED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

reset_user_password(id: int, user: User)
API endpoint to reset the user’s current password, cookies and auth tokens, and to email a password reset
link to the user.

Reset the user’s password, and send them instructions on how to reset the password. This endpoint is useful
from a security standpoint, in case of worries the password might be compromised. It sets the current
password to something random, invalidates cookies and auth tokens, and also sends an email for resetting
the password to the user.

Users can reset their own passwords. Only admins can use this endpoint to reset passwords of other users.

Reqheader Authorization
The authentication token

Reqgheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

FlexMeasures API v3

240 Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

Functions

flexmeasures.api.v3_0.register_at(app: Flask)
This can be used to register this blueprint together with other api-related things

FlexMeasures API routes and implementations.

Functions

flexmeasures.api.get_versions() — dict

Public endpoint to list API versions.

flexmeasures.api.register_at(app: Flask)

This can be used to register this blueprint together with other api-related things

flexmeasures.api.request_auth_token()

API endpoint to get a fresh authentication access token. Be aware that this fresh token has a limited lifetime
(which depends on the current system setting SECURITY_TOKEN_MAX_AGE).

Pass the email parameter to identify the user. Pass the password parameter to authenticate the user (if not already
authenticated in current session)

4.50 flexmeasures.app

Starting point of the Flask application.

Functions

flexmeasures.app.create(env: str | None = None, path_to_config: str | None = None, plugins: list[str] | None =
None) — Flask

Create a Flask app and configure it.

Set the environment by setting FLEXMEASURES_ENYV as environment variable (also possible in .env). Or,
overwrite any FLEXMEASURES_ENYV setting by passing an env in directly (useful for testing for instance).

A path to a config file can be passed in (otherwise a config file will be searched in the home or instance directo-
ries).

Also, a list of plugins can be set. Usually this works as a config setting, but this is useful for automated testing.

4.51 flexmeasures.auth

Modules
flexmeasures.auth.decorators Auth decorators for endpoints
flexmeasures.auth.error_handling Auth error handling.
flexmeasures.auth.policy Tooling & docs for implementing our auth policy

4.50. flexmeasures.app 241

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

4.51.1 flexmeasures.auth.decorators

Auth decorators for endpoints

Functions

flexmeasures.auth.decorators.account_roles_accepted(*account_roles)

Decorator which specifies that a user’s account must have at least one of the specified roles (or must be an admin).
Example:

@app.route(‘/postMeterData’) @account_roles_accepted(‘Prosumer’, ‘MDC’) def
post_meter_data():

return ‘Meter data posted’
The current user’s account must have either the Prosumer role or MDC role in order to use the service.

Parameters
account_roles — The possible roles.

flexmeasures.auth.decorators.account_roles_required(*account_roles)

Decorator which specifies that a user’s account must have all the specified roles. Example:

@app.route('/dashboard')
@account_roles_required('Prosumer', 'App-subscriber')
def dashboard(Q):

return 'Dashboard'’

The current user’s account must have both the Prosumer role and App-subscriber role in order to view the page.

Parameters
roles — The required roles.

flexmeasures.auth.decorators.permission_required_for_context (permission: str, ctx_arg_pos: int |
None = None, ctx_arg_name: str |
None = None, ctx_loader: Callable |

None = None, pass_ctx_to_loader:
bool = False)

This decorator can be used to make sure that the current user has the necessary permission to access the context.
The permission needs to be a known permission and is checked with principal descriptions from the context’s
access control list (see AuthModelMixin.__acl__). This decorator will first load the context (see below for details)
and then call check_access to make sure the current user has the permission.

A 403 response is raised if there is no principal for the required permission. A 401 response is raised if the user
is not authenticated at all.

We will now explain how to load a context, and give an example:

The context needs to be an AuthModelMixin and is found ... - by loading it via the ctx_loader callable; -
otherwise:

* by the keyword argument ctx_arg_name;
* and/or by a position in the non-keyword arguments (ctx_arg_pos).
If nothing is passed, the context lookup defaults to ctx_arg_pos=0.
Let’s look at an example. Usually, you’d place a marshmallow field further up in the decorator chain, e.g.:

@app.route(“/resource/<resource_id>", methods=[“GET”]) @use_kwargs(

242 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.20.1.dev11

{“the_resource”: ResourceldField(data_key="resource_id”)}, location="path”,

) @permission_required_for_context(‘“read”, ctx_arg_name="the_resource”) @as_json def
view(resource_id: int, the_resource: Resource):

return dict(name=the_resource.name)

Note that in this example, ResourceldField._deserialize() turns the id parameter into a Resource context (if pos-
sible).

The ctx_loader:

The ctx_loader can be a function without arguments or it takes the context loaded from the arguments
as input (using pass_ctx_to_loader=True). A special case is useful when the arguments contain the
context ID (not the instance). Then, the loader can be a subclass of AuthModelMixin, and this deco-
rator will look up the instance.

Using both arg name and position:

Using both ctx_arg_name and ctx_arg_pos arguments is useful when Marshmallow de-serializes to
a dict and you are using use_args. In this case, the context lookup applies first ctx_arg_pos, then
ctx_arg_name.

Let’s look at a slightly more complex example where we combine both special cases from above. We parse a
dictionary from the input with a Marshmallow schema, in which a context ID can be found which we need to
instantiate:

@app.route(“‘/resource”, methods=[“POST”]) @use_args(resource_schema) @permis-
sion_required_for_context(

“create-children”, ctx_arg_pos=1, ctx_arg name="resource_id”, ctx_loader=Resource,
pass_ctx_to_loader=True

) def post(self, resource_data: dict):

Note that in this example, resource_data is the input parsed by resource_schema, “resource_id” is one of the
parameters in this schema, and Resource is a subclass of AuthModelMixin.

flexmeasures.auth.decorators.roles_accepted(*roles)

As in Flask-Security, but also accept admin

flexmeasures.auth.decorators.roles_required(*roles)

As in Flask-Security, but wave through if user is admin

4.51.2 flexmeasures.auth.error_handling

Auth error handling.

Beware: There is a historical confusion of naming between authentication and authorization.
Names of Responses have to be kept as they were called in original W3 protocols. See explanation below.

4.51. flexmeasures.auth 243

FlexMeasures Documentation, Release 0.20.1.dev11

Functions
flexmeasures.auth.error_handling.unauthenticated_handler (mechanisms: list | None = None, headers:

dict | None = None)

Handler for authentication problems. :param mechanisms: a list of which authentication mechanisms were tried.
:param headers: a dict of headers to return. We respond with json if the request doesn’t say otherwise. Also,
other FlexMeasures packages can define that they want to wrap JSON responses and/or render HTML error
pages (for non-JSON requests) in custom ways — by registering unauthenticated_handler_api & unauthenti-
cated_handler_html, respectively.

flexmeasures.auth.error_handling.unauthenticated_handler_e(e)

Swallow error. Useful for classical Flask error handler registration.

flexmeasures.auth.error_handling.unauthorized_handler (func: Callable | None = None, params: list |
None = None)

Handler for authorization problems. :param func: the Flask-Security-Too decorator, if relevant, and params are
its parameters.

We respond with json if the request doesn’t say otherwise. Also, other FlexMeasures packages can define that
they want to wrap JSON responses and/or render HTML error pages (for non-JSON requests) in custom ways —
by registering unauthorized_handler_api & unauthorized_handler_html, respectively.

flexmeasures.auth.error_handling.unauthorized_handler_e(e)

Swallow error. Useful for classical Flask error handler registration.

4.51.3 flexmeasures.auth.policy

Tooling & docs for implementing our auth policy

Functions

flexmeasures.auth.policy.check_access(context: AuthModelMixin, permission: str)

Check if current user can access this auth context if this permission is required, either with admin rights or
principal(s).

Raises 401 or 403 otherwise.

flexmeasures.auth.policy.check_account_membership (user, principal: str) — bool
flexmeasures.auth.policy.check_account_role(user, principal: str) — bool
flexmeasures.auth.policy.check_user_identity(user, principal: str) — bool
flexmeasures.auth.policy.check_user_role (user, principal: str) — bool
flexmeasures.auth.policy.user_has_admin_access (user, permission: str) — bool

flexmeasures.auth.policy.user_matches_principals(user, principals: str | Tuple[str] | List[str |
Tuple[str]]) — bool

Tests if the user matches all passed principals. Returns False if no principals are passed.

244 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.20.1.dev11

Classes

class flexmeasures.auth.policy.AuthModelMixin

Authentication and authorization policies and helpers.

Functions

flexmeasures.auth.register_at(app: Flask)

4.52 flexmeasures.cli

Modules
flexmeasures.cli.data_add CLI commands for populating the database
flexmeasures.cli.data_delete CLI commands for removing data
flexmeasures.cli.data_edit CLI commands for editing data
flexmeasures.cli.data_show CLI commands for listing database contents and classes
flexmeasures.cli.db_ops CLI commands for saving, resetting, etc of the database
flexmeasures.cli. jobs CLI commands for controlling jobs
flexmeasures.cli.monitor CLI commands for monitoring functionality.
flexmeasures.cli.utils Utils for FlexMeasures CLI

4.52.1 flexmeasures.cli.data add

CLI commands for populating the database

Functions

flexmeasures.cli.data_add.check_errors (errors: dict[str, list[str]])
flexmeasures.cli.data_add.check_timezone (timezone)

flexmeasures.cli.data_add.launch_editor (filename: str) — dict
Launch editor to create/edit a json object

flexmeasures.cli.data_add.parse_source (source)

4.52.2 flexmeasures.cli.data delete

CLI commands for removing data

4.52. flexmeasures.cli 245

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

4.52.3 flexmeasures.cli.data_edit

CLI commands for editing data

Functions

flexmeasures.cli.data_edit.parse_attribute_value (attribute_null_value: bool, attribute_float_value:
float | None = None, attribute_bool_value: bool |
None = None, attribute_str_value: str | None =
None, attribute_int_value: int | None = None,
attribute_list_value: str | None = None,
attribute_dict_value: str | None = None) — float |
int | bool | str | list | dict | None

Parse attribute value.

flexmeasures.cli.data_edit.single_true (iterable) — bool

4.52.4 flexmeasures.cli.data show

CLI commands for listing database contents and classes

Functions

flexmeasures.cli.data_show.find_duplicates(_list: list, attr: sir | None = None) — list

Find duplicates in a list, optionally based on a specified attribute.
Parameters
» _list — The input list to search for duplicates.

* attr — The attribute name to consider when identifying duplicates. If None, the function
will check for duplicates based on the elements themselves.

Returns
A list containing the duplicate elements found in the input list.

flexmeasures.cli.data_show.list_items (item_type)

Show available items of a specific type.

4.52.5 flexmeasures.cli.db_ops

CLI commands for saving, resetting, etc of the database

246 Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.20.1.dev11

4.52.6 flexmeasures.cli.jobs

CLI commands for controlling jobs

Functions

flexmeasures.cli. jobs.handle_worker_exception(job, exc_type, exc_value, traceback)

Just a fallback, usually we would use the per-queue handler.

flexmeasures.cli. jobs.parse_queue_list (queue_names_str: str) — list{Queue]

Parse a | separated string of queue names against the app.queues dict.
The app.queues dict is expected to have queue names as keys, and rq.Queue objects as values.

Parameters
queue_names_str — a string with queue names separated by the | character

Returns
a list of Queue objects.

flexmeasures.cli. jobs.wrap_up_message (count_after: int)

4.52.7 flexmeasures.cli.monitor

CLI commands for monitoring functionality.

Functions

flexmeasures.cli.monitor.send_lastseen_monitoring_alert (users: list[User], last_seen_delta:
timedelta, alerted_users: bool,
account_role: str | None = None,
user_role: str | None = None)

Tell monitoring recipients and Sentry about user(s) we haven’t seen in a while.

flexmeasures.cli.monitor.send_task_monitoring_alert(task_name: str, msg: str, latest_run:
LatestTaskRun | None = None, custom_msg: str |
None = None)

Send any monitoring message per Sentry and per email. Also log an error.

4.52.8 flexmeasures.cli.utils

Utils for FlexMeasures CLI

4.52. flexmeasures.cli 247

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

Functions

flexmeasures.cli.utils.abort(message: str)
flexmeasures.cli.utils.done(message: str)

flexmeasures.cli.utils.get_timerange_from_flag(last_hour: bool = False, last_day: bool = False,
last_7_days: bool = False, last_month: bool = False,
last_year: bool = False, timezone:
~pytz.tzinfo.BaseTzInfo = <DstTzInfo 'Asia/Seoul’
LMT+8:28:00 STD>) — tuple[datetime, datetime]

This function returns a time range [start,end] of the last-X period. See input parameters for more details.
Parameters
» last_hour (bool) — flag to get the time range of the last finished hour.
» last_day (bool) — flag to get the time range for yesterday.
* last_7_days (bool) — flag to get the time range of the previous 7 days.
» last_month (bool) — flag to get the time range of last calendar month
* last_year (bool) — flag to get the last completed calendar year
* timezone - timezone object to represent

Returns
start:datetime, end:datetime

flexmeasures.cli.utils.validate_unique(ctx, param, value)

Callback function to ensure multiple values are unique.

Classes

class flexmeasures.cli.utils.DeprecatedDefaultGroup (*args, **kwargs)
Invokes a default subcommand, and shows a deprecation message.
Also adds the invoked_default boolean attribute to the context. A group callback can use this information to

figure out if it’s being executed directly (invoking the default subcommand) or because the execution flow passes
onwards to a subcommand. By default it’s None, but it can be the name of the default subcommand to execute.

import click
from flexmeasures.cli.utils import DeprecatedDefaultGroup

@click.group(cls=DeprecatedDefaul tGroup, default="bar", deprecation_message=
~'"renamed to "foo bar .")
def foo(ctx):
if ctx.invoked_default:
click.echo("foo")

@foo.command ()
def bar(Q:
click.echo("bar")

248 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.20.1.dev11

r$ flexmeasures foo

DeprecationWarning: renamed to " foo bar' .
foo

bar

$ flexmeasures foo bar

bar

__init__(*args, **kwargs)

get_command (ctx, cmd_name)

Given a context and a command name, this returns a Command object if it exists or returns None.

class flexmeasures.cli.utils.DeprecatedOption(*args, **kwargs)

A custom option that can be used to mark an option as deprecated.

References

Copied from https://stackoverflow.com/a/50402799/13775459
__init__(*args, **kwargs)

class flexmeasures.cli.utils.DeprecatedOptionsCommand (name: str | None, context_settings:
MutableMapping[str, Any] | None = None,
callback: Callable[]...], Any] | None = None,
params: List[Parameter] | None = None,
help: str | None = None, epilog: str| None =
None, short_help: str | None = None,
options_metavar: str | None = '[OPTIONS]',
add_help_option: bool = True,
no_args_is_help: bool = False, hidden: bool
= False, deprecated: bool = False)

A custom command that can be used to mark options as deprecated.

References

Adapted from https://stackoverflow.com/a/50402799/13775459

make_parser (ctx)
Hook ‘make_parser’ and during processing check the name used to invoke the option to see if it is preferred

class flexmeasures.cli.utils.MsgStyle
Stores the text styles for the different events

Styles options are the attributes of the click.style which can be found [here](https://click.palletsprojects.com/en/
8.1.x/api/#click.style).

CLI functions for FlexMeasures hosts.

4.52. flexmeasures.cli 249

https://stackoverflow.com/a/50402799/13775459
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://stackoverflow.com/a/50402799/13775459
https://click.palletsprojects.com/en/8.1.x/api/#click.style
https://click.palletsprojects.com/en/8.1.x/api/#click.style

FlexMeasures Documentation, Release 0.20.1.dev11

Functions

flexmeasures.cli.is_running() — bool

True if we are running one of the custom FlexMeasures CLI commands.

We use this in combination with authorization logic, e.g. we assume that only sysadmins run commands there,
but also we consider forecasting & scheduling jobs to be in that realm, as well.

This tooling might not live forever, as we could evolve into a more sophisticated auth model for these cases. For
instance, these jobs are queued by the system, but caused by user actions (sending data), and then they are run
by the system.

See also: the run_as_cli test fixture, which uses the (non-public) PRETEND_RUNNING_AS_CLI env setting.

flexmeasures.cli.register_at(app: Flask)

4.53 flexmeasures.data

Modules

flexmeasures.data.config Database configuration utils

flexmeasures.data.models Data models for FlexMeasures

flexmeasures.data.queries Data query functions

flexmeasures.data.schemas Data schemas (Marshmallow)

flexmeasures.data.scripts Useful scripts

flexmeasures.data.services Business logic

flexmeasures.data.transactional These, and only these, functions should help you with
treating your own code in the context of one database
transaction.

flexmeasures.data.utils Utils around the data models and db sessions

4.53.1 flexmeasures.data.config

Database configuration utils

Functions

flexmeasures.data.config.commit_and_start_new_session(app: Flask)
Use this when a script wants to save a state before continuing Not tested well, just a starting point - not recom-
mended anyway for any logic used by views or tasks. Maybe session.flush() can help you there.
flexmeasures.data.config.configure_db_for (app: Flask)
Call this to configure the database and the tools we use on it for the Flask app. This should only be called once
in the app’s lifetime.
flexmeasures.data.config.init_db()

Initialise the database object

250 Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.20.1.dev11

4.53.2 flexmeasures.data.models

Modules

flexmeasures.data.models.annotations

flexmeasures.data.models.charts

flexmeasures.data.models.data_sources

flexmeasures.data.models. forecasting

flexmeasures.data.models.generic_assets

flexmeasures.data.models. This module is part of our data model migration (see
legacy_migration_utils https://github.com/SeitaBV/flexmeasures/projects/9).
flexmeasures.data.models.parsing utils

flexmeasures.data.models.planning

flexmeasures.data.models.reporting

flexmeasures.data.models. task_runs

flexmeasures.data.models. time_series

flexmeasures.data.models.user

flexmeasures.data.models.validation_utils

flexmeasures.data.models.weather

flexmeasures.data.models.annotations
Functions

flexmeasures.data.models.annotations.get_or_create_annotation(annotation: Annotation) —
Annotation

Add annotation to db session if it doesn’t exist in the session already.
Return the old annotation object if it exists (and expunge the new one). Otherwise, return the new one.

flexmeasures.data.models.annotations.to_annotation_frame (annotations: list[Annotation]) —
DataFrame

Transform a list of annotations into a DataFrame.

We don’t use a BeliefsDataFrame here, because they are designed for quantitative data only.

4.53. flexmeasures.data 251

https://github.com/SeitaBV/flexmeasures/projects/9
https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.20.1.dev11

Classes

class flexmeasures.data.models.annotations.AccountAnnotationRelationship (**kwargs)
Links annotations to accounts.
__init__ (**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.
query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

class flexmeasures.data.models.annotations.Annotation(**kwargs)

An annotation is a nominal value that applies to a specific time or time span.

Examples of annotation types:

* user annotation: annotation.type == “label” and annotation.source.type == “user”

* unresolved alert: annotation.type == “alert”

* resolved alert: annotation.type == “label” and annotation.source.type == “alerting script”

* organisation holiday: annotation.type == “holiday” and annotation.source.type == “user”

* public holiday: annotation.type == “holiday” and annotation.source.name == “workalendar”

__init__ (**kwargs)

A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

classmethod add(df: DataFrame, annotation_type: str, expunge_session: bool = False, allow_overwrite:
bool = False, bulk_save_objects: bool = False, commit_transaction: bool = False) —
list{Annotation]

Add a data frame describing annotations to the database and return the Annotation objects.
Parameters

e df - Data frame describing annotations. Expects the following columns (or multi-index
levels): - start - end or duration - content - belief_time - source

¢ annotation_type — One of the possible Enum values for annotation.type

¢ expunge_session—if True, all non-flushed instances are removed from the session before
adding annotations. Expunging can resolve problems you might encounter with states of
objects in your session. When using this option, you might want to flush newly-created
objects which are not annotations (e.g. a sensor or data source object).

252 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.20.1.dev11

¢ allow_overwrite — if True, new objects are merged if False, objects are added to the
session or bulk saved

* bulk_save_objects — if True, objects are bulk saved with session.bulk_save_objects(),
which is quite fast but has several caveats, see: https://docs.sqlalchemy.org/orm/
persistence_techniques.html#bulk-operations-caveats if False, objects are added to the ses-
sion with session.add_all()

¢ commit_transaction - if True, the session is committed if False, you can still add other
data to the session and commit it all within an atomic transaction
query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

class flexmeasures.data.models.annotations.GenericAssetAnnotationRelationship(**kwargs)
Links annotations to generic assets.
__init__ (**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.
query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

class flexmeasures.data.models.annotations.SensorAnnotationRelationship (**kwargs)
Links annotations to sensors.
__init__ (**kwargs)

A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.
query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

4.53. flexmeasures.data 253

https://docs.sqlalchemy.org/orm/persistence_techniques.html#bulk-operations-caveats
https://docs.sqlalchemy.org/orm/persistence_techniques.html#bulk-operations-caveats

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.models.charts

Modules

flexmeasures.data.models.charts.
belief_charts
flexmeasures.data.models.charts.defaults

flexmeasures.data.models.charts.belief charts

Functions

flexmeasures.data.models.charts.belief_charts.bar_chart(sensor: Sensor, event_starts_after:
datetime | None = None,
event_ends_before: datetime | None =
None, **override_chart_specs: dict)

flexmeasures.data.models.charts.belief_charts.chart_for_multiple_sensors(sensors_to_show:

list['Sensor’,
list['Sensor']],
event_starts_after:
datetime | None =
None,
event_ends_before:
datetime | None =
None, **over-
ride_chart_specs:
dict)

flexmeasures.data.models.charts.belief charts.create_circle_layer (sensors: list[Sensor],

event_start_field_definition:

event_value_field_definition:
dict, sensor_field_definition:
dict, shared_tooltip: list)

flexmeasures.data.models.charts.belief_charts.create_fall_dst_transition_layer (timezone,

Special layer for showing data during the daylight savings time transition in fall.

mark,
event_value_field_definition,
event_start_field_definition,
tooltip, split:

str) — dict

flexmeasures.data.models.charts.belief_charts.create_line_layer(sensors: list[Sensor],
event_start_field_definition: dict,
event_value_field_definition:
dict, sensor_field_definition:

dict)

254 Chapter 4. Where to start reading?

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.models.charts.belief charts.create_rect_layer(event_start_field_definition: dict,
event_value_field_definition:
dict, shared_tooltip: list)

flexmeasures.data.models.charts.belief charts.daily_heatmap (sensor: Sensor, event_starts_after:
datetime | None = None,
event_ends_before: datetime | None =
None, **override_chart_specs: dict)

flexmeasures.data.models.charts.belief_charts.determine_shared_sensor_type(sensors:
list[Sensor]) —
str

flexmeasures.data.models.charts.belief_charts.determine_shared_unit (sensors: list/Sensor]) —
str

flexmeasures.data.models.charts.belief_charts.heatmap (sensor: Sensor, event_starts_after: datetime |
None = None, event_ends_before: datetime |
None = None, split: str = 'weekly’,
**override_chart_specs: dict)

flexmeasures.data.models.charts.belief charts.weekly_heatmap (sensor: Sensor, event_starts_after:
datetime | None = None,
event_ends_before: datetime | None
= None, **override_chart_specs:
dict)

flexmeasures.data.models.charts.defaults

Functions

flexmeasures.data.models.charts.defaults.apply_chart_defaults(fi)

flexmeasures.data.models.charts.defaults.merge_vega_lite_specs(child: dict, parent: dict) — dict
Merge nested dictionaries, with child inheriting values from parent.
Child values are updated with parent values if they exist. In case a field is a string and that field is updated with

some dict, the string is moved inside the dict under a field defined in vega_lite_field_mapping. For example,
‘title’ becomes ‘text’ and ‘mark’ becomes ‘type’.

Functions

flexmeasures.data.models.charts.chart_type_to_chart_specs(chart_type: str, **kwargs) — dict

Create chart specs of a given chart type, using FlexMeasures defaults for settings like width and height.

Parameters
chart_type — Name of a variable defining chart specs or a function returning chart specs. The
chart specs can be a dictionary or an Altair chart specification. - In case of a dictionary, the creator
needs to ensure that the dictionary contains valid specs - In case of an Altair chart specification,
Altair validates for you

Returns
A dictionary containing a vega-lite chart specification

4.53. flexmeasures.data 255

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.models.data_sources
Classes

class flexmeasures.data.models.data_sources.DataGenerator(config: dict | None = None,
save_config=True,
save_parameters=False, **kwargs)

__init__(config: dict | None = None, save_config=True, save_parameters=False, **kwargs) — None
Base class for the Schedulers, Reporters and Forecasters.

The configuration config stores static parameters, parameters that, if changed, trigger the creation of a new
DataSource. Dynamic parameters, such as the start date, can go into the parameters. See docstring of the
method DataGenerator.compute for more details. Nevertheless, the parameter save_parameters can be set
to True if some parameters need to be saved to the DB. In that case, the method _clean_parameters is
called to remove any field that is not to be persisted, e.g. time parameters which are already contained in
the TimedBelief.

Create a new DataGenerator with a certain configuration. There are two alternatives to define the parame-
ters:

1. Serialized through the keyword argument config.
2. Deserialized, passing each parameter as keyword arguments.
The configuration is validated using the schema _config_schema, to be defined by the subclass.

config cannot contain the key config at its top level, otherwise it could conflict with the constructor keyword
argument config when passing the config as deserialized attributes.

Example:
The configuration requires two parameters for the PV and consumption sensors.
Option 1:

dg = DataGenerator(config = {
“sensor_pv” : 1, “sensor_consumption” : 2

D

Option 2:
sensor_pv = Sensor.query.get(1) sensor_consumption = Sensor.query.get(2)

dg = DataGenerator(sensor_pv = sensor_pv,
sensor_consumption = sensor_consumption)
Parameters
» config - serialized config parameters, defaults to None
¢ save_config — whether to save the config into the data source attributes

* save_parameters — whether to save the parameters into the data source attributes

_clean_parameters (parameters: dict) — dict

Use this function to clean up the parameters dictionary from the fields that are not to be persisted to the DB
as data source attributes (when save_parameters=True), e.g. because they are already stored as TimedBelief
properties, or otherwise.

Example:

256 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

An DataGenerator has the following parameters: [“start”, “end”, “field1”, “field2”’] and we want
just “field1”” and “field2” to be persisted.

Parameters provided to the compute method (input of the method _clean_parameters): parameters
= {
“start” : “2023-01-01T00:00:00+02:00”, “end” : “2023-01-02T00:00:00+02:00”,
“field1” : 1, “field2” : 2

}

Parameters persisted to the DB (output of the method _clean_parameters): parameters = {“field1”
1 1,7field2” @ 2}
compute (parameters: dict | None = None, **kwargs) — list[dict[str, Any]]

The configuration parameters stores dynamic parameters, parameters that, if changed, DO NOT trigger the
creation of a new DataSource. Static parameters, such as the topology of an energy system, can go into

config.

parameters cannot contain the key parameters at its top level, otherwise it could conflict with keyword
argument parameters of the method compute when passing the parameters as deserialized attributes.

Parameters
parameters — serialized parameters parameters, defaults to None

property data_source: DataSource

DataSource property derived from the source_info: source_type (scheduler, forecaster or reporter), model
(e.g AggregatorReporter) and attributes. It looks for a data source in the database the marges the source_info
and, in case of not finding any, it creates a new one. This property gets created once and it’s cached for the
rest of the lifetime of the DataGenerator object.

classmethod get_data_source_info() — dict

Create and return the data source info, from which a data source lookup/creation is possible.
See for instance get_data_source_for_job().

class flexmeasures.data.models.data_sources.DataSource (name=None, type=None, user=None,
attributes=None, **kwargs)

Each data source is a data-providing entity.

__init__ (name=None, type=None, user=None, attributes=None, **kwargs)

A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

property description

Extended description

For example:

>>> DataSource("Seita", type="forecaster", model="naive", version="1.2").
—.description
<<< "Seita's naive model v1.2.0"

get_attribute (attribute: str, default: Any | None = None) — Any
Looks for the attribute in the DataSource’s attributes column.

4.53. flexmeasures.data 257

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any

FlexMeasures Documentation, Release 0.20.1.dev11

id
property label

Human-readable label (preferably not starting with a capital letter, so it can be used in a sentence).

hame: str

flexmeasures.data.models.forecasting

Modules

flexmeasures.data.models. forecasting.
exceptions

flexmeasures.data.models. forecasting.
model_spec_factory
flexmeasures.data.models. forecasting.
model_specs

flexmeasures.data.models. forecasting.utils

flexmeasures.data.models.forecasting.exceptions

Exceptions

exception flexmeasures.data.models.forecasting.exceptions.InvalidHorizonException

exception flexmeasures.data.models.forecasting.exceptions.NotEnoughDataException

flexmeasures.data.models.forecasting.model_spec_factory

Functions

flexmeasures.data.models. forecasting.model_spec_factory.configure_regressors_for_nearest_weather_sensor

We use weather data as regressors. Here, we configure them.

258 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.models. forecasting.model_spec_factory.create_initial_model_specs(sensor:
Sensor,
fore-
cast_start:
date-
time,
fore-
cast_end:
date-
time,
fore-
cast_horizon:
timedelta,
ex_post_horizon:
timedelta
| None
= None,
trans-
form_to_normal:
bool =
True,
use_regressors:
bool =
True,
use_periodicity:
bool =
True,
cus-
tom_model_params:
dict |
None =
None,
time_series_class:
type |
None =
<class
flexmea-
sures.data.models.time_se
_>
ModelSpecs

Generic model specs for all asset types (also for markets and weather sensors) and horizons. Fills in training,
testing periods, lags. Specifies input and regressor data. Does not fill in which model to actually use. TODO:
check if enough data is available both for lagged variables and regressors TODO: refactor assets and markets to
store a list of pandas offset or timedelta instead of booleans for

seasonality, because e.g. although solar and building assets both have daily seasonality, only the
former is insensitive to daylight savings. Therefore: solar periodicity is 24 hours, while building
periodicity is 1 calendar day.

4.53. flexmeasures.data 259

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.models. forecasting.model_spec_factory.get_normalization_transformation_from_sensor_at

Transform data to be normal, using the BoxCox transformation. Lambda parameter is chosen according to the
asset type.

Classes

class flexmeasures.data.models.forecasting.model_spec_factory.TBSeriesSpecs(search_params:
dict, name: str,
time_series_class:
type | None =
<class 'flexmea-
sures.data.models.time_series. Time
search_fnc: str =
'search’,
original_tz:
tzinfo | None =
<UTC>, fea-
ture_transformation:
ReversibleTrans-
formation | None
= None,
post_load_processing:
Transformation |
None = None, re-
sampling_config:
dict[str, Any] =
None, interpola-
tion_config:
dict[str, Any] =
None)

Compatibility for using timetomodel.SeriesSpecs with timely_beliefs.BeliefsDataFrames.

This implements _load_series such that <time_series_class>.search is called, with the parameters in
search_params. The search function is expected to return a BeliefsDataFrame.

__init__(search_params: dict, name: str, time_series_class: type | None = <class
flexmeasures.data.models.time_series. TimedBelief>, search_fnc: str = 'search’, original_tz: tzinfo
| None = <UTC>, feature_transformation: ReversibleTransformation | None = None,
post_load_processing: Transformation | None = None, resampling_config: dict[str, Any] = None,
interpolation_config: dict[str, Any] = None)

_load_series() — Series

Subclasses overwrite this function to get the raw data. This method is responsible to call any
post_load_processing at the right place.

260 Chapter 4. Where to start reading?

https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

check_data(df: DataFrame)

Raise error if data is empty or contains nan values. Here, other than in load_series, we can show the query,
which is quite helpful.

flexmeasures.data.models.forecasting.model_specs

Modules

flexmeasures.data.models. forecasting.
model_specs.linear_regression
flexmeasures.data.models. forecasting.
model_specs.naive

flexmeasures.data.models.forecasting.model_specs.linear_regression

Functions

flexmeasures.data.models. forecasting.model_specs.linear_regression.ols_specs_configurator (**kwargs)
Create and customize initial specs with OLS. See model_spec_factory for param docs.

flexmeasures.data.models.forecasting.model_specs.naive

Functions

flexmeasures.data.models. forecasting.model_specs.naive.naive_specs_configurator (**kwargs)
Create and customize initial specs with OLS. See model_spec_factory for param docs.

Classes

class flexmeasures.data.models.forecasting.model_specs.naive.Naive(*args, **kwargs)

Naive prediction model for a single input feature that simply throws back the given feature. Under the hood, it
uses linear regression by ordinary least squares, trained with points (0,0) and (1,1).

__init__(*args, **kwargs)

flexmeasures.data.models.forecasting.utils

Functions

flexmeasures.data.models. forecasting.utils.check_data_availability(old_sensor_model,
old_time_series_data_model,
forecast_start: datetime,
forecast_end: datetime,
query_window:
tuple[datetime, datetime],
horizon: timedelta)

4.53. flexmeasures.data 261

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta

FlexMeasures Documentation, Release 0.20.1.dev11

Check if enough data is available in the database in the first place, for training window and lagged variables.
Otherwise, suggest new forecast period. TODO: we could also check regressor data, if we get regressor specs
passed in here.

flexmeasures.data.models. forecasting.utils.create_lags(n_lags: int, sensor: Sensor, horizon:
timedelta, resolution: timedelta,
use_periodicity: bool) — list[timedelta]

List the lags for this asset type, using horizon and resolution information.

flexmeasures.data.models. forecasting.utils.get_query_window(training_start: datetime, forecast_end:
datetime, lags: list[timedelta]) —
tuple[datetime, datetime]

Derive query window from start and end date, as well as lags (if any). This makes sure we have enough data for
lagging and forecasting.

flexmeasures.data.models. forecasting.utils.set_training and_testing_dates(forecast_start:
datetime, train-
ing_and_testing_period:
timedelta |
tuple[datetime,
datetime]) —
tuple[datetime,
datetime]

If needed (if training_and_testing_period is a timedelta), derive training_start and testing_end from forecast-
ing_start, otherwise simply return training_and_testing_period.

R forecast_horizon/belief_horizon------ | | |emee--- resolution------- | belief_time event_start
event_end

|--resolution--|-resolution—|--resolution--|-resolution—|--resolution--|-resolution—|

| | | belief_time event_start |

query_window

262 Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

FlexMeasures Documentation, Release 0.20.1.dev11

Functions

flexmeasures.data.models. forecasting.lookup_model_specs_configurator (model_search_term: str =

'linear-OLS") —
Callable[]...],
tuple[ModelSpecs, str,
str]]

This function maps a model-identifying search term to a model configurator function, which can make model

meta data. Why use a string? It might be stored on RQ jobs. It might also leave more freedom, we can then map

multiple terms to the same model or vice versa (e.g. when different versions exist).

Model meta data in this context means a tuple of:

* timetomodel.ModelSpecs. To fill in those specs, a configurator should accept: - old_sensor:
Union[Asset, Market, WeatherSensor], - start: datetime, # Start of forecast period - end: datetime,
End of forecast period - horizon: timedelta, # Duration between time of forecasting and time which
is forecast - ex_post_horizon: timedelta = None, - custom_model_params: dict = None, # overwrite
forecasting params, useful for testing or experimentation

* amodel_identifier (useful in case the model_search_term was generic, e.g. “latest”)

« a fallback_model_search_term: a string which the forecasting machinery can use to choose
a different model (using this mapping again) in case of failure.

So to implement a model, write such a function and decide here which search term(s) map(s) to it.

flexmeasures.data.models.generic_assets
Functions

flexmeasures.data.models.generic_assets.assets_share_location(assets: list/GenericAsset]) — bool

Return True if all assets in this list are located on the same spot. TODO: In the future, we might soften this to
compare if assets are in the same “housing” or “site”.

flexmeasures.data.models.generic_assets.create_generic_asset (generic_asset_type: str, **kwargs)
— GenericAsset

Create a GenericAsset and assigns it an id.

Parameters

CEINT3

e generic_asset_type — “asset”, “market” or “weather_sensor”

3

* kwargs — should have values for keys “name”, and: - “asset_type_name” or “as-
set_type” when generic_asset_type is “asset” - “market_type_name” or “market_type” when
generic_asset_type is “market” - “weather_sensor_type_name” or ‘“weather_sensor_type”
when generic_asset_type is “weather_sensor” - alternatively, “sensor_type” is also fine

Returns
the created GenericAsset

flexmeasures.data.models.generic_assets.get_center_location_of_assets(user: User | None) —
tuple[float, float]

Find the center position between all generic assets of the user’s account.

4.53. flexmeasures.data 263

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

FlexMeasures Documentation, Release 0.20.1.dev11

Classes

class flexmeasures.data.models.generic_assets.GenericAsset(**kwargs)

An asset is something that has economic value.

Examples of tangible assets: a house, a ship, a weather station. Examples of intangible assets: a market, a
country, a copyright.

__init__(**kwargs)

A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

add_annotations (df: DataFrame, annotation_type: str, commit_transaction: bool = False)
Add a data frame describing annotations to the database, and assign the annotations to this asset.

property asset_type: GenericAssetType
This property prepares for dropping the “generic” prefix later

chart (chart_type: str = 'chart_for_multiple_sensors', event_starts_after: datetime | None = None,
event_ends_before: datetime | None = None, beliefs_after: datetime | None = None, beliefs_before:
datetime | None = None, source: DataSource | list[DataSource] | int | list[int] | str | list[str] | None =
None, include_data: bool = False, dataset_name: str | None = None, **kwargs) — dict

Create a vega-lite chart showing sensor data.
Parameters

¢ chart_type - currently only “bar_chart” # todo: where can we properly list the available
chart types?

* event_starts_after — only return beliefs about events that start after this datetime (in-
clusive)

* event_ends_before - only return beliefs about events that end before this datetime (in-
clusive)

* beliefs_after — only return beliefs formed after this datetime (inclusive)
¢ beliefs_before — only return beliefs formed before this datetime (inclusive)

* source — search only beliefs by this source (pass the DataSource, or its name or id) or list
of sources

¢ include_data — if True, include data in the chart, or if False, exclude data

¢ dataset_name — optionally name the dataset used in the chart (the default name is sen-
sor_<id>)

Returns
JSON string defining vega-lite chart specs

count_annotations (annotation_starts_after: datetime | None = None, annotations_after: datetime | None =
None, annotation_ends_before: datetime | None = None, annotations_before: datetime
| None = None, source: DataSource | list[DataSource] | int | list[int] | str| list[str] |
None = None, annotation_type: str = None) — int

Count the number of annotations assigned to this asset.

264

Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

classmethod get_timerange (sensors: list[Sensor]) — dict[str, datetime]

Time range for which sensor data exists.

Parameters
sensors — sensors to check

Returns
dictionary with start and end, for example: {

‘start’: datetime.datetime(2020, 12, 3, 14, 0, tzinfo=pytz.utc), ‘end’: date-
time.datetime(2020, 12, 3, 14, 30, tzinfo=pytz.utc)

}

great_circle_distance(**kwargs)

Query great circle distance (unclear if in km or in miles).

Can be called with an object that has latitude and longitude properties, for example:
great_circle_distance(object=asset)

Can also be called with latitude and longitude parameters, for example:
great_circle_distance(latitude=32, longitude=54) great_circle_distance(lat=32, Ing=54)

Requires the following Postgres extensions: earthdistance and cube.

property has_energy_sensors: bool

True if at least one energy sensor is attached
property has_power_sensors: bool
True if at least one power sensor is attached
property offspring: list[GenericAsset]
Returns a flattened list of all offspring, which is looked up recursively.

query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

search_annotations (annotations_after: datetime | None = None, annotations_before: datetime | None =
None, source: DataSource | listfDataSource] | int | list[int] | str | list[str] | None =
None, annotation_type: str = None, include_account_annotations: bool = False,
as_frame: bool = False) — list{[Annotation] | pd.DataFrame

Return annotations assigned to this asset, and optionally, also those assigned to the asset’s account.
The returned annotations do not include any annotations on public accounts.
Parameters
» annotations_after - only return annotations that end after this datetime (exclusive)

* annotations_before — only return annotations that start before this datetime (exclusive)

4.53. flexmeasures.data 265

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.20.1.dev11

search_beliefs(sensors: list['Sensor'] | None = None, event_starts_after: datetime | None = None,

event_ends_before: datetime | None = None, beliefs_after: datetime | None = None,
beliefs_before: datetime | None = None, horizons_at_least: timedelta | None = None,

horizons_at_most: timedelta | None = None, source: DataSource | [ist[DataSource] | int |

list[int] | str | list[str] | None = None, most_recent_beliefs_only: bool = True,

most_recent_events_only: bool = False, as_json: bool = False) — BeliefsDataFrame | str

Search all beliefs about events for all sensors of this asset

If you don’t set any filters, you get the most recent beliefs about all events.

Parameters

sensors — only return beliefs about events registered by these sensors

event_starts_after — only return beliefs about events that start after this datetime (in-
clusive)

event_ends_before — only return beliefs about events that end before this datetime (in-
clusive)

beliefs_after — only return beliefs formed after this datetime (inclusive)
beliefs_before — only return beliefs formed before this datetime (inclusive)

horizons_at_least — only return beliefs with a belief horizon equal or greater than this
timedelta (for example, use timedelta(0) to get ante knowledge time beliefs)

horizons_at_most — only return beliefs with a belief horizon equal or less than this
timedelta (for example, use timedelta(0) to get post knowledge time beliefs)

source — search only beliefs by this source (pass the DataSource, or its name or id) or list
of sources

most_recent_events_only — only return (post knowledge time) beliefs for the most re-
cent event (maximum event start)

as_json — return beliefs in JSON format (e.g. for use in charts) rather than as Beliefs-
DataFrame

Returns
dictionary of BeliefsDataFrames or JSON string (if as_json is True)

property sensors_to_show: 1list['Sensor' | list['Sensor']]

Sensors to show, as defined by the sensors_to_show attribute.

Sensors to show are defined as a list of sensor ids, which is set by the “sensors_to_show” field of the asset’s
“attributes” column. Valid sensors either belong to the asset itself, to other assets in the same account, or
to public assets. In play mode, sensors from different accounts can be added. In case the field is missing,
defaults to two of the asset’s sensors.

Sensor ids can be nested to denote that sensors should be ‘shown together’, for example, layered rather than
vertically concatenated. How to interpret ‘shown together’ is technically left up to the function returning
chart specs, as are any restrictions regarding what sensors can be shown together, such as: - whether they
should share the same unit - whether they should share the same name - whether they should belong to
different assets

For example, this denotes showing sensors 42 and 44 together:

sensors_to_show = [40, 35, 41, [42, 44], 43, 45]

property timerange: dict[str, datetime]

Time range for which sensor data exists.

266

Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime

FlexMeasures Documentation, Release 0.20.1.dev11

Returns
dictionary with start and end, for example: {

‘start’: datetime.datetime(2020, 12, 3, 14, 0, tzinfo=pytz.utc), ‘end’: date-
time.datetime(2020, 12, 3, 14, 30, tzinfo=pytz.utc)

}

property timerange_of_sensors_to_show: dict[str, datetime]

Time range for which sensor data exists, for sensors to show.
Returns
dictionary with start and end, for example: {

‘start’: datetime.datetime(2020, 12, 3, 14, 0, tzinfo=pytz.utc), ‘end’: date-
time.datetime (2020, 12, 3, 14, 30, tzinfo=pytz.utc)

}

property timezone: str
Timezone relevant to the asset.

If a timezone is not given as an attribute of the asset, it is taken from one of its sensors.

class flexmeasures.data.models.generic_assets.GenericAssetType (**kwargs)

An asset type defines what type an asset belongs to.
Examples of asset types: WeatherStation, Market, CP, EVSE, WindTurbine, SolarPanel, Building.
__init__ (**kwargs)

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.
query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

flexmeasures.data.models.legacy migration_utils

This module is part of our data model migration (see https://github.com/SeitaBV/flexmeasures/projects/9). It will
become obsolete when Assets, Markets and WeatherSensors can no longer be initialized.

4.53. flexmeasures.data 267

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/SeitaBV/flexmeasures/projects/9

FlexMeasures Documentation, Release 0.20.1.dev11

Functions

flexmeasures.data.models.legacy_migration_utils.copy_old_sensor_attributes(old_sensor,
old_sensor_type_attributes:
list[str],
old_sensor_attributes:
list[str],
old_sensor_type:
AssetType |
MarketType |
WeatherSen-
sorType = None)
— dict

Parameters
* old_sensor — an Asset, Market or WeatherSensor instance

* old_sensor_type_attributes — names of attributes of the old sensor’s type that should
be copied

* old_sensor_attributes — names of attributes of the old sensor that should be copied
* old_sensor_type — the old sensor’s type

Returns
dictionary containing an “attributes” dictionary with attribute names and values

flexmeasures.data.models.legacy_migration_utils.get_old_model_type (kwargs: dict,
old_sensor_type_class:
Type[AssetType | MarketType
| WeatherSensorType],
old_sensor_type_name_key:
str, old_sensor_type_key:
str) — AssetType |
MarketType |
WeatherSensorType

Parameters
» kwargs — keyword arguments used to initialize a new Asset, Market or WeatherSensor
* old_sensor_type_class — AssetType, MarketType, or WeatherSensorType

e old_sensor_type_name_key - ‘“asset_type_name”, “market_type_name”, or
“weather_sensor_type_name”

* old_sensor_type_key — “asset_type”, “market_type”, or “sensor_type” (instead of
“weather_sensor_type”), i.e. the name of the class attribute for the db.relationship to the
type’s class

Returns
the old sensor’s type

268 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.models.parsing_utils
Functions

flexmeasures.data.models.parsing_utils.parse_source_arg(source: DataSource | int | str |
Sequence[DataSource] | Sequence[int] |
Sequence[str] | None) — list[DataSource] |
None

Parse the “source” argument by looking up DataSources corresponding to any given ids or names.

Passes None as is (i.e. no source argument is given). Accepts ids and names as list or tuples, always converting
them to a list.

flexmeasures.data.models.planning

Modules

flexmeasures.data.models.planning.battery

flexmeasures.data.models.planning.
charging_station
flexmeasures.data.models.planning.
exceptions
flexmeasures.data.models.planning.
linear_optimization
flexmeasures.data.models.planning.process

flexmeasures.data.models.planning.storage

flexmeasures.data.models.planning.utils

flexmeasures.data.models.planning.battery

Functions

flexmeasures.data.models.planning.battery.schedule_battery(*args, **kwargs)

flexmeasures.data.models.planning.charging_station

Functions

flexmeasures.data.models.planning.charging_station.schedule_charging_station(*args,
**kwargs)

4.53. flexmeasures.data 269

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.models.planning.exceptions

Exception

exception
exception
exception
exception
exception
exception

exception

S

flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures

flexmeasures

.data.
.data.
.data.
.data.
.data.
.data.

.data.

models.
models.
models.
models.
models.
models.

models.

planning.
planning.
planning.
planning.
planning.
planning.

planning.

exceptions.InfeasibleProblemException
exceptions.MissingAttributeException
exceptions.UnknownForecastException
exceptions.UnknownMarketException
exceptions.UnknownPricesException
exceptions.WrongEntityException

exceptions.WrongTypeAttributeException

flexmeasures.data.models.planning.linear_optimization

Functions

flexmeasures.data.models.planning.linear_optimization.device_scheduler (device_constraints:

list[pd.DataFrame],
ems_constraints.
pd.DataFrame,
commitment_gquantities:
list[pd.Series], commit-
ment_downwards_deviation_price:
list[pd.Series] |

list{float], commit-
ment_upwards_deviation_price:
list[pd.Series] |

list[float], initial_stock:

float =0) —
tuple[list[pd.Series],

float, SolverResults,
ConcreteModel]

This generic device scheduler is able to handle an EMS with multiple devices, with various types of constraints
on the EMS level and on the device level, and with multiple market commitments on the EMS level. A typical
example is a house with many devices. The commitments are assumed to be with regard to the flow of energy to
the device (positive for consumption, negative for production). The solver minimises the costs of deviating from
the commitments.

Device constraints are on a device level. Handled constraints (listed by column name):

max: maximum stock assuming an initial stock of zero (e.g. in MWh or boxes) min: minimum stock
assuming an initial stock of zero equal: exact amount of stock (we do this by clamping min and max)
efficiency: amount of stock left at the next datetime (the rest is lost) derivative max: maximum flow (e.g.
in MW or boxes/h) derivative min: minimum flow derivative equals: exact amount of flow (we do this by
clamping derivative min and derivative max) derivative down efficiency: conversion efficiency of flow out
of a device (flow out : stock decrease) derivative up efficiency: conversion efficiency of flow into a device
(stock increase : flow in) stock delta: predefined stock delta to apply to the storage device. Positive values
cause an increase and negative values a decrease

270

Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

FlexMeasures Documentation, Release 0.20.1.dev11

EMS constraints are on an EMS level. Handled constraints (listed by column name):
derivative max: maximum flow derivative min: minimum flow

Commitments are on an EMS level. Parameter explanations:
commitment_quantities: amounts of flow specified in commitments (both previously ordered and
newly requested)

* e.g. in MW or boxes/h
commitment_downwards_deviation_price: penalty for downwards deviations of the flow
* e.g. in EUR/MW or EUR/(boxes/h)

* either a single value (same value for each flow value) or a Series (different value for each flow
value)

commitment_upwards_deviation_price: penalty for upwards deviations of the flow
All Series and DataFrames should have the same resolution.

For now, we pass in the various constraints and prices as separate variables, from which we make a Multilndex
DataFrame. Later we could pass in a Multilndex DataFrame directly.

flexmeasures.data.models.planning.process

Classes

class flexmeasures.data.models.planning.process.ProcessScheduler (sensor: Sensor | None = None,
start: datetime | None = None,
end: datetime | None = None,
resolution: timedelta | None =
None, belief_time: datetime |
None = None, asset_or_sensor:
Asset | Sensor | None = None,
round_to_decimals: int | None
= 0, flex_model: dict | None =
None, flex_context: dict | None
= None, return_multiple: bool
= False)

block_invalid_starting_times_for_whole_process_scheduling(process_type: ProcessType,
time_restrictions: Series,
duration: timedelta, rows_to_fill:
int) — Series

Blocks time periods where the process cannot be schedule into, making
sure no other time restrictions runs in the middle of the activation of the process

More technically, this function applying an erosion of the time_restrictions array with a block of length
duration.

Then, the condition if time_restrictions.sum() == len(time_restrictions):, makes sure that at least we have
a spot to place the process.

For example:
time_restriction=[1 00111001 0]

applying a dilation with duration = 2 time_restriction=[101111011 1]

4.53. flexmeasures.data 271

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

We can only fit a block of duration = 2 in the positions 1 and 6. sum(start_time_restrictions) == §, while
the len(time_restriction) == 10, which means we have 10-8=2 positions.

Parameters
e process_type — INFLEXIBLE, SHIFTABLE or BREAKABLE

e time_restrictions — boolean time series indicating time periods in which the process
cannot be scheduled.

¢ duration - (datetime) duration of the length
e rows_to_£ill — (int) time periods that the process lasts

Returns
filtered time restrictions

compute() — pd.Series | None

Schedule a process, defined as a power and a duration, within the specified time window. To schedule a
battery, please, refer to the StorageScheduler.

For example, this scheduler can plan the start of a process of type SHIFTABLE that lasts 5h and requires
a power of 10kW. In that case, the scheduler will find the best (as to minimize/maximize the cost) hour to
start the process.

This scheduler supports three types of process_types:
* INFLEXIBLE: this process needs to be scheduled as soon as possible.
* BREAKABLE: this process can be divisible in smaller consumption periods.
* SHIFTABLE: this process can start at any time within the specified time window.

The resulting schedule provides the power flow at each time period.

Parameters

consumption_price_sensor: it defines the utility (economic, environmental,) in each
time period. It has units of quantity/energy, for example, EUR/kWh.

power: nominal power of the process. duration: time that the process last.

optimization_direction: objective of the scheduler, to maximize or minimize. time_restrictions: time
periods in which the process cannot be schedule to. process_type: INFLEXIBLE, BREAKABLE or
SHIFTABLE.

returns
The computed schedule.

compute_breakable (schedule: Series, optimization_direction: OptimizationDirection, time_restrictions:
Series, cost: DataFrame, rows_to_fill: int, power: float) — None

Break up schedule and divide it over the time slots with the largest utility (max/min cost depending on
optimization_direction).
compute_inflexible (schedule: Series, time_restrictions: Series, rows_to_{fill: int, power: float) — None

Schedule process as early as possible.

compute_shiftable(schedule: Series, optimization_direction: OptimizationDirection, time_restrictions:
Series, cost: DataFrame, rows_to_fill: int, power: float) — None

Schedules a block of consumption/production of rows_to_fill periods to maximize a utility.

272 Chapter 4. Where to start reading?

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

deserialize_flex_config()

Deserialize flex_model using the schema ProcessSchedulerFlexModelSchema and flex_context using Flex-
ContextSchema

flexmeasures.data.models.planning.storage

Functions

flexmeasures.data.models.planning.storage.add_storage_constraints(start: datetime, end: datetime,
resolution: timedelta,
soc_at_start: float,
soc_targets: list[dict[str,
datetime | float]] | pd.Series |
None, soc_maxima:
list[dict[str, datetime | float]] |
pd.Series | None, soc_minima:
list[dict[str, datetime | float]] |
pd.Series | None, soc_max:
float, soc_min: float) —
pd.DataFrame

Collect all constraints for a given storage device in a DataFrame that the device_scheduler can interpret.
Parameters
* start — Start of the schedule.
* end - End of the schedule.
» resolution — Timedelta used to resample the forecasts to the resolution of the schedule.
* soc_at_start — State of charge at the start time.
» soc_targets — Exact targets for the state of charge at each time.
* soc_maxima — Maximum state of charge at each time.
* soc_minima — Minimum state of charge at each time.
* soc_max — Maximum state of charge at all times.
» soc_min — Minimum state of charge at all times.

Returns
Constraints (StorageScheduler. COLUMNS) for a storage device, at each time step (index). See
device_scheduler for possible column names.

flexmeasures.data.models.planning.storage.build_device_soc_targets(targets: list[dict[str, datetime
| float]] | pd.Series,
soc_at_start: float,
start_of _schedule: datetime,
end_of _schedule: datetime,
resolution: timedelta) —
pd.Series

4.53. flexmeasures.data 273

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.models.planning.storage.build_device_soc_values(soc_values: list[dict[str,
datetime | float]] | pd.Series,
soc_at_start: float,
start_of _schedule: datetime,
end_of _schedule: datetime,
resolution: timedelta) —
pd.Series

Utility function to create a Pandas series from SOC values we got from the flex-model.
Should set NaN anywhere where there is no target.

SOC values should be indexed by their due date. For example, for quarter-hourly targets from 5 to 6
AM: >>> df = pd.Series(data=[1, 1.5, 2, 2.5, 3], index=pd.date_range(pd.Timestamp(“2010-01-01T05”),
pd.Timestamp(*“2010-01-01T06”), freq=pd.Timedelta(“PT15M”), inclusive="both”)) >>> print(df) 2010-01-01
05:00:00 1.0 2010-01-01 05:15:00 1.5 2010-01-01 05:30:00 2.0 2010-01-01 05:45:00 2.5 2010-01-01 06:00:00
3.0 Freq: 15T, dtype: float64

TODO: this function could become the deserialization method of a new TimedEventSchema (targets, plural),
which wraps TimedEventSchema.

flexmeasures.data.models.planning.storage.create_constraint_violations_message (constraint_violations:
list) — str

Create a human-readable message with the constraint_violations.

Parameters
constraint_violations — list with the constraint violations

Returns
human-readable message

flexmeasures.data.models.planning.storage.get_pattern_match_word(word: str) — str
Get a regex pattern to match a word

The conditions to delimit a word are:
e start of line
» whitespace
* end of line
* word boundary
* arithmetic operations

Returns
regex expression

flexmeasures.data.models.planning.storage.prepend_serie(serie: Series, value) — Series
Prepend a value to a time series series

Parameters
* serie - serie containing the timed values
» value - value to place in the first position

flexmeasures.data.models.planning.storage.sanitize_expression(expression: str, columns: list) —
tuple[str, list]

Wrap column in commas to accept arbitrary column names (e.g. with spaces).

Parameters

274 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.20.1.dev11

* expression — expression to sanitize
* columns — list with the name of the columns of the input data for the expression.

Returns
sanitized expression and columns (variables) used in the expression

flexmeasures.data.models.planning.storage.validate_constraint (constraints_df: pd.DataFrame,
lhs_expression: str, inequality: str,
rhs_expression: str,
round_to_decimals: int | None =
6) — list[dict]

Validate the feasibility of a given set of constraints.
Parameters
» constraints_df — DataFrame with the constraints

* lhs_expression - left-hand side of the inequality expression following pd.eval format. No
need to use the syntax column to reference column, just use the column name.

* inequality - inequality operator, one of (‘<=’, ‘<’, ‘>=", >, ‘==", ‘I=").

) ’ s

» rhs_expression — right-hand side of the inequality expression following pd.eval format.
No need to use the syntax column to reference column, just use the column name.

» round_to_decimals — Number of decimals to round off to before validating constraints.

Returns
List of constraint violations, specifying their time, constraint and violation.

flexmeasures.data.models.planning.storage.validate_storage_constraints(constraints:
DataFrame,
soc_at_start: float,
soc_min: float,
soc_max: float,
resolution: timedelta)
— list[dict]

Check that the storage constraints are fulfilled, e.g min <= equals <= max.
A. Global validation
A.1) min >= soc_min A.2) max <= Soc_max

B. Validation in the same time frame
B.1) min <= max B.2) min <= equals B.3) equals <= max

C. Validation in different time frames
C.1) equals(t) - equals(t-1) <= derivative_max(t) C.2) derivative_min(t) <= equals(t) - equals(t-1) C.3)
min(t) - max(t-1) <= derivative_max(t) C.4) max(t) - min(t-1) >= derivative_min(t) C.5) equals(t) -
max(t-1) <= derivative_max(t) C.6) derivative_min(t) <= equals(t) - min(t-1)
Parameters
* constraints - dataframe containing the constraints of a storage device
* soc_at_start — State of charge at the start time.
» soc_min — Minimum state of charge at all times.

* soc_max — Maximum state of charge at all times.

» resolution — Constant duration between the start of each time step.

4.53. flexmeasures.data 275

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

Returns
List of constraint violations, specifying their time, constraint and violation.

Classes

class flexmeasures.data.models.planning.storage.MetaStorageScheduler (sensor: Sensor | None =
None, start: datetime |
None = None, end.:
datetime | None = None,
resolution: timedelta |
None = None, belief time:
datetime | None = None,
asset_or_sensor: Asset |
Sensor | None = None,
round_to_decimals: int |
None = 6, flex_model:
dict | None = None,
flex_context: dict | None =
None, return_multiple:
bool = False)

This class defines the constraints of a schedule for a storage device from the flex-model, flex-context, and sensor
and asset attributes

_brepare (skip_validation: bool = False) — tuple

This function prepares the required data to compute the schedule:
* price data
* device constraint
* ems constraints
Parameters
skip_validation - If True, skip validation of constraints specified in the data.
Returns

Input data for the scheduler

compute_schedule() — pd.Series | None
Schedule a battery or Charge Point based directly on the latest beliefs regarding market prices within the
specified time window. For the resulting consumption schedule, consumption is defined as positive values.

Deprecated method in v0.14. As an alternative, use MetaStorageScheduler.compute().

deserialize_flex_config()

Deserialize storage flex model and the flex context against schemas. Before that, we fill in values from
wider context, if possible. Mostly, we allow several fields to come from sensor attributes. TODO: this
work could maybe go to the schema as a pre-load hook (if we pass in the sensor to schema initialization)

Note: Before we apply the flex config schemas, we need to use the flex config identifiers with hyphens,
(this is how they are represented to outside, e.g. by the API), after deserialization we use internal
schema names (with underscores).
ensure_soc_min_max()

Make sure we have min and max SOC. If not passed directly, then get default from sensor or targets.

276 Chapter 4. Where to start reading?

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

persist_flex_model ()

Store new soc info as GenericAsset attributes

possibly_extend_end()

Extend schedule period in case a target exceeds its end.

The schedule’s duration is possibly limited by the server config setting ‘FLEXMEA-
SURES_MAX_PLANNING_HORIZON".

todo: when deserialize_flex_config becomes a single schema for the whole scheduler,
this function would become a class method with a @post_load decorator.

class flexmeasures.data.models.planning.storage.StorageFallbackScheduler (sensor: Sensor |
None = None, start:
datetime | None =
None, end: datetime |
None = None,
resolution: timedelta
| None = None,
belief_time: datetime
| None = None,
asset_or_sensor:
Asset | Sensor | None
= None,
round_to_decimals:
int | None =6,
flex_model: dict |
None = None,
flex_context: dict |
None = None,
return_multiple:
bool = False)

compute (skip_validation: bool = False) — Series | List[Dict[str, Any]] | None

Schedule a battery or Charge Point by just starting to charge, discharge, or do neither,
depending on the first target state of charge and the capabilities of the Charge Point. For the resulting
consumption schedule, consumption is defined as positive values.

Note that this ignores any cause of the infeasibility.
Parameters
skip_validation — If True, skip validation of constraints specified in the data.

Returns
The computed schedule.

4.53. flexmeasures.data 277

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

class flexmeasures.data.models.planning.storage.StorageScheduler (sensor: Sensor | None = None,
start: datetime | None = None,
end: datetime | None = None,
resolution: timedelta | None =
None, belief time: datetime |
None = None, asset_or_sensor:
Asset | Sensor | None = None,
round_to_decimals: int | None
=6, flex_model: dict | None =
None, flex_context: dict | None
= None, return_multiple: bool
= False)

compute (skip_validation: bool = False) — Series | List[Dict[str, Any]] | None

Schedule a battery or Charge Point based directly on the latest beliefs regarding market prices within the
specified time window. For the resulting consumption schedule, consumption is defined as positive values.

Parameters
skip_validation — If True, skip validation of constraints specified in the data.

Returns
The computed schedule.

compute_schedule () — pd.Series | None
Schedule a battery or Charge Point based directly on the latest beliefs regarding market prices within the
specified time window. For the resulting consumption schedule, consumption is defined as positive values.
Deprecated method in v0.14. As an alternative, use MetaStorageScheduler.compute().

fallback_scheduler_class
alias of StorageFallbackScheduler

flexmeasures.data.models.planning.utils

Functions

flexmeasures.data.models.planning.utils.add_tiny_price_slope(prices: DataFrame, col_name: str =
‘event_value', d: float = 0.001) —
DataFrame

Add tiny price slope to col_name to represent e.g. inflation as a simple linear price increase. This is meant to
break ties, when multiple time slots have equal prices, in favour of acting sooner. We penalise the future with at
most d times the price spread (1 per thousand by default).

flexmeasures.data.models.planning.utils.fallback_charging_policy(sensor: Sensor,
device_constraints:
DataFrame, start: datetime,
end: datetime, resolution:
timedelta) — Series

This fallback charging policy is to just start charging or discharging, or do neither, depending on the first target
state of charge and the capabilities of the Charge Point. Note that this ignores any cause of the infeasibility and,
while probably a decent policy for Charge Points, should not be considered a robust policy for other asset types.

278 Chapter 4. Where to start reading?

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.models.planning.utils.get_continuous_series_sensor_or_quantity (quantity_or_sensor:
Sensor |
ur.Quantity
| None,
actuator:
Sensor |
Asset, unit:
ur.Quantity
| str,
query_window:
tu-
ple[datetime,
datetime],
resolution:
timedelta,
be-
liefs_before:
datetime |
None =
None, fall-
back_attribute:
str | None
= None,
max_value:
float | int |
pd.Series
= nan,
as_instantaneous_events:
bool =
False,
bound-
ary_policy:
str | None
= None)
_>
pd.Series

Creates a time series from a quantity or sensor within a specified window, falling back to a given fallback_attribute
and making sure no values exceed max_value.

Parameters
* quantity_or_sensor — The quantity or sensor containing the data.
* actuator — The actuator from which relevant defaults are retrieved.
e unit — The desired unit of the data.
* query_window — The time window (start, end) to query the data.

* resolution — The resolution or time interval for the data.

beliefs_before — Timestamp for prior beliefs or knowledge.

fallback_attribute — Attribute serving as a fallback default in case no quantity or sensor
is given.

» max_value — Maximum value (also replacing NaN values).

4.53. flexmeasures.data 279

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

* as_instantaneous_events — optionally, convert to instantaneous events, in which case
the passed resolution is interpreted as the desired frequency of the data.

Returns
time series data with missing values handled based on the chosen method.

flexmeasures.data.models.planning.utils.get_market (sensor: Sensor) — Sensor
Get market sensor from the sensor’s attributes.
flexmeasures.data.models.planning.utils.get_power_values (query_window: tuple[datetime, datetime],
resolution: timedelta, beliefs_before:

datetime | None, sensor: Sensor) —
np.ndarray

Get measurements or forecasts of an inflexible device represented by a power or energy sensor as an array of
power values in MW.

If the requested schedule lies in the future, the returned data will consist of (the most recent) forecasts (if any
exist). If the requested schedule lies in the past, the returned data will consist of (the most recent) measurements
(if any exist). The latter amounts to answering “What if we could have scheduled under perfect foresight?”.

Parameters

* query_window — datetime window within which events occur (equal to the scheduling win-
dow)

» resolution - timedelta used to resample the forecasts to the resolution of the schedule

* beliefs_before — datetime used to indicate we are interested in the state of knowledge at
that time

* sensor — power sensor representing an energy flow out of the device

Returns
power measurements or forecasts (consumption is positive, production is negative)

flexmeasures.data.models.planning.utils.get_prices(query_window: tuple[datetime, datetime],
resolution: timedelta, beliefs_before: datetime |
None, price_sensor: Sensor | None = None,
sensor: Sensor | None = None,
allow_trimmed_query_window: bool = True) —
tuple[pd.DataFrame, tuple[datetime, datetime]]

Check for known prices or price forecasts.

If so allowed, the query window is trimmed according to the available data. If not allowed, prices are extended
to the edges of the query window: - The first available price serves as a naive backcast. - The last available price
serves as a naive forecast.

flexmeasures.data.models.planning.utils.get_quantity_from_attribute(entity: Asset | Sensor,
attribute: str, unit: str |
ur.Quantity) — ur.Quantity

Get the value (in the given unit) of a quantity stored as an entity attribute.
Parameters
* entity — The entity (sensor or asset) containing the attribute to retrieve the value from.
e attribute - The attribute name to extract the value from.
e unit — The unit in which the value should be returned.

Returns
The retrieved quantity or the provided default.

280 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.models.planning.utils.get_series_from_quantity_or_sensor (quantity_or_sensor:
Sensor |
ur.Quantity, unit:
ur.Quantity | str,
query_window:
tuple[datetime,
datetime],
resolution:
timedelta,
beliefs_before:
datetime | None =
None,
as_instantaneous_events:
bool = True,
boundary_policy:
str | None = None)
— pd.Series

Get a time series given a quantity or sensor defined on a time window.
Parameters

* quantity_or_sensor — A pint Quantity or timely-beliefs Sensor, measuring e.g. power
capacity or efficiency.

* unit — Unit of the output data.
* query_window — Tuple representing the start and end of the requested data.
» resolution — Time resolution of the requested data.

* beliefs_before — Optional datetime used to indicate we are interested in the state of
knowledge at that time.

* as_instantaneous_events — Optionally, convert to instantaneous events, in which case
the passed resolution is interpreted as the desired frequency of the data.

Returns
Pandas Series with the requested time series data.

flexmeasures.data.models.planning.utils.idle_after_reaching_target (schedule: Series, target:
Series, initial_state: float =
0) — Series

Stop planned (dis)charging after target is reached (or constraint is met).

flexmeasures.data.models.planning.utils.initialize_df (columns: list[str], start: datetime, end:
datetime, resolution: timedelta, inclusive: str
= 'left'") — DataFrame

flexmeasures.data.models.planning.utils.initialize_index(start: date | datetime | str, end: date |
datetime | str, resolution: timedelta | str,
inclusive: str ="left’) —
pd.Datetimelndex

flexmeasures.data.models.planning.utils.initialize_series(data: pd.Series | list[float] | np.ndarray |
float | None, start: datetime, end:
datetime, resolution: timedelta,
inclusive: str = 'left’) — pd.Series

4.53. flexmeasures.data 281

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.models.planning.utils.nanmin_of_series_and_value(s: pd.Series, value: float |
pd.Series) — pd.Series

Perform a nanmin between a Series and a float.

Classes

class flexmeasures.data.models.planning.Scheduler (sensor: Sensor | None = None, start: datetime |
None = None, end: datetime | None = None,
resolution: timedelta | None = None, belief _time:
datetime | None = None, asset_or_sensor: Asset |
Sensor | None = None, round_to_decimals: int |
None = 6, flex_model: dict | None = None,
flex_context: dict | None = None, return_multiple:
bool = False)

Superclass for all FlexMeasures Schedulers.
A scheduler currently computes the schedule for one flexible asset. TODO: extend to multiple flexible assets.

The scheduler knows the power sensor of the flexible asset. It also knows the basic timing parameter of the
schedule (start, end, resolution), including the point in time when knowledge can be assumed to be available
(belief_time).

Furthermore, the scheduler needs to have knowledge about the asset’s flexibility model (under what constraints
can the schedule be optimized?) and the system’s flexibility context (which other sensors are relevant, e.g.
prices). These two flexibility configurations are usually fed in from outside, so the scheduler should check them.
The deserialize_flex_config function can be used for that.

__init__(sensor: Sensor | None = None, start: datetime | None = None, end: datetime | None = None,
resolution: timedelta | None = None, belief_time: datetime | None = None, asset_or_sensor: Asset
| Sensor | None = None, round_to_decimals: int | None = 6, flex_model: dict | None = None,
flex_context: dict | None = None, return_multiple: bool = False)

Initialize a new Scheduler.

TODO: We might adapt the class design, so that a Scheduler object is initialized with configuration
parameters,

and can then be used multiple times (via compute()) to compute schedules of different kinds, e.g.
If we started later (put in a later start), what would the schedule be? If we could change set points
less often (put in a coarser resolution), what would the schedule be? If we knew what was going
to happen (put in a later belief_time), what would the schedule have been?

For now, we don’t see the best separation between config and state parameters (esp. within flex models)
E.g. start and flex_model[soc_at_start] are intertwined.

compute () — Series | List[Dict[str, Any]] | None

Overwrite with the actual computation of your schedule.
compute_schedule() — pd.Series | None

Overwrite with the actual computation of your schedule.

Deprecated method in v0.14. As an alternative, use Scheduler.compute().

deserialize_config()

Check all configurations we have, throwing either ValidationErrors or ValueErrors. Other code can decide
if/how to handle those.

282 Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

deserialize_flex_config()

Check if the flex model and flex context are valid. Should be overwritten.

Ideas: - Apply a schema to check validity (see in-built flex model schemas) - Check for inconsistencies
between settings (can also happen in Marshmallow) - fill in missing values from the scheduler’s knowledge
(e.g. sensor attributes)

Raises ValidationErrors or ValueErrors.
deserialize_timing_config()

Check if the timing of the schedule is valid. Raises ValueErrors.
classmethod get_data_source_info() — dict

Create and return the data source info, from which a data source lookup/creation is possible. See for instance
get_data_source_for_job().

persist_flex_model O

If useful, (parts of) the flex model can be persisted here, e.g. as asset attributes, sensor attributes or as
sensor data (beliefs).

flexmeasures.data.models.reporting

Modules

flexmeasures.data.models.reporting.
aggregator
flexmeasures.data.models.reporting.
pandas_reporter
flexmeasures.data.models.reporting.profit

flexmeasures.data.models.reporting.aggregator

Classes

class flexmeasures.data.models.reporting.aggregator.AggregatorReporter (config: dict | None =
None,
save_config=True,
save_parameters=False,
**kwargs)

This reporter applies an aggregation function to multiple sensors
_compute_report (start: datetime, end: datetime, input: list[dict[str, Any]], output: list[dict[str, Any]],

resolution: timedelta | None = None, belief _time: datetime | None = None) —
list[dict[str, Any]]

This method merges all the BeliefDataFrames into a single one, dropping all indexes but event_start, and
applies an aggregation function over the columns.

4.53. flexmeasures.data 283

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.models.reporting.pandas_reporter

Classes

class flexmeasures.data.models.reporting.pandas_reporter.PandasReporter (config: dict | None =
None,
save_config=True,
save_parameters=False,
**ewargs)

This reporter applies a series of pandas methods on

_apply_transformations ()

Convert the series using the given list of transformation specs, which is called in the order given.
Each transformation specs should include a ‘method’ key specifying a method name of a Pandas DataFrame.

Optionally, ‘args’ and ‘kwargs’ keys can be specified to pass on arguments or keyword arguments to the
given method.

All data exchange is made through the dictionary self.data. The superclass Reporter already fetches Be-
liefsDataFrames of the sensors and saves them in the self.data dictionary fields sensor_<sensor_id>. In
case you need to perform complex operations on dataframes, you can split the operations in several steps
and saving the intermediate results using the parameters df_input and df_output for the input and output
dataframes, respectively.

Example:
The example below converts from hourly meter readings in kWh to electricity demand in kW.

transformations = [
{Limeth0d57: ‘4diﬂ3’}, {“method”: “Shift”, Gékwargs”: {Képeriods5’: _1}}, {“method”: ‘4head7” £6argsﬂ7:
[-11},

]?

_clean_belief_dataframe (bdf: th.BeliefsDataFrame, belief_time: datetime | None = None,
belief_horizon: timedelta | None = None) — tb.BeliefsDataFrame

Add missing indexes to build a proper BeliefDataFrame.

_clean_belief_series(belief _series: th.BeliefsSeries, belief _time: datetime | None = None,
belief_horizon: timedelta | None = None) — tb.BeliefsDataFrame
Create a BeliefDataFrame from a BeliefsSeries creating the necessary indexes.
_compute_report (**kwargs) — list[dict[str, Any]]
This method applies the transformations and outputs the dataframe defined in final_df_output field of the
report_config.

_barameters_schema: Schema | None = <PandasReporterParametersSchema(many=False)>

_process_pandas_args (args: list, method: str) — list
This method applies the function get_object_or_literal to all the arguments to detect where to replace a
string “@<object-name>" with the actual object stored in self.data[“<object-name>"].
_brocess_pandas_kwargs (kwargs: dict, method: str) — dict

This method applies the function get_object_or_literal to all the keyword arguments to detect where to
replace a string “@ <object-name>" with the actual object stored in self.data[“<object-name=>"].

284 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

fetch_data(start: datetime, end: datetime, input: dict, resolution: timedelta | None = None, belief_time:
datetime | None = None)

Fetches the time_beliefs from the database

get_object_or_literal (value: Any, method: str) — Any

This method allows using the dataframes as inputs of the Pandas methods that are run in the transformations.
Make sure that they have been created before accessed.

This works by putting the symbol @ in front of the name of the dataframe that we want to reference. For
instance, to reference the dataframe test_df, which lives in self.data, we would do @test_df.

This functionality is disabled for methods eval ‘and ‘query to avoid interfering their internal behaviour given
that they also use @ to allow using local variables.

Example: >>> self.get_object_or_literal([“@df_wind”, “@df_solar”], “sum”) [<BeliefsDataFrame for
Wind Turbine sensor>, <BeliefsDataFrame for Solar Panel sensor> |

flexmeasures.data.models.reporting.profit

Classes

class flexmeasures.data.models.reporting.profit.ProfitOrLossReporter (config: dict | None =
None, save_config=True,
save_parameters=False,
**kwargs)

Compute the profit or loss due to energy/power flow.

Given power/energy and price sensors, this reporter computes the profit (revenue - cost) or losses (cost - revenue)
of a power/energy flow under a certain tariff.

Sign convention (by default)

Power flows:
(+) production (-) consumption

Profit:
(+) gains (-) losses

This sign convention can be adapted to your needs:

* The power/energy convention can be inverted by setting the sensor attribute consumption_is_positive
to True.

» The output (gains/losses) sign can be inverted by setting the reporter config attribute loss_is_positive

to False.

_compute_report (start: datetime, end: datetime, input: list[dict[str, Any]], output: list[dict[str, Any]],
belief_time: datetime | None = None) — list[dict[str, Any]]

Parameters
e start - start time of the report
¢ end - end time of the report

¢ input - description of the power/energy sensor, e.g. input=[{ “sensor”: 42}]

4.53. flexmeasures.data 285

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

* output — description of the output sensors where to save the report to. Specify multiple
output sensors with different resolutions to save the results in multiple time frames (e.g.
hourly, daily), e.g. output = [{ “sensor” : 43}, { “sensor” : 44]}]

* belief_time - datetime used to indicate we are interested in the state of knowledge at
that time. It is used to filter input, and to assign a recording time to output.

Classes

class flexmeasures.data.models.reporting.Reporter (config: dict | None = None, save_config=True,
save_parameters=False, **kwargs)

Superclass for all FlexMeasures Reporters.

_clean_parameters (parameters: dict) — dict

Use this function to clean up the parameters dictionary from the fields that are not to be persisted to the DB
as data source attributes (when save_parameters=True), e.g. because they are already stored as TimedBelief
properties, or otherwise.

Example:

An DataGenerator has the following parameters: [“start”, “end”, “field1”, “field2”’] and we want
just “field1” and “field2” to be persisted.

Parameters provided to the compute method (input of the method _clean_parameters): parameters
={
“start” : “2023-01-01T00:00:00+02:00”, “end” : “2023-01-02T00:00:00+02:00”,
“field1” : 1, “field2” : 2

}

Parameters persisted to the DB (output of the method _clean_parameters): parameters = {“field1”
: 1,°field2” : 2}

_compute (check_output_resolution=True, **kwargs) — List[Dict[str, Any]]
This method triggers the creation of a new report.
The same object can generate multiple reports with different start, end, resolution and belief_time values.

check_output_resolution (default: True): set to False to skip the validation of the output
event_resolution.

_compute_report (**kwargs) — List[Dict[str, Any]]

Overwrite with the actual computation of your report.

Returns BeliefsDataFrame
report as a BeliefsDataFrame.

flexmeasures.data.models.task_runs
Classes

class flexmeasures.data.models.task_runs.LatestTaskRun(**kwargs)

” Log the (latest) running of a task. This is intended to be used for live monitoring. For a full analysis, there are
log files.

286 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

FlexMeasures Documentation, Release 0.20.1.dev11

__init__ (**kwargs)
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

static record_run(rask_name: str, status: bool)

Record the latest task run (overwriting previous ones). If the row is not yet in the table, create it first. Does
not commit.

flexmeasures.data.models.time_series
Classes

class flexmeasures.data.models.time_series.Sensor (name, generic_asset=None,

generic_asset_id=None, attributes=None,
**kwargs)

A sensor measures events.

__init__ (name, generic_asset=None, generic_asset_id=None, attributes=None, **kwargs)

A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

chart (chart_type: str = 'bar_chart', event_starts_after: datetime_type | None = None, event_ends_before:
datetime_type | None = None, beliefs_after: datetime_type | None = None, beliefs_before:
datetime_type | None = None, source: DataSource | list[DataSource] | int | list[int] | str | list[str] |
None = None, most_recent_beliefs_only: bool = True, include_data: bool = False,
include_sensor_annotations: bool = False, include_asset_annotations: bool = False,
include_account_annotations: bool = False, dataset_name: str | None = None, **kwargs) — dict

Create a vega-lite chart showing sensor data.
Parameters

¢ chart_type — currently only “bar_chart” # todo: where can we properly list the available
chart types?

* event_starts_after — only return beliefs about events that start after this datetime (in-
clusive)

* event_ends_before - only return beliefs about events that end before this datetime (in-
clusive)

* beliefs_after — only return beliefs formed after this datetime (inclusive)

4.53. flexmeasures.data 287

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

* beliefs_before — only return beliefs formed before this datetime (inclusive)

* source — search only beliefs by this source (pass the DataSource, or its name or id) or list
of sources

* most_recent_beliefs_only - only return the most recent beliefs for each event from
each source (minimum belief horizon)

¢ include_data — if True, include data in the chart, or if False, exclude data

¢ include_sensor_annotations —if True and include_data is True, include sensor anno-
tations in the chart, or if False, exclude these

¢ include_asset_annotations — if True and include_data is True, include asset annota-
tions in the chart, or if False, exclude them

¢ include_account_annotations — if True and include_data is True, include account
annotations in the chart, or if False, exclude them

* dataset_name — optionally name the dataset used in the chart (the default name is sen-
sor_<id>)

Returns
JSON string defining vega-lite chart specs

check_required_attributes (attributes: list[str | tuple[str, Type | tuple[Type, ...]]])

Raises if any attribute in the list of attributes is missing, or has the wrong type.

Parameters
attributes — List of either an attribute name or a tuple of an attribute name and its allowed
type (the allowed type may also be a tuple of several allowed types)

event_resolution: timedelta

classmethod find_closest (generic_asset_type_name: str, sensor_name: str, n: int = 1, **kwargs) —

'Sensor' | list['Sensor'] | None

Returns the closest n sensors within a given asset type (as a list if n > 1). Parses latitude and longitude
values stated in kwargs.

Can be called with an object that has latitude and longitude properties, for example:

ELINT3

sensor = Sensor.find_closest(*“weather station”, “wind speed”, object=generic_asset)

Can also be called with latitude and longitude parameters, for example:

ELINT

sensor = Sensor.find_closest(“weather station”, “temperature”, latitude=32, longitude=54) sensor

99 <.

= Sensor.find_closest(“weather station”, “temperature”, lat=32, Ing=54)

Finally, pass in an account_id parameter if you want to query an account other than your own. This only
works for admins. Public assets are always queried.

get_attribute (attribute: str, default: Any | None = None) — Any

id

Looks for the attribute on the Sensor. If not found, looks for the attribute on the Sensor’s GenericAsset. If
not found, returns the default.

property is_strictly_non_negative: bool

Return True if this sensor strictly records non-negative values.

property is_strictly_non_positive: bool

Return True if this sensor strictly records non-positive values.

288

Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.20.1.dev11

knowledge_horizon_fnc: str
knowledge_horizon_par: dict
latest_state(source: DataSource | list[DataSource] | int | list[int] | str | list[str] | None = None) —

tb.BeliefsDataFrame
Search the most recent event for this sensor, and return the most recent ex-post belief.
Parameters

source — search only beliefs by this source (pass the DataSource, or its name or id) or list of
sources

make_hashable() — tuple
Returns a tuple with the properties subject to change In principle all properties (except ID) of a given sensor
could be changed, but not all changes are relevant to warrant reanalysis (e.g. scheduling or forecasting).
property measures_energy: bool

True if this sensor’s unit is measuring energy

property measures_energy_price: bool
True if this sensors’ unit is measuring energy prices
property measures_power: bool

True if this sensor’s unit is measuring power

hame: str

query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

search_annotations (annotation_starts_after: datetime_type | None = None, annotations_after:
datetime_type | None = None, annotation_ends_before: datetime_type | None = None,
annotations_before: datetime_type | None = None, source: DataSource |
list{DataSource] | int | list[int] | str | list[str] | None = None,
include_asset_annotations: bool = False, include_account_annotations: bool =
False, as_frame: bool = False) — list[Annotation] | pd.DataFrame

Return annotations assigned to this sensor, and optionally, also those assigned to the sensor’s asset and the
asset’s account.

Parameters
¢ annotations_after — only return annotations that end after this datetime (exclusive)
¢ annotations_before — only return annotations that start before this datetime (exclusive)

search_beliefs(event_starts_after: datetime_type | None = None, event_ends_before: datetime_type | None
= None, beliefs_after: datetime_type | None = None, beliefs_before: datetime_type | None
= None, horizons_at_least: timedelta | None = None, horizons_at_most: timedelta | None
= None, source: DataSource | list/DataSource] | int | list[int] | str | list[str] | None = None,
most_recent_beliefs_only: bool = True, most_recent_events_only: bool = False,
most_recent_only: bool = None, one_deterministic_belief _per_event: bool = False,
one_deterministic_belief _per_event_per_source: bool = False, resolution: str | timedelta =
None, as_json: bool = False) — tb.BeliefsDataFrame | str

4.53. flexmeasures.data 289

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

Search all beliefs about events for this sensor.
If you don’t set any filters, you get the most recent beliefs about all events.
Parameters

* event_starts_after — only return beliefs about events that start after this datetime (in-
clusive)

» event_ends_before - only return beliefs about events that end before this datetime (in-
clusive)

* beliefs_after — only return beliefs formed after this datetime (inclusive)
¢ beliefs_before - only return beliefs formed before this datetime (inclusive)

e horizons_at_least — only return beliefs with a belief horizon equal or greater than this
timedelta (for example, use timedelta(0) to get ante knowledge time beliefs)

* horizons_at_most — only return beliefs with a belief horizon equal or less than this
timedelta (for example, use timedelta(0) to get post knowledge time beliefs)

* source — search only beliefs by this source (pass the DataSource, or its name or id) or list
of sources

e most_recent_beliefs_only - only return the most recent beliefs for each event from
each source (minimum belief horizon)

e most_recent_events_only — only return (post knowledge time) beliefs for the most re-
cent event (maximum event start)

* one_deterministic_belief_per_event - only return a single value per event (no
probabilistic distribution and only 1 source)

* one_deterministic_belief per_event_per_source —only return a single value per
event per source (no probabilistic distribution)

e as_json — return beliefs in JSON format (e.g. for use in charts) rather than as Beliefs-
DataFrame

Returns
BeliefsDataFrame or JSON string (if as_json is True)

property timerange: dict[str, datetime]

Time range for which sensor data exists.
Returns
dictionary with start and end, for example: {

‘start’: datetime.datetime(2020, 12, 3, 14, 0, tzinfo=pytz.utc), ‘end’: date-
time.datetime(2020, 12, 3, 14, 30, tzinfo=pytz.utc)

}

timezone: str
unit: str

class flexmeasures.data.models.time_series.TimedBelief (sensor, source, **kwargs)

A timed belief holds a precisely timed record of a belief about an event.

It also records the source of the belief, and the sensor that the event pertains to.

290 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

__init__(sensor, source, **kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

classmethod add(bdf: BeliefsDataFrame, expunge_session: bool = False, allow_overwrite: bool = False,
bulk_save_objects: bool = False, commit_transaction: bool = False)

Add a BeliefsDataFrame as timed beliefs in the database.
Parameters
* bdf - the BeliefsDataFrame to be persisted

¢ expunge_session—if True, all non-flushed instances are removed from the session before
adding beliefs. Expunging can resolve problems you might encounter with states of objects
in your session. When using this option, you might want to flush newly-created objects
which are not beliefs (e.g. a sensor or data source object).

* allow_overwrite — if True, new objects are merged if False, objects are added to the
session or bulk saved

¢ bulk_save_objects — if True, objects are bulk saved with session.bulk_save_objects(),
which is quite fast but has several caveats, see: https://docs.sqlalchemy.org/orm/
persistence_techniques.html#bulk-operations-caveats if False, objects are added to the ses-
sion with session.add_all()

e commit_transaction - if True, the session is committed if False, you can still add other
data to the session and commit it all within an atomic transaction

belief_horizon: timedelta
cumulative_probability: float
event_start: datetime
event_value: float

query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

classmethod search(sensors: Sensor | int | str| list[Sensor | int | str], sensor: Sensor = None,
event_starts_after: datetime_type | None = None, event_ends_before: datetime_type |
None = None, beliefs_after: datetime_type | None = None, beliefs_before:
datetime_type | None = None, horizons_at_least: timedelta | None = None,
horizons_at_most: timedelta | None = None, source: DataSource | [ist/DataSource] |
int | list[int] | str | list{str] | None = None, user_source_ids: int | list[int] | None =
None, source_types: list[str] | None = None, exclude_source_types: list[str] | None =
None, most_recent_beliefs_only: bool = True, most_recent_events_only: bool =
False, most_recent_only: bool = None, one_deterministic_belief_per_event: bool =
False, one_deterministic_belief_per_event_per_source: bool = False, resolution: str |
timedelta = None, sum_multiple: bool = True) — tb.BeliefsDataFrame | dict[str,
tb.BeliefsDataFrame]

4.53. flexmeasures.data 291

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.sqlalchemy.org/orm/persistence_techniques.html#bulk-operations-caveats
https://docs.sqlalchemy.org/orm/persistence_techniques.html#bulk-operations-caveats
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

Search all beliefs about events for the given sensors.
If you don’t set any filters, you get the most recent beliefs about all events.
Parameters

* sensors — search only these sensors, identified by their instance or id (both unique) or
name (non-unique)

» event_starts_after — only return beliefs about events that start after this datetime (in-
clusive)

* event_ends_before - only return beliefs about events that end before this datetime (in-
clusive)

¢ beliefs_after — only return beliefs formed after this datetime (inclusive)

beliefs_before — only return beliefs formed before this datetime (inclusive)

* horizons_at_least — only return beliefs with a belief horizon equal or greater than this
timedelta (for example, use timedelta(0) to get ante knowledge time beliefs)

* horizons_at_most — only return beliefs with a belief horizon equal or less than this
timedelta (for example, use timedelta(0) to get post knowledge time beliefs)

* source — search only beliefs by this source (pass the DataSource, or its name or id) or list
of sources

e user_source_ids — Optional list of user source ids to query only specific user sources
* source_types — Optional list of source type names to query only specific source types *

» exclude_source_types — Optional list of source type names to exclude specific source
types *

e most_recent_beliefs_only — only return the most recent beliefs for each event from
each source (minimum belief horizon)

* most_recent_events_only — only return (post knowledge time) beliefs for the most re-
cent event (maximum event start)

* one_deterministic_belief_per_event — only return a single value per event (no
probabilistic distribution and only 1 source)

* one_deterministic_belief per_event_per_source —only return a single value per
event per source (no probabilistic distribution)

¢ resolution — Optional timedelta or pandas fregstr used to resample the results **
e sum_multiple - if True, sum over multiple sensors; otherwise, return a dictionary with

sensors as key, each holding a BeliefsDataFrame as its value

* If user_source_ids is specified, the “user” source type is automatically included (and not excluded).
Somewhat redundant, though still allowed, is to set both source_types and exclude_source_types.
** Note that:

* timely-beliefs converts string resolutions to datetime.timedelta objects (see https://github.com/
SeitaBV/timely-beliefs/issues/13).

* for sensors recording non-instantaneous data: updates both the event frequency and the event
resolution

292 Chapter 4. Where to start reading?

https://github.com/SeitaBV/timely-beliefs/issues/13
https://github.com/SeitaBV/timely-beliefs/issues/13

FlexMeasures Documentation, Release 0.20.1.dev11

» for sensors recording instantaneous data: updates only the event frequency (and event resolution
remains Q)

sensor_id

source_id

flexmeasures.data.models.user
Functions

flexmeasures.data.models.user.is_user (o) — bool

True if object is or proxies a User, False otherwise.

Takes into account that object can be of LocalProxy type, and uses get_current_object to get the underlying
(User) object.

flexmeasures.data.models.user.remember_last_seen(user)
Update the last_seen field

flexmeasures.data.models.user.remember_login(the_app, user)

We do not use the tracking feature of flask_security, but this basic meta data are quite handy to know

Classes

class flexmeasures.data.models.user.Account (**kwargs)
Account of a tenant on the server. Bundles Users as well as GenericAssets.
__init__ (**kwargs)

A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

has_role(role: str| AccountRole) — bool
Returns True if the account has the specified role.

Parameters
role — An account role name or AccountRole instance
query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

search_annotations (annotation_starts_after: datetime | None = None, annotations_after: datetime | None
= None, annotation_ends_before: datetime | None = None, annotations_before:
datetime | None = None, source: DataSource | list[DataSource] | int | list[int] | str |
list[str] | None = None, as_frame: bool = False) — list[Annotation] | pd.DataFrame

Return annotations assigned to this account.

4.53. flexmeasures.data 293

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.20.1.dev11

Parameters
¢ annotations_after - only return annotations that end after this datetime (exclusive)
* annotations_before — only return annotations that start before this datetime (exclusive)
class flexmeasures.data.models.user.AccountRole (**kwargs)
——init__(**kwargs)
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

class flexmeasures.data.models.user.Role(**kwargs)
__init__ (**kwargs)
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

class flexmeasures.data.models.user.RolesAccounts(**kwargs)
__init__ (**kwargs)
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

294 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.20.1.dev11

class flexmeasures.data.models.user.RolesUsers(**kwargs)
__init__(**kwargs)
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.
query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

class flexmeasures.data.models.user.User (**kwargs)

We use the flask security UserMixin, which does include functionality, but not the fields (those are in
flask_security/models::FsUserMixin). We went with a pick&choose approach. This gives us more freedom,
e.g. to choose our own table name or add logic around the activation status. If we add new FS functionality (e.g.
2FA), the fields needed for that need to be added here.

__init__ (**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

has_role(role: str | Role) — bool

Returns True if the user identifies with the specified role.
Overwritten from flask_security.core.UserMixin.

Parameters
role — A role name or Role instance

property is_authenticated: bool
We are overloading this, so it also considers being active. Inactive users can by definition not be authenti-
cated.

query: t.ClassVar[Query]

A SQLAIchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

roles

The roles attribute is being used by Flask-Security in the @roles_required decorator (among others). With
this little overload fix, it will only return the user’s roles if they are authenticated. We do this to prevent that
if a user is logged in while the admin deactivates them, their session would still work. In effect, we strip

4.53. flexmeasures.data 295

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.20.1.dev11

unauthenticated users from their roles. To read roles of an unauthenticated user (e.g. being inactive), use
the flexmeasures_roles attribute. If our auth model has moved to an improved way, e.g. requiring modern
tokens, we should consider relaxing this. Note: This needed to become a hybrid property when moving to
Flask-Security 3.4

flexmeasures.data.models.validation_utils

Functions

flexmeasures.data.models.validation_utils.check_required_attributes(sensor: Sensor, attributes:
list[str | tuple[str, Type |
tuple[Type, ...]]])

Raises if any attribute in the list of attributes is missing on the Sensor, or has the wrong type.
Parameters
* sensor — Sensor object to check for attributes

* attributes - List of either an attribute name or a tuple of an attribute name and its allowed
type (the allowed type may also be a tuple of several allowed types)

Exceptions

exception flexmeasures.data.models.validation_utils.MissingAttributeException

exception flexmeasures.data.models.validation_utils.WrongTypeAttributeException

flexmeasures.data.models.weather

Data models for FlexMeasures

Exceptions

exception flexmeasures.data.models.ModelException

4.53.3 flexmeasures.data.queries

Modules

flexmeasures.data.queries.annotations
flexmeasures.data.queries.data_sources
flexmeasures.data.queries.generic_assets
flexmeasures.data.queries.sensors

flexmeasures.data.queries.utils

296 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.queries.annotations
Functions

flexmeasures.data.queries.annotations.query_asset_annotations(asset_id: int, annotations_after:
datetime | None = None,
annotations_before: datetime |
None = None, sources:
list[DataSource] | None = None,
annotation_type: str | None =
None) — Query

Match annotations assigned to the given asset.

flexmeasures.data.queries.data_sources
Functions

flexmeasures.data.queries.data_sources.get_or_create_source(source: User | str, source_type: str |
None = None, model: str | None =
None, flush: bool = True) —
DataSource

flexmeasures.data.queries.data_sources.get_source_or_none (source. int | str, source_type: str | None
= None) — DataSource | None

Parameters
e source — source id

* source_type — optionally, filter by source type

flexmeasures.data.queries.generic_assets
Functions

flexmeasures.data.queries.generic_assets.get_asset_group_queries(group_by_type: bool = True,
group_by_account: bool =
False, group_by_location: bool
= False, cus-
tom_aggregate_type_groups:
dict[str, list[str]] | None =
None) — dict[str, Select]
An asset group is defined by Asset queries, which this function can generate. Each query has a name (for
the asset group it represents). These queries still need an executive call, like all(), count() or first(). This
function limits the assets to be queried to the current user’s account, if the user is not an admin. Note:
Make sure the current user has the “read” permission on their account (on GenericAsset.__class__?? See
https://github.com/FlexMeasures/flexmeasures/issues/200) or is an admin. :param group_by_type: If True,
groups will be made for assets with the same type. We prefer pluralised group names here. Defaults to True.
:param group_by_account: If True, groups will be made for assets within the same account. This makes sense
for admins, as they can query across accounts. :param group_by_location: If True, groups will be made for
assets at the same location. Naming of the location currently supports charge points (for EVSEs). :param cus-
tom_aggregate_type_groups: dict of asset type groupings (mapping group names to names of asset types). See
also the setting FLEXMEASURES_ASSET_TYPE_GROUPS.

4.53. flexmeasures.data 297

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/FlexMeasures/flexmeasures/issues/200

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.queries.generic_assets.get_location_queries(account_id: int | None = None) —
dict[str,
Select[tuple[GenericAsset]]]

Make queries for grouping assets by location.

We group EVSE assets by location (if they share a location, they belong to the same Charge Point) Like
get_asset_group_queries, the values in the returned dict still need an executive call, like all(), count() or first().
Note that this function will still load and inspect assets to do its job.

The Charge Points are named on the basis of the first EVSE in their list, using either the whole EVSE name or
that part that comes before a “ - delimiter. For example: If:

evse_name = “Seoul Hilton - charger 1”

Then:
charge_point_name = “Seoul Hilton (Charge Point)”

A Charge Point is a special case. If all assets on a location are of type EVSE, we can call the location a “Charge
Point”.

Parameters
account_id — Pass in an account ID if you want to query an account other than your own. This
only works for admins. Public assets are always queried.

flexmeasures.data.queries.generic_assets.group_assets_by_location(asser_list: list[GenericAsset])
— list[list[GenericAsset]]

flexmeasures.data.queries.generic_assets.query_assets_by_type(type_names: list[str] | str,
account_id: int | None = None,
query: Select | None = None) —
Select

Return a query which looks for GenericAssets by their type.
Parameters
* type_names — Pass in a list of type names or only one type name.

* account_id — Pass in an account ID if you want to query an account other than your own.
This only works for admins. Public assets are always queried.

* query — Pass in an existing Query object if you have one.

flexmeasures.data.queries.sensors

Functions

298 Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.queries.sensors.query_sensor_by_name_and_generic_asset_type_name (sensor_name:
str |
None =
None,
generic_asset_type_names
list[str]
| None
= None,
ac-
count_id:
int |
None =
None)
_>
Select

Match a sensor by its own name and that of its generic asset type.
Parameters
¢ sensor_name — should match (if None, no match is needed)

e generic_asset_type_names — should match at least one of these (if None, no match is
needed)

* account_id — Pass in an account ID if you want to query an account other than your own.
This only works for admins. Public assets are always queried.

flexmeasures.data.queries.sensors.query_sensors_by_proximity (latitude: float, longitude: float,
generic_asset_type_name: str |
None, sensor_name: str | None,
account_id: int | None = None) —
Select

Order them by proximity of their asset’s location to the target.

flexmeasures.data.queries.utils
Functions

flexmeasures.data.queries.utils.create_beliefs_query(cis: Type[ts.TimedValue], session: Session,
old_sensor_class: db.Model,
old_sensor_names: tuple[str], start: datetime |
None, end: datetime | None) — Select

flexmeasures.data.queries.utils.get_belief_ timing_criteria(cls: Type[ts.TimedValue], asset_class:
db.Model, belief_horizon_window:
tuple[timedelta | None, timedelta |
None], belief _time_window:
tuple[datetime | None, datetime |
None]) — list[BinaryExpression]

Get filter criteria for the desired windows with relevant belief times and belief horizons.

todo: interpret belief horizons with respect to knowledge time rather than event end. - a positive horizon
denotes a before-the-fact belief (ex-ante w.r.t. knowledge time) - a negative horizon denotes an after-the-fact
belief (ex-post w.r.t. knowledge time)

Parameters

4.53. flexmeasures.data 299

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.20.1.dev11

* belief_horizon_window — short belief horizon and long belief horizon, each an optional
timedelta Interpretation: - a positive short horizon denotes “at least <horizon> before the
fact” (min ex-ante) - a positive long horizon denotes “at most <horizon> before the fact”
(max ex-ante) - a negative short horizon denotes “at most <horizon> after the fact” (max
ex-post) - a negative long horizon denotes “at least <horizon> after the fact” (min ex-post)

» belief_time_window — earliest belief time and latest belief time, each an optional datetime
Examples (assuming the knowledge time of each event coincides with the end of the event):

Query beliefs formed between 1 and 7 days before each individual event belief_horizon_window =
(timedelta(days=1), timedelta(days=7))

Query beliefs formed at least 2 hours before each individual event belief_horizon_window =
(timedelta(hours=2), None)

Query beliefs formed at most 2 hours after each individual event belief_horizon_window = (-
timedelta(hours=2), None)

Query beliefs formed at least after each individual event belief_horizon_window = (None,
timedelta(hours=0))

Query beliefs formed from May 2nd to May 13th (left inclusive, right exclusive) be-
lief_time_window = (datetime(2020, 5, 2), datetime(2020, 5, 13))

Query beliefs formed from May 14th onwards belief_time_window = (datetime(2020, 5, 14), None)
Query beliefs formed before May 13th belief_time_window = (None, datetime(2020, 5, 13))

flexmeasures.data.queries.utils.get_source_criteria(cls: Type[ts.TimedValue] | Type[ts.TimedBelief],
user_source_ids: int | list[int], source_types:
list[str], exclude_source_types: list[str]) —
list[BinaryExpression]

flexmeasures.data.queries.utils.multiply_dataframe_with_deterministic_beliefs(dfi:
pd.DataFrame,
daf2:
pd.DataFrame,
multiplica-
tion_factor:
float =1,
result_source:
str | None =
None) —
pd.DataFrame

Create new DataFrame where the event_value columns of df1 and df2 are multiplied.

If df1 and df2 have belief _horizon columns, the belief_horizon column of the new DataFrame is determined as
the minimum of the input horizons. The source columns of dfl and df2 are not used. A source column for the
new DataFrame can be set by passing a result_source (string).

The index of the resulting DataFrame contains the outer join of the indices of dfl and df2. Event values are
np.nan for rows that are not in both DataFrames.

Parameters

» df1 — DataFrame with “event_value” column and optional “belief_horizon” and “source”
columns

o df2 — DataFrame with “event_value” column and optional “belief_horizon” and “source”
columns

300 Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

* multiplication_factor — extra scalar to determine the event_value of the resulting
DataFrame

» result_source - string label for the source of the resulting DataFrame

Returns
DataFrame with “event_value” column, an additional “belief_horizon” column if both df1 and
df2 contain this column, and an additional “source” column if result_source is set.

flexmeasures.data.queries.utils.potentially_limit_assets_query_to_account (query: Se-
lect[tuple[GenericAsset]],
account_id: int |
None = None) —
Se-
lect[tuple[GenericAsset]]

Filter out all assets that are not in the current user’s account. For admins and CLI users, no assets are filtered
out, unless an account_id is set.

Parameters
account_id - if set, all assets that are not in the given account will be filtered out (only works
for admins and CLI users). For querying public assets in particular, don’t use this function.

flexmeasures.data.queries.utils.simplify_index (bdf: tb.BeliefsDataFrame, index_levels_to_columns:
list[str] | None = None) — pd.DataFrame

Drops indices other than event_start. Optionally, salvage index levels as new columns.

Because information stored in the index levels is potentially lost*, we cannot guarantee a complete description
of beliefs in the BeliefsDataFrame. Therefore, we type the result as a regular pandas DataFrame.

* The index levels are dropped (by overwriting the multi-level index with just the “event_start” index level).
Only for the columns named in index_levels_to_columns, the relevant information is kept around.

flexmeasures.data.queries.utils.source_type_criterion(source_types: list[str]) — BinaryExpression

Criterion to collect only data from sources that are of the given type.

flexmeasures.data.queries.utils.source_type_exclusion_criterion(source_types: list[str]) —
BinaryExpression

Criterion to exclude sources that are of the given type.

flexmeasures.data.queries.utils.user_source_criterion(cls: Type[ts.TimedValue] |
Type[ts.TimedBelief], user_source_ids: int |
list[int]) — BinaryExpression

Criterion to search only through user data from the specified user sources.

We distinguish user sources (sources with source.type == “user”’) from other sources (source.type != “user”).
Data with a user source originates from a registered user. Data with e.g. a script source originates from a script.

This criterion doesn’t affect the query over non-user type sources. It does so by ignoring user sources that are
not in the given list of source_ids.

Data query functions

4.53. flexmeasures.data 301

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

4.53.4 flexmeasures.data.schemas

Modules

flexmeasures.data.schemas.account
flexmeasures.data.schemas.attributes
flexmeasures.data.schemas.generic_assets
flexmeasures.data.schemas.io
flexmeasures.data.schemas.locations
flexmeasures.data.schemas.reporting
flexmeasures.data.schemas.scheduling
flexmeasures.data.schemas.sensors
flexmeasures.data.schemas. sources
flexmeasures.data.schemas. times
flexmeasures.data.schemas.units
flexmeasures.data.schemas.users

flexmeasures.data.schemas.utils

flexmeasures.data.schemas.account
Classes

class flexmeasures.data.schemas.account.AccountIdField(*, strict: bool = False, **kwargs)

Field that deserializes to an Account and serializes back to an integer.

_deserialize(value, attr, obj, **kwargs) — Account

Turn an account id into an Account.

_serialize (account, attr, data, **kwargs)

Turn an Account into a source id.

class flexmeasures.data.schemas.account.AccountRoleSchema (*args, **kwargs)

AccountRole schema, with validations.

class Meta

model
alias of AccountRole

302 Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.20.1.dev11

opts: SchemaOpts = <flask_marshmallow.sqla.SQLAlchemySchemaOpts object>
class flexmeasures.data.schemas.account.AccountSchema(*args, **kwargs)
Account schema, with validations.
class Meta
model
alias of Account

opts: SchemaOpts = <flask_marshmallow.sqla.SQLAlchemySchemaOpts object>

flexmeasures.data.schemas.attributes
Functions

flexmeasures.data.schemas.attributes.validate_special_attributes(key: sir, value: Any)
Validate attributes with a special meaning in FlexMeasures.

flexmeasures.data.schemas.generic_assets
Classes

class flexmeasures.data.schemas.generic_assets.GenericAssetIdField(*args, **kwargs)
Field that deserializes to a GenericAsset and serializes back to an integer.

_deserialize(value, attr, obj, **kwargs) — GenericAsset
Turn a generic asset id into a GenericAsset.

_serialize (asset, attr, data, **kwargs)

Turn a GenericAsset into a generic asset id.

class flexmeasures.data.schemas.generic_assets.GenericAssetSchema(*args, **kwargs)
GenericAsset schema, with validations.

class Meta
model
alias of GenericAsset
opts: SchemaOpts = <flask_marshmallow.sqla.SQLAlchemySchemaOpts object>
class flexmeasures.data.schemas.generic_assets.GenericAssetTypeSchema(*args, **kwargs)
GenericAssetType schema, with validations.
class Meta
model
alias of GenericAssetType

opts: SchemaOpts = <flask_marshmallow.sqla.SQLAlchemySchemaOpts object>

4.53. flexmeasures.data

303

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

FlexMeasures Documentation, Release 0.20.1.dev11

class flexmeasures.data.schemas.generic_assets.JSON(* load_default: typing.Any =
<marshmallow.missing>, missing: typing.Any =
<marshmallow.missing>, dump_default:
typing.Any = <marshmallow.missing>, default:
typing.Any = <marshmallow.missing>,
data_key: str | None = None, attribute: str |
None = None, validate: None |
typing.Callable[[typing.Any], typing.Any] |
typing.Iterable[typing.Callable[[typing.Any],
typing.Any]] = None, required: bool = False,
allow_none: bool | None = None, load_only:
bool = False, dump_only: bool = False,
error_messages: dict[str, str] | None = None,
metadata: typing.Mapping[str, typing.Any] |
None = None, **additional_metadata)

_deserialize(value, attr, data, **kwargs) — dict
Deserialize value. Concrete Field classes should implement this method.
Parameters
¢ value - The value to be deserialized.
e attr - The attribute/key in data to be deserialized.
¢ data - The raw input data passed to the Schema.load.
¢ kwargs — Field-specific keyword arguments.

Raises
ValidationError — In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.
Changed in version 3.0.0: Added **kwargs to signature.

_serialize (value, attr, data, **kwargs) — str

Serializes value to a basic Python datatype. Noop by default. Concrete Field classes should implement
this method.

Example:

class TitleCase(Field):
def _serialize(self, value, attr, obj, **kwargs):
if not value:
return ''
return str(value).title()

Parameters
* value — The value to be serialized.
e attr (str) — The attribute or key on the object to be serialized.
* obj (object) — The object the value was pulled from.

¢ kwargs (dict) — Field-specific keyword arguments.

304 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

Returns
The serialized value

flexmeasures.data.schemas.io
Classes

class flexmeasures.data.schemas.io.Input(*, only: types.StrSequenceOrSet | None = None, exclude:
types.StrSequenceOrSet = (), many: bool = False, context: dict
| None = None, load_only: types.StrSequenceOrSet = (),
dump_only: types.StrSequenceOrSet = (), partial: bool |
types.StrSequenceOrSet | None = None, unknown: str | None =
None)

This schema implements the required fields to perform a TimedBeliefs search using the method flexmea-
sures.data.models.time_series: TimedBelief.search_beliefs.

It includes the field name, which is not part of the search query, for later reference of the belief.

class flexmeasures.data.schemas.io.Output(*, only: types.StrSequenceOrSet | None = None, exclude:
types.StrSequenceOrSet = (), many: bool = False, context:
dict | None = None, load_only: types.StrSequenceOrSet = (),
dump_only: types.StrSequenceOrSet = (), partial: bool |
types.StrSequenceOrSet | None = None, unknown: str | None
= None)

class flexmeasures.data.schemas.io.RequiredInput (*, only: types.StrSequenceOrSet | None = None,
exclude: types.StrSequenceOrSet = (), many: bool =
False, context: dict | None = None, load_only:
types.StrSequenceOrSet = (), dump_only:
types.StrSequenceOrSet = (), partial: bool |
types.StrSequenceOrSet | None = None, unknown:
str | None = None)

class flexmeasures.data.schemas.io.RequiredOutput (*, only: types.StrSequenceOrSet | None = None,
exclude: types.StrSequenceOrSet = (), many: bool
= False, context: dict | None = None, load_only:
types.StrSequenceOrSet = (), dump_only:
types.StrSequenceOrSet = (), partial: bool |
types.StrSequenceOrSet | None = None, unknown:
str | None = None)

flexmeasures.data.schemas.locations
Classes

class flexmeasures.data.schemas.locations.LatitudeField(*args, **kwargs)

Field that deserializes to a latitude float with max 7 decimal places.
__init__(*args, **kwargs)

class flexmeasures.data.schemas.locations.LatitudeLongitudeValidator (*, error: str | None =
None)

Validator which succeeds if the value passed has at most 7 decimal places.

4.53. flexmeasures.data 305

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

__init__(*, error: str| None = None)

class flexmeasures.data.schemas.locations.LatitudeValidator (*, error: str | None = None,
allow_none: bool = False)

Validator which succeeds if the value passed is in the range [-90, 90].
__init__(*, error: str | None = None, allow_none: bool = False)

class flexmeasures.data.schemas.locations.LongitudeField(*args, **kwargs)
Field that deserializes to a longitude float with max 7 decimal places.
__init__(*args, **kwargs)

class flexmeasures.data.schemas.locations.LongitudeValidator (¥, error: str | None = None,
allow_none: bool = False)

Validator which succeeds if the value passed is in the range [-180, 180].

__init__(* error: str| None = None, allow_none: bool = False)

flexmeasures.data.schemas.reporting

Modules

flexmeasures.data.schemas.reporting.
aggregation
flexmeasures.data.schemas.reporting.
pandas_reporter
flexmeasures.data.schemas.reporting.profit

306 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.schemas.reporting.aggregation

Classes

class flexmeasures.data.schemas.reporting.aggregation.AggregatorConfigSchema (*, only:

Schema for the AggregatorReporter configuration

Example: .. code-block:: json

{

LLIT3

“method” : “sum”, “weights” : {

113

pv” : 1.0, “consumption” : -1.0

types.StrSequenceOrSet
| None = None,
exclude:
types.StrSequenceOrSet
= (), many:

bool = False,

context: dict |

None = None,
load_only:
types.StrSequenceOrSet
=()s

dump_only:
types.StrSequenceOrSet
= (), partial:

bool |
types.StrSequenceOrSet
| None = None,
unknown: str |

None = None)

4.53. flexmeasures.data

307

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

class flexmeasures.data.schemas.reporting.aggregation.AggregatorParametersSchema(*, only:
types.StrSequenceOrSet
| None =
None,
exclude:
types.StrSequenceOrSet
=(),
many:
bool =
False,
context:
dict | None
= None,
load_only:
types.StrSequenceOrSet
=(),
dump_only:
types.StrSequenceOrSet
=(),
partial:
bool |
types.StrSequenceOrSet
| None =
None,
unknown:
str | None
= None)

Schema for the AggregatorReporter parameters

Example: .. code-block:: json

“input”: [
“name” : “pv”, “sensor’: 1, “source” : 1,
|
“name” : “consumption”, “sensor’: 1, “source” : 2,
], “output”: [

“sensor’’: 3,

}
1, “start” : “2023-01-01T00:00:00+00:00”, “end” : “2023-01-03T00:00:00+00:00”,

308 Chapter 4. Where to start reading?

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.schemas.reporting.pandas_reporter

Classes

class flexmeasures.data.schemas.reporting.pandas_reporter.PandasMethodCall (*, only:

types.StrSequenceOrSet
| None = None,
exclude:
types.StrSequenceOrSet
= (), many: bool =
False, context:

dict | None =

None, load_only:
types.StrSequenceOrSet
= (), dump_only:
types.StrSequenceOrSet
=(), partial: bool |
types.StrSequenceOrSet
| None = None,
unknown.: str |

None = None)

4.53. flexmeasures.data

309

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

class flexmeasures.data.schemas.reporting.pandas_reporter.PandasReporterConfigSchema (*,

This schema lists fields that can be used to describe sensors in the optimised portfolio
Example:

{

“required_input”
[[] {*name” : “df1}

1, “required_output” : [
“name” : “df2”}

], “transformations” : [

{

only:
types.StrSequenceOrSet
I

None

None,

ex-

clude:
types.StrSequenceOrSet
=()s

many:

bool

False,
con-
text:
dict |
None

None,

load_only:
types.StrSequenceOrSet
=(),

dump_only:
types.StrSequenceOrSet
=()

par-

tial:

bool |
types.StrSequenceOrSet
|

None

None,
un-
known:
str |
None

None)

310

Chapter 4. Where to start reading?

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

“df_input” : “df1”, “df_output” : “df2”, “method” : “copy”

3 A

“df_input” : “df2”, “df_output” : “df2”, “method” : “sum”
3. A

“method” : “sum”, “kwargs” : {“axis”: 0}
}

}

validate_chaining(data, **kwargs)

This validator ensures that we are always given an input and that the final_df_output is computed.

4.53. flexmeasures.data 311

FlexMeasures Documentation, Release 0.20.1.dev11

class flexmeasures.data.schemas.reporting.pandas_reporter.PandasReporterParametersSchema(*,

validate_time_parameters(data, **kwargs)

This method validates that all input sensors have start and end parameters available.

only:
types.StrSequence(
I

None

None,

ex-

clude:
types.StrSequence(

() 9
many:
bool

False,
con-
text:
dict

I

None

None,

load_only:
types.StrSequence(
0,

dump_only:
types.StrSequence(

0,

par-

tial:

bool

|
types.StrSequence(

None

None,
un-
known:
Str

I

None

None)

312 Chapter 4. Where to start reading?

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.schemas.reporting.profit

Classes

class flexmeasures.data.schemas.reporting.profit.ProfitOrLossReporterConfigSchema(*, only:

Schema for the ProfitOrLossReporter configuration
Example: .. code-block:: json

{

“production-price-sensor” : 1, “consumption-price-sensor” : 2, “loss_is_positive” : True

}

validate_price_sensors(data, **kwargs)
check that at least one of the price sensors is given

types.StrSequenceOrSet
| None =

None,

exclude:
types.StrSequenceOrSet
=(),

many:

bool =

False,

context:

dict |

None =

None,

load_only:
types.StrSequenceOrSet
=(),

dump_only:
types.StrSequenceOrSet
=(),

partial:

bool |
types.StrSequenceOrSet
| None =

None, un-

known:

str | None

= None)

4.53. flexmeasures.data

313

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

class flexmeasures.data.schemas.reporting.profit.ProfitOrLossReporterParametersSchema(*,
only:
types.StrSequenceOrS
|

None

None,

ex-

clude:
types.StrSequenceOrSe
=(),

many:

bool

False,

con-

text:

dict

|

None

None,

load_only:
types.StrSequenceOrS
=(),

dump_only:
types.StrSequenceOrSe
=(),

par-

tial:

bool

I
types.StrSequenceOrSe

|
None

None,
un-
known:
str |
None

None)

Schema for the ProfitOrLossReporter parameters

Example: .. code-block:: json

{
“input”: [
{
“sensor’: 1,
}s
], “output”: [

314 Chapter 4. Where to start reading?

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

{

“sensor’”: 2,

}
], “start” : “2023-01-01T00:00:00+00:00”, “end” : “2023-01-03T00:00:00+00:007,

Classes

class flexmeasures.data.schemas.reporting.BeliefsSearchConfigSchema(*, only:
types.StrSequenceOrSet |
None = None, exclude:
types.StrSequenceOrSet =
(), many: bool = False,
context: dict | None =
None, load_only:
types.StrSequenceOrSet =
(), dump_only:
types.StrSequenceOrSet =
(), partial: bool |
types.StrSequenceOrSet |
None = None, unknown: str
| None = None)

This schema implements the required fields to perform a TimedBeliefs search using the method flexmea-
sures.data.models.time_series:Sensor.search_beliefs

class flexmeasures.data.schemas.reporting.ReporterConfigSchema(*, only: types.StrSequenceOrSet |
None = None, exclude:
types.StrSequenceOrSet = (),
many: bool = False, context: dict |
None = None, load_only:
types.StrSequenceOrSet = (),
dump_only:
types.StrSequenceOrSet = (),
partial: bool |
types.StrSequenceOrSet | None =
None, unknown: str | None =
None)

This schema is used to validate Reporter class configurations (config). Inherit from this class to extend this
schema with your own parameters.

4.53. flexmeasures.data 315

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

class flexmeasures.data.schemas.reporting.ReporterParametersSchema(*, only:
types.StrSequenceOrSet |
None = None, exclude:
types.StrSequenceOrSet = (),
many: bool = False, context:
dict | None = None,
load_only:
types.StrSequenceOrSet = (),
dump_only:
types.StrSequenceOrSet = (),
partial: bool |
types.StrSequenceOrSet |
None = None, unknown. str |
None = None)

This schema is used to validate the parameters to the method compute of
the Reporter class.

Inherit from this class to extend this schema with your own parameters.

class flexmeasures.data.schemas.reporting.StatusSchema(*, only: types.StrSequenceOrSet | None =
None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None =
None, load_only: types.StrSequenceOrSet =
(), dump_only: types.StrSequenceOrSet = (),
partial: bool | types.StrSequenceOrSet |
None = None, unknown: str | None = None)

flexmeasures.data.schemas.scheduling

Modules

flexmeasures.data.schemas.scheduling.
process
flexmeasures.data.schemas.scheduling.
storage

flexmeasures.data.schemas.scheduling.process

Classes

class flexmeasures.data.schemas.scheduling.process.OptimizationDirection(value)

An enumeration.

316 Chapter 4. Where to start reading?

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

class flexmeasures.data.schemas.scheduling.process.ProcessSchedulerFlexModelSchema (sensor:
Sensor,
start:
date-
time,
end:
date-
time,
*args,
**kwargs)

__init__ (sensor: Sensor, start: datetime, end: datetime, *args, **kwargs)

Pass start and end to convert time_restrictions into a time series and sensor as a fallback mechanism for the
process_type

get_mask_from_events (events: list[dict[str, str]] | None) — pd.Series

Convert events to a mask of the time periods that are valid

Parameters
events - list of events defined as dictionaries with a start and duration

Returns
mask of the allowed time periods

post_load_time_restrictions(data: dict, **kwargs) — dict

Convert events (list of [start, duration] pairs) into a mask (pandas Series)

pre_load_process_type (data: dict, **kwargs) — dict

Fallback mechanism for the process_type variable. If not found in data, it tries to find it in among the sensor
or asset attributes and, if it’s not found there either, it defaults to “INFLEXIBLE”.

class flexmeasures.data.schemas.scheduling.process.ProcessType (value)
An enumeration.

flexmeasures.data.schemas.scheduling.storage

Classes

class flexmeasures.data.schemas.scheduling.storage.EfficiencyField(*args, **kwargs)
Field that deserializes to a Quantity with % units. Must be greater than 0% and less than or equal to 100%.

Examples:

-

>>> ef = EfficiencyField()

>>> ef.deserialize(0.9)
<Quantity(90.0, 'percent')>

>>> ef.deserialize("90%")
<Quantity(90.0, 'percent')>

>>> ef.deserialize("0%")
Traceback (most recent call last):

marshmallow.exceptions.ValidationError: ['Must be greater than ® and less than or.
—equal to 1.']

__init__(*args, **kwargs)

4.53. flexmeasures.data 317

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

class flexmeasures.data.schemas.scheduling.storage.StorageFlexModelSchema (start: datetime,
sensor: Sensor,
*args, **kwargs)
This schema lists fields we require when scheduling storage assets. Some fields are not required, as they might
live on the Sensor.attributes. You can use StorageScheduler.deserialize_flex_config to get that filled in.

__init__(start: datetime, sensor: Sensor, *args, **kwargs)

Pass the schedule’s start, so we can use it to validate soc-target datetimes.

check_redundant_efficiencies(data: dict, **kwargs)

Check that none of the following cases occurs:
(1) flex-model contains both a round-trip efficiency and a charging efficiency
(2) flex-model contains both a round-trip efficiency and a discharging efficiency

(3) flex-model contains a round-trip efficiency, a charging efficiency and a discharging efficiency

Raise
ValidationError

post_load_sequence (data: dict, **kwargs) — dict

Perform some checks and corrections after we loaded.

Classes

class flexmeasures.data.schemas.scheduling.FlexContextSchema (*, only: types.StrSequenceOrSet |
None = None, exclude:
types.StrSequenceOrSet = (), many:
bool = False, context: dict | None =
None, load_only:
types.StrSequenceOrSet = (),
dump_only: types.StrSequenceOrSet
= (), partial: bool |
types.StrSequenceOrSet | None =
None, unknown: str | None = None)

This schema lists fields that can be used to describe sensors in the optimised portfolio

flexmeasures.data.schemas.sensors
Classes

class flexmeasures.data.schemas.sensors.JSON(* load_default: typing.Any = <marshmallow.missing>,
missing: typing.Any = <marshmallow.missing>,
dump_default: typing.Any = <marshmallow.missing>,
default: typing. Any = <marshmallow.missing>, data_key:
str | None = None, attribute: str | None = None, validate:
None | typing.Callable[[typing.Any], typing.Any] |
typing.Iterable[typing.Callable[[typing.Any],
typing.Any]] = None, required: bool = False,
allow_none: bool | None = None, load_only: bool =
False, dump_only: bool = False, error_messages: dict[str,
str] | None = None, metadata: typing.Mapping|str,
typing.Any] | None = None, **additional_metadata)

318 Chapter 4. Where to start reading?

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

_deserialize(value, attr, data, **kwargs) — dict
Deserialize value. Concrete Field classes should implement this method.

Parameters
¢ value - The value to be deserialized.
e attr - The attribute/key in data to be deserialized.
¢ data - The raw input data passed to the Schema.load.
¢ kwargs — Field-specific keyword arguments.

Raises
ValidationError — In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.
Changed in version 3.0.0: Added **kwargs to signature.

_serialize (value, attr, data, **kwargs) — str

Serializes value to a basic Python datatype. Noop by default. Concrete Field classes should implement
this method.

Example:

class TitleCase(Field):
def _serialize(self, value, attr, obj, **kwargs):
if not value:
return ''
return str(value).title()

Parameters
* value — The value to be serialized.
e attr (str) — The attribute or key on the object to be serialized.
* obj (object) — The object the value was pulled from.
¢ kwargs (dict) — Field-specific keyword arguments.
Returns

The serialized value

class flexmeasures.data.schemas.sensors.QuantityOrSensor (fo_unit: str, default_src_unit: str | None =
None, *args, **kwargs)

__init__(to_unit: str, default_src_unit: str | None = None, *args, **kwargs)
Field for validating, serializing and deserializing a Quantity or a Sensor.

NB any validators passed are only applied to Quantities. For example, validate=validate.Range(min=0)
will raise a ValidationError in case of negative quantities, but will let pass any sensor that has recorded
negative values.

Parameters

* to_unit — unit in which the sensor or quantity should be convertible to

4.53. flexmeasures.data 319

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

e default_src_unit — what unit to use in case of getting a numeric value

_deserialize(value: str| dict[str, int], attr, obj, **kwargs) — ur.Quantity | Sensor
Deserialize value. Concrete Field classes should implement this method.

Parameters
¢ value - The value to be deserialized.
e attr - The attribute/key in data to be deserialized.
¢ data - The raw input data passed to the Schema.load.
¢ kwargs — Field-specific keyword arguments.

Raises
ValidationError — In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.
Changed in version 3.0.0: Added **kwargs to signature.

_serialize (value: ur.Quantity | dict[str, Sensor], attr, data, **kwargs) — str | dict[str, int]

Serializes value to a basic Python datatype. Noop by default. Concrete Field classes should implement
this method.

Example:

class TitleCase(Field):
def _serialize(self, value, attr, obj, **kwargs):
if not value:
return ''
return str(value).title()

Parameters
* value — The value to be serialized.
e attr (str) — The attribute or key on the object to be serialized.
* obj (object) — The object the value was pulled from.
¢ kwargs (dict) — Field-specific keyword arguments.
Returns

The serialized value

convert (value, param, ctx, **kwargs)

Convert the value to the correct type. This is not called if the value is None (the missing value).

This must accept string values from the command line, as well as values that are already the correct type.
It may also convert other compatible types.

The param and ctx arguments may be None in certain situations, such as when converting prompt input.
If the value cannot be converted, call fail () with a descriptive message.
Parameters

¢ value — The value to convert.

320 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

» param — The parameter that is using this type to convert its value. May be None.
* ctx — The current context that arrived at this value. May be None.

class flexmeasures.data.schemas.sensors.RepurposeValidatorToIgnoreSensors (original_validator,
* error: str| None
= None)

Validator that executes another validator (the one you initialize it with) only on non-Sensor values.

__init__(original_validator, *, error: str | None = None)

class flexmeasures.data.schemas.sensors.SensorIdField(*args, unit: str | ur.Quantity | None = None,
**kwargs)

Field that deserializes to a Sensor and serializes back to an integer.

__init__ (*args, unit: str | ur.Quantity | None = None, **kwargs)

_deserialize(value: int, attr, obj, **kwargs) — Sensor

Turn a sensor id into a Sensor.

_serialize(sensor: Sensor, attr, data, **kwargs) — int

Turn a Sensor into a sensor id.

class flexmeasures.data.schemas.sensors.SensorSchema(*args, **kwargs)

Sensor schema, with validations.

class Meta

model

alias of Sensor

opts: SchemaOpts = <flask_marshmallow.sqla.SQLAlchemySchemaOpts object>

class flexmeasures.data.schemas.sensors.SensorSchemaMixin(*, only: types.StrSequenceOrSet | None
= None, exclude:
types.StrSequenceOrSet = (), many: bool
= Fualse, context: dict | None = None,
load_only: types.StrSequenceOrSet = (),
dump_only: types.StrSequenceOrSet =
(), partial: bool |
types.StrSequenceOrSet | None = None,
unknown: str| None = None)

Base sensor schema.

Here we include all fields which are implemented by timely_beliefs.SensorDBMixin All classes inheriting from
timely beliefs sensor don’t need to repeat these. In a while, this schema can represent our unified Sensor class.

When subclassing, also subclass from ma.SQLAlchemySchema and add your own DB model class, e.g.:

class Meta:
model = Asset

class flexmeasures.data.schemas.sensors.TimeSeriesOrSensor (unit, *args, timezone: str | None =
None, value_validator: Validator |
None = None, **kwargs)

__init__(unit, *args, timezone: str | None = None, value_validator: Validator | None = None, **kwargs)

The timezone is only used in case a time series is specified and one of the timed events in the time series
uses a nominal duration, such as “P1D”.

4.53. flexmeasures.data 321

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

_deserialize(value: str| dict[str, int], attr, obj, **kwargs) — list[dict] | Sensor

Deserialize value. Concrete Field classes should implement this method.
Parameters
* value — The value to be deserialized.
e attr - The attribute/key in data to be deserialized.
» data — The raw input data passed to the Schema.load.
¢ kwargs — Field-specific keyword arguments.

Raises
ValidationError — In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.
Changed in version 3.0.0: Added **kwargs to signature.

class flexmeasures.data.schemas.sensors.TimedEventSchema (timezone: str | None = None,
value_validator: Validator | None = None,
*args, **kwargs)

__init__(timezone: str | None = None, value_validator: Validator | None = None, *args, **kwargs)
A time period (or single point) with a value.

Parameters
timezone — Optionally, set a timezone to be able to interpret nominal durations.

check_time_window(data: dict, **kwargs)
Checks whether a complete time interval can be derived from the timing fields.

The data is updated in-place, guaranteeing that the ‘start’ and ‘end’ fields are filled out.

flexmeasures.data.schemas.sources
Classes

class flexmeasures.data.schemas.sources.DataSourceIdField(*, strict: bool = False, **kwargs)

Field that deserializes to a DataSource and serializes back to an integer.

_deserialize(value, attr, obj, **kwargs) — DataSource
Turn a source id into a DataSource.

_serialize(source, attr, data, **kwargs)

Turn a DataSource into a source id.

322 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.schemas.times
Classes

class flexmeasures.data.schemas.times.AwareDateTimeField(*args, **kwargs)

Field that de-serializes to a timezone aware datetime and serializes back to a string.

_deserialize(value: str, attr, obj, **kwargs) — datetime
Work-around until this PR lands: https://github.com/marshmallow-code/marshmallow/pull/1787

class flexmeasures.data.schemas.times.DurationField(*args, **kwargs)

Field that deserializes to a ISO8601 Duration and serializes back to a string.

_deserialize(value, attr, obj, **kwargs) — timedelta | isodate.Duration

Use the isodate library to turn an ISO8601 string into a timedelta. For some non-obvious cases, it will
become an isodate.Duration, see ground_from for more. This method throws a ValidationError if the string
is not ISO norm.

_serialize (value, attr, data, **kwargs)
An implementation of _serialize. It is not guaranteed to return the same string as was input, if ground_from
has been used!

static ground_from(duration: timedelta | isodate.Duration, start: datetime | None) — timedelta

For some valid duration strings (such as “P1M”, a month), converting to a datetime.timedelta is not possible
(no obvious number of days). In this case, _deserialize returned an isodate.Duration. We can derive the
timedelta by grounding to an actual time span, for which we require a timezone-aware start datetime.

class flexmeasures.data.schemas.times.PlanningDurationField(*args, **kwargs)

classmethod load_default()
Use this with the load_default arg to __init__ if you want the default FlexMeasures planning horizon.

class flexmeasures.data.schemas.times.StartEndTimeSchema(*, only: types.StrSequenceOrSet | None =
None, exclude: types.StrSequenceOrSet =
(), many: bool = False, context: dict |
None = None, load_only:
types.StrSequenceOrSet = (), dump_only:
types.StrSequenceOrSet = (), partial: bool
| types.StrSequenceOrSet | None = None,
unknown: str | None = None)

validate (dara, **kwargs)
Validate data against the schema, returning a dictionary of validation errors.
Parameters
» data — The data to validate.
» many — Whether to validate data as a collection. If None, the value for self.many is used.

e partial — Whether to ignore missing fields and not require any fields declared. Propagates
down to Nested fields as well. If its value is an iterable, only missing fields listed in that
iterable will be ignored. Use dot delimiters to specify nested fields.

Returns
A dictionary of validation errors.

New in version 1.1.0.

4.53. flexmeasures.data 323

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://github.com/marshmallow-code/marshmallow/pull/1787
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

class flexmeasures.data.schemas.times.TimeIntervalField(*args, **kwargs)
Field that de-serializes to a TimeInverval defined with start and duration.
_deserialize(value: str, attr, obj, **kwargs) — dict
Deserialize value. Concrete Field classes should implement this method.
Parameters
* value — The value to be deserialized.
e attr - The attribute/key in data to be deserialized.
» data — The raw input data passed to the Schema.load.
¢ kwargs — Field-specific keyword arguments.
Raises
ValidationError — In case of formatting or validation failure.
Returns
The deserialized value.
Changed in version 2.0.0: Added attr and data parameters.

Changed in version 3.0.0: Added **kwargs to signature.

class flexmeasures.data.schemas.times.TimeIntervalSchema(*, only: types.StrSequenceOrSet | None =
None, exclude: types.StrSequenceOrSet =
(), many: bool = False, context: dict |
None = None, load_only:
types.StrSequenceOrSet = (), dump_only:
types.StrSequenceOrSet = (), partial: bool
| types.StrSequenceOrSet | None = None,
unknown: str'| None = None)

Exceptions

exception flexmeasures.data.schemas.times.DurationValidationError (message: str| list | dict,

field_name: str ="'_schema’,
data: Mapping[str, Any] |
Iterable[Mapping[str, Any]] |
None = None, valid_data:
list{dict[str, Any]] | dict[str,
Any] | None = None,
**kwargs)

flexmeasures.data.schemas.units

Classes

class flexmeasures.data.schemas.units.QuantityField(to_unit: str, *args, **kwargs)
Marshmallow/Click field for validating quantities against a unit registry.

The FlexMeasures unit registry is based on the pint library.

For example:

324 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

>>> percentage_field = QuantityField("%", validate=validate.Range(min=0, max=1))
>>> percentage_field.deserialize("2.5%")

<Quantity(2.5, 'percent')>

>>> percentage_field.deserialize(0.025)

<Quantity(2.5, 'percent')>

>>> power_field = QuantityField("kW", validate=validate.Range(max=ur.Quantity(
<"1 kW)

>>> power_field.deserialize("120 W")

<Quantity(®.12, 'kilowatt')>

__init__(to_unit: str, *args, **kwargs)
_deserialize (value, attr, obj, **kwargs) — Quantity
Turn a quantity describing string into a Quantity.

_serialize (value, attr, data, **kwargs)

Turn a Quantity into a string in scientific format.

class flexmeasures.data.schemas.units.QuantityValidator (*, error: str | None = None)

Validator which succeeds if the value passed to it is a valid quantity.

__init__(* error: str| None = None)

flexmeasures.data.schemas.users
Classes

class flexmeasures.data.schemas.users.UserSchema(*args, **kwargs)
This schema lists fields we support through this API (e.g. no password).

class Meta
model
alias of User

opts: SchemaOpts = <flask_marshmallow.sqla.SQLAlchemySchemaOpts object>

flexmeasures.data.schemas.utils
Functions

flexmeasures.data.schemas.utils.with_appcontext_if_needed()
Execute within the script’s application context, in case there is one.
An exception is flexmeasures run, which has a click context at the time the decorator is called, but no longer

has a click context at the time the decorated function is called, which, typically, is a request to the running
FlexMeasures server.

4.53. flexmeasures.data 325

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

Classes

class flexmeasures.data.schemas.utils.MarshmallowClickMixin(*args, **kwargs)
__init__ (*args, **kwargs)
convert (value, param, ctx, **kwargs)
Convert the value to the correct type. This is not called if the value is None (the missing value).

This must accept string values from the command line, as well as values that are already the correct type.
It may also convert other compatible types.

The param and ctx arguments may be None in certain situations, such as when converting prompt input.
If the value cannot be converted, call fail () with a descriptive message.
Parameters
* value — The value to convert.
e param — The parameter that is using this type to convert its value. May be None.
» ctx — The current context that arrived at this value. May be None.

get_metavar (param)

Returns the metavar default for this param if it provides one.
name: str

the descriptive name of this type

Exceptions

exception flexmeasures.data.schemas.utils.FMValidationError (message: str| list| dict, field_name:

str="_schema’', data: Mapping[str,
Any] | Iterable[Mapping[str, Any]] |
None = None, valid_data:
list{dict[str, Any]] | dict[str, Any] |
None = None, **kwargs)

Custom validation error class. It differs from the classic validation error by having two attributes, according to

the USEF 2015 reference implementation. Subclasses of this error might adjust the status attribute accordingly.

Data schemas (Marshmallow)

4.53.5 flexmeasures.data.scripts

Modules

flexmeasures.data.scripts.data_gen Populate the database with data we know or read in.
flexmeasures.data.scripts.
visualize_data_model

326 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.scripts.data_gen

Populate the database with data we know or read in.

Functions

flexmeasures.data.scripts.data_gen.add_default_account_roles(db: SQLAlchemy)
Add a few useful account roles, inspired by USEF.

flexmeasures.data.scripts.data_gen.add_default_asset_types(db: SQLAlchemy) — dict[str,
GenericAssetType]

Add a few useful asset types.
flexmeasures.data.scripts.data_gen.add_default_data_sources(db: SQLAlchemy)
flexmeasures.data.scripts.data_gen.add_default_user_roles(db: SQLAlchemy)

Add a few useful user roles.

flexmeasures.data.scripts.data_gen.add_transmission_zone_asset (country_code: str, db:
SQLAlchemy) — GenericAsset

Ensure a GenericAsset exists to model a transmission zone for a country.

flexmeasures.data.scripts.data_gen.get_affected_classes(structure: bool = True, data: bool = False)
— list

flexmeasures.data.scripts.data_gen.reset_db(db: SQLAlchemy)

flexmeasures.data.scripts.data_gen.save_tables(db: SQLAlchemy, backup_name: str =", structure:
bool = True, data: bool = False, backup_path: str =
'migrations/dumps")

flexmeasures.data.scripts.visualize_data_model
Functions

flexmeasures.data.scripts.visualize_data_model.check_sqlalchemy_schemadisplay_installation()

Make sure the library which translates the model into a graph structure is installed with the right version.

flexmeasures.data.scripts.visualize_data_model.create_schema_pic(*args, **kwargs)
flexmeasures.data.scripts.visualize_data_model.create_uml_pic(*args, **kwargs)
flexmeasures.data.scripts.visualize_data_model.show_image (*args, **kwargs)

flexmeasures.data.scripts.visualize_data_model.uses_dot (func)

Decorator to make sure that if dot/graphviz (for drawing the graph) is not installed there is a proper message.

Useful scripts

4.53. flexmeasures.data 327

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

4.53.6 flexmeasures.data.services

Modules

flexmeasures.data.services.accounts
flexmeasures.data.services.annotations
flexmeasures.data.services.asset_grouping Convenience functions and class for accessing generic

assets in groups.
flexmeasures.data.services.data_sources

flexmeasures.data.services.forecasting Logic around scheduling (jobs)

flexmeasures.data.services. job_cache Logic around storing and retrieving jobs from redis
cache.

flexmeasures.data.services.scheduling Logic around scheduling (jobs)

flexmeasures.data.services.sensors
flexmeasures.data.services. time_series
flexmeasures.data.services. timerange
flexmeasures.data.services.users

flexmeasures.data.services.utils

flexmeasures.data.services.accounts
Functions

flexmeasures.data.services.accounts.get_account_roles (account_id: int) — listfAccountRole]

flexmeasures.data.services.accounts.get_accounts (role_name: str | None = None) — list[Account]

Return a list of Account objects. The role_name parameter allows to filter by role.

flexmeasures.data.services.accounts.get_number_of_assets_in_account (account_id: int) — int

Get the number of assets in an account.

flexmeasures.data.services.annotations
Functions

flexmeasures.data.services.annotations.prepare_annotations_for_chart (df: pd.DataFrame,
event_starts_after:
datetime | None = None,
event_ends_before:
datetime | None = None,
max_line_length: int =
60) — pd.DataFrame

Prepare a DataFrame with annotations for use in a chart.

328 Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

 Clips annotations outside the requested time window.
* Wraps on whitespace with a given max line length
* Stacks annotations for the same event

flexmeasures.data.services.annotations.stack_annotations(x: DataFrame) — DataFrame

Select earliest start, and include all annotations as a list.

The list of strings results in a multi-line text encoding in the chart.

flexmeasures.data.services.asset_grouping

Convenience functions and class for accessing generic assets in groups. For example, group by asset type or by location.

Functions

flexmeasures.data.services.asset_grouping.get_asset_group_queries(group_by_type: bool = True,
group_by_account: bool =
False, group_by_location:
bool = False, cus-
tom_aggregate_type_groups:
dictfstr, list[str]] | None =
None) — dict[str, Select]

An asset group is defined by Asset queries, which this function can generate.

Each query has a name (for the asset group it represents). These queries still need an executive call, like all(),
count() or first().

This function limits the assets to be queried to the current user’s account, if the user is not an admin.

Note: Make sure the current user has the “read” permission on their account (on GenericAsset.__class__?? See
https://github.com/FlexMeasures/flexmeasures/issues/200) or is an admin.

Parameters

» group_by_type — If True, groups will be made for assets with the same type. We prefer
pluralised group names here. Defaults to True.

e group_by_account - If True, groups will be made for assets within the same account. This
makes sense for admins, as they can query across accounts.

» group_by_location - If True, groups will be made for assets at the same location. Naming
of the location currently supports charge points (for EVSEs).

* custom_aggregate_type_groups —dict of asset type groupings (mapping group names to
names of asset types). See also the setting FLEXMEASURES_ASSET_TYPE_GROUPS.

4.53. flexmeasures.data 329

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/FlexMeasures/flexmeasures/issues/200

FlexMeasures Documentation, Release 0.20.1.dev11

Classes

class flexmeasures.data.services.asset_grouping.AssetGroup (name: str, asset_query: Select | None =
None)

This class represents a group of assets of the same type, offering some convenience functions for displaying their
properties.

When initialised with an asset type name, the group will contain all assets of the given type that are accessible
to the current user’s account.

When initialised with a query for GenericAssets, as well, the group will list the assets returned by that query.
This can be useful in combination with get_asset_group_queries, see above.

TODO: On a conceptual level, we can model two functionally useful ways of grouping assets: - AggregatedAs-
set if it groups assets of only 1 type, - GeneralizedAsset if it groups assets of multiple types There might be
specialised subclasses, as well, for certain groups, like a market and consumers.

__init__(name: str, asset_query: Select | None = None)

The asset group name is either the name of an asset group or an individual asset.
property display_name: str

Attempt to get a beautiful name to show if possible.
property hover_label: str | None

Attempt to get a hover label to show if possible.
is_eligible_for_comparing_individual_traces (max_traces: int =7) — bool

Decide whether comparing individual traces for assets in this asset group is a useful feature. The number
of assets that can be compared is parametrizable with max_traces. Plot colors are reused if max_traces >
7, and run out if max_traces > 105.

property is_unique_asset: bool

Determines whether the resource represents a unique asset.

property parameterized_name: str

Get a parametrized name for use in javascript.

flexmeasures.data.services.data_sources
Functions

flexmeasures.data.services.data_sources.get_or_create_source(source: User | str, source_type: str |
None = None, model: str | None =
None, version: str | None = None,
attributes: dict | None = None, flush:
bool = True) — DataSource

flexmeasures.data.services.data_sources.get_source_or_none (source: int | str, source_type: str| None
= None) — DataSource | None

Parameters
e source — source id

* source_type — optionally, filter by source type

330 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.services.forecasting

Logic around scheduling (jobs)

Functions

flexmeasures.data.services.forecasting.create_forecasting_jobs(sensor_id: int, start_of roll:
datetime, end_of _roll: datetime,
resolution: timedelta | None =
None, horizons: list[timedelta] |
None = None,
model_search_term="linear-OLS’,
custom_model_params: dict |
None = None, enqueue: bool =
True) — list[Job]

Create forecasting jobs by rolling through a time window, for a number of given forecast horizons. Start and end
of the forecasting jobs are equal to the time window (start_of_roll, end_of_roll) plus the horizon.

For example (with shorthand notation):
start_of_roll = 3pm end_of_roll = Spm resolution = 15min horizons = [1h, 6h, 1d]
This creates the following 3 jobs:
1) forecast each quarter-hour from 4pm to 6pm, i.e. the 1h forecast
2) forecast each quarter-hour from 9pm to 11pm, i.e. the 6h forecast
3) forecast each quarter-hour from 3pm to Spm the next day, i.e. the 1d forecast
If not given, relevant horizons are derived from the resolution of the posted data.

The job needs a model configurator, for which you can supply a model search term. If omitted, the current default
model configuration will be used.

It’s possible to customize model parameters, but this feature is (currently) meant to only be used by tests, so that
model behaviour can be adapted to test conditions. If used outside of testing, an exception is raised.

if enqueue is True (default), the jobs are put on the redis queue.
Returns the redis-queue forecasting jobs which were created.

flexmeasures.data.services.forecasting.handle_forecasting_exception(job, exc_type, exc_value,
traceback)

Decide if we can do something about this failure: * Try a different model * Re-queue at a later time (using
rq_scheduler)

flexmeasures.data.services.forecasting.make_fixed_viewpoint_forecasts (sensor_id: int, horizon:
timedelta, start:
datetime, end: datetime,
custom_model_params:
dict | None = None) —
int

Build forecasting model specs, make fixed-viewpoint forecasts, and save the forecasts made.

Each individual forecast is a belief about a time interval. Fixed-viewpoint forecasts share the same belief time.
See the timely-beliefs lib for relevant terminology.

4.53. flexmeasures.data 331

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.services. forecasting.make_rolling_viewpoint_forecasts(sensor_id: int,

horizon: timedelta,
start: datetime, end.:
datetime, cus-
tom_model_params:
dict | None = None)
— int

Build forecasting model specs, make rolling-viewpoint forecasts, and save the forecasts made.

Each individual forecast is a belief about a time interval. Rolling-viewpoint forecasts share the same belief hori-
zon (the duration between belief time and knowledge time). Model specs are also retrained in a rolling fashion,
but with its own frequency set in custom_model_params. See the timely-beliefs lib for relevant terminology.

Parameters

param sensor_id
int To identify which sensor to forecast

param horizon
timedelta duration between the end of each interval and the time at which the belief about that
interval is formed

param start
datetime start of forecast period, i.e. start time of the first interval to be forecast

param end
datetime end of forecast period, i.e end time of the last interval to be forecast

param custom_model_params
dict pass in params which will be passed to the model specs configurator, e.g. out-
come_var_transformation, only advisable to be used for testing.

returns
int the number of forecasts made

flexmeasures.data.services. forecasting.num_forecasts(start: datetime, end: datetime, resolution:

timedelta) — int

Compute how many forecasts a job needs to make, given a resolution

Exceptions

exception flexmeasures.data.services.forecasting.MisconfiguredForecastingJobException

flexmeasures.data.services.job_cache

Logic around storing and retrieving jobs from redis cache.

332

Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

Classes

class flexmeasures.data.services.job_cache.JobCache(connection: Redis)

Class is used for storing jobs and retrieving them from redis cache. Need it to be able to get jobs for particular
asset (and display them on status page). Keeps cache up to date by removing jobs that are not found in redis -
were removed by TTL. Stores jobs by asset or sensor id, queue and asset or sensor type, cache key can look like
this

* forecasting:sensor:1 (forecasting jobs can be stored by sensor only)
¢ scheduling:sensor:2
* scheduling:asset:3

__init__(connection: Redis)

Exceptions

exception flexmeasures.data.services.job_cache.NoRedisConfigured(message='Redis not
configured")

flexmeasures.data.services.scheduling

Logic around scheduling (jobs)

Functions

flexmeasures.data.services.scheduling.create_scheduling_job (asset_or_sensor: Asset | Sensor |
None = None, sensor: Sensor | None
= None, job_id: str | None = None,
enqueue: bool = True, requeue: bool
= False, force_new_job_creation:
bool = False, scheduler_specs: dict |
None = None, **scheduler_kwargs)
— Job

Create a new Job, which is queued for later execution.

To support quick retrieval of the scheduling job, the job id is the unique entity address of the UDI event. That
means one event leads to one job (i.e. actions are event driven).

As arule of thumb, keep arguments to the job simple, and deserializable.

The life cycle of a scheduling job: 1. A scheduling job is born here (in create_scheduling_job). 2. It is run in
make_schedule which writes results to the db. 3. If an error occurs (and the worker is configured accordingly),
handle_scheduling_exception comes in.

Arguments: :param asset_or_sensor: asset or sensor for which the schedule is computed :param job_id: option-
ally, set a job id explicitly :param enqueue: if True, enqueues the job in case it is new :param requeue: if True,
requeues the job in case it is not new and had previously failed

(this argument is used by the @job_cache decorator)
Parameters

force_new_job_creation — if True, this attribute forces a new job to be created (skipping
cache) (this argument is used by the @job_cache decorator)

4.53. flexmeasures.data 333

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

Returns
the job

flexmeasures.data.services.scheduling.find_scheduler_class(asset_or_sensor: Asset | Sensor) —
type
Find out which scheduler to use, given an asset or sensor. This will morph into a logic store utility, and schedulers
should be registered for asset types there, instead of this fixed lookup logic.
flexmeasures.data.services.scheduling.get_data_source_for_job (job: Job) — DataSource | None
Try to find the data source linked by this scheduling job.

We expect that enough info on the source was placed in the meta dict, either: - the DataSource ID itself (i.e. the
normal situation), or - enough info to facilitate a DataSource query (as a fallback).

flexmeasures.data.services.scheduling.handle_scheduling_exception(job, exc_type, exc_value,
traceback)

Store exception as job meta data.

flexmeasures.data.services.scheduling.load_custom_scheduler (scheduler_specs: dict) — type
Read in custom scheduling spec. Attempt to load the Scheduler class to use.

The scheduler class should be derived from flexmeasures.data.models.planning.Scheduler. The scheduler class
should have a class method named “compute”.

Example specs:

{
“module”: “/path/to/module.py”, # or sthg importable, e.g. “package.module” “class”: “NameOfSched-
ulerClass”,

}

flexmeasures.data.services.scheduling.make_schedule (sensor_id: int | None = None, start: datetime |
None = None, end: datetime | None = None,
resolution: timedelta | None = None,
asset_or_sensor: dict | None = None,
belief time: datetime | None = None, flex_model:
dict | None = None, flex_context: dict | None =
None, flex_config_has_been_deserialized: bool
= False, scheduler_specs: dict | None = None)
— bool

This function computes a schedule. It returns True if it ran successfully.

It can be queued as a job (see create_scheduling_job). In that case, it will probably run on a different FlexMea-
sures node than where the job is created. In any case, this function expects flex_model and flex_context to not
have been deserialized yet.

This is what this function does: - Find out which scheduler should be used & compute the schedule - Turn
scheduled values into beliefs and save them to db

flexmeasures.data.services.scheduling.trigger_optional_fallback(job, connection, type, value,
traceback)

Create a fallback schedule job when the error is of type InfeasibleProblemException

334 Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.services.sensors
Functions

flexmeasures.data.services.sensors.build_asset_jobs_data(asser: GenericAsset) — list[dict]

Get all jobs data for an asset Returns a list of dictionaries, each containing the following keys: - job_id: id of a
job - queue: job queue (scheduling or forecasting) - asset_or_sensor_type: type of an asset that is linked to the
job (asset or sensor) - asset_id: id of sensor or asset - status: job status (e.g finished, failed, etc) - err: job error
(equals to None when there was no error for a job) - enqueued_at: time when the job was enqueued

flexmeasures.data.services.sensors.build_sensor_status_data(asser: GenericAsset, now: datetime |
None = None) — list[dict]

Get data connectivity status information for each sensor in given asset and its children Returns a list of dictionar-
ies, each containing the following keys: - id: sensor id - name: sensor name - asset_name: asset name - staleness:
staleness of the sensor (for how long the sensor data is stale) - stale: whether the sensor is stale - staleness_since:
time since sensor data is considered stale - reason: reason for staleness

flexmeasures.data.services.sensors.get_most_recent_knowledge_time (sensor: Sensor,
staleness_search: dict) —
datetime | None

Get the knowledge time of the sensor’s most recent event.

This knowledge time represents when you could have known about the event (specifically, when you could have
formed an ex-post belief about it).

flexmeasures.data.services.sensors.get_sensors (account: Account | listf Account] | None,
include_public_assets: bool = False,
sensor_id_allowlist: list[int] | None = None,
sensor_name_allowlist: list[str] | None = None) —
list[Sensor]

Return a list of Sensor objects that belong to the given account, and/or public sensors.
Parameters
* account — select only sensors from this account (or list of accounts)
» include_public_assets —if True, include sensors that belong to a public asset
* sensor_id_allowlist — optionally, allow only sensors whose id is in this list
* sensor_name_allowlist — optionally, allow only sensors whose name is in this list

flexmeasures.data.services.sensors.get_staleness(sensor: Sensor, staleness_search: dict, now:
datetime) — timedelta | None

Get the staleness of the sensor.

The staleness is defined relative to the knowledge time of the most recent event, rather than to its belief time.
Basically, that means that we don’t really care when the data arrived, as long as the available data is about what
we should be able to know by now.

Parameters
 sensor — The sensor to compute the staleness for.
» staleness_search — Deserialized keyword arguments to TimedBelief.search.

* now — Datetime representing now, used both to mask future beliefs, and to measures staleness
against.

4.53. flexmeasures.data 335

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.services.sensors.get_status(sensor: Sensor, now: datetime, status_specs: dict | None
= None) — dict

Get the status of the sensor Main part of result here is a stale value, which is True if the sensor is stale, False
otherwise. Other values are just context information for the stale value.

flexmeasures.data.services.sensors.get_status_specs(sensor: Sensor) — dict
Get status specs from a given sensor.

flexmeasures.data.services.time_series
Functions

flexmeasures.data.services.time_series.aggregate_values(bdf dict: dict[Any, BeliefsDataFrame]) —
BeliefsDataFrame

flexmeasures.data.services.time_series.drop_unchanged_beliefs (bdf: BeliefsDataFrame) —
BeliefsDataFrame

Drop beliefs that are already stored in the database with an earlier belief time.
Also drop beliefs that are already in the data with an earlier belief time.

Quite useful function to prevent cluttering up your database with beliefs that remain unchanged over time.

flexmeasures.data.services.timerange
Functions

flexmeasures.data.services.timerange.get_timerange (sensor_ids: list[int]) — tuple[datetime, datetime]

Get the start and end of the least recent and most recent event, respectively.

In case of no data, defaults to (now, now).

flexmeasures.data.services.users
Functions

flexmeasures.data.services.users.create_user (password: str = None, user_roles: dict[str, str] |
list[dict[str, str]] | str| list[str] | None = None,
check_email_deliverability: bool = True, account_name:
str | None = None, **kwargs) — User

Convenience wrapper to create a new User object.
It hashes the password.

In addition to the user, this function can create - new Role objects (if user roles do not already exist) - an Account
object (if it does not exist yet) - a new DataSource object that corresponds to the user

Remember to commit the session after calling this function!

flexmeasures.data.services.users.delete_user (user: User)
Delete the user (and also his assets and power measurements!).

Deleting oneself is not allowed.

Remember to commit the session after calling this function!

336 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.services.users.find_user_by_email (user_email: str, keep_in_session: bool = True)
— User

flexmeasures.data.services.users.get_user(id: str) — User
Get a user, raise if not found.

flexmeasures.data.services.users.get_users (account_name: str | None = None, role_name: str | None =
None, account_role_name: str | None = None, only_active:
bool = True) — list[User]

Return a list of User objects. The role_name parameter allows to filter by role. Set only_active to False if you
also want non-active users.

flexmeasures.data.services.users.remove_cookie_and_token_access (user: User)

Remove access of current cookies and auth tokens for a user. This might be useful if you feel their password,
cookie or tokens are compromised. in the former case, you can also call set_random_password.

Remember to commit the session after calling this function!

flexmeasures.data.services.users.set_random_password (user: User)

Randomise a user’s password.

Remember to commit the session after calling this function!

Exceptions

exception flexmeasures.data.services.users.InvalidFlexMeasuresUser

flexmeasures.data.services.utils
Functions

flexmeasures.data.services.utils.get_asset_or_sensor_from_ref (asset_or_sensor: dict)

Fetch Asset or Sensor object described by the asset_or_sensor dictionary. This dictionary needs to contain the
class name and row id.

We currently cannot simplify this by just passing around the object instead of the class name: i.e. the function
arguments need to be serializable as job parameters.

Examples:

>> get_asset_or_sensor({“class” : “Asset”, “id” : 1})
Asset(id=1)

>> get_asset_or_sensor({“class” : “Sensor”, “id” : 2})
Sensor(id=2)

flexmeasures.data.services.utils.get_asset_or_sensor_ref (asset_or_sensor: Asset | Sensor) — dict

flexmeasures.data.services.utils.get_or_create_model (model_class: Type[GenericAsset |
GenericAssetType | Sensor], **kwargs) —
GenericAsset | GenericAssetType | Sensor

Get a model from the database or add it if it’s missing.

For example: >>> weather_station_type = get_or_create_model(>>> GenericAssetType, >>> name="weather
station”, >>> description="A weather station with various sensors.”, >>>)

4.53. flexmeasures.data 337

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.data.services.utils.get_scheduler_instance (scheduler_class: Type[Scheduler],
asset_or_sensor: Asset | Sensor,
scheduler_params) — Scheduler

Get an instance of a Scheduler adapting for the previous Scheduler signature, where a sensor is passed, to the
new one where the asset_or_sensor is introduced.

flexmeasures.data.services.utils.hash_function_arguments(args, kwags)
Combines the hashes of the args and kargs

The way to go to do h(x,y) = hash(hash(x) || hash(y)) because it avoid the following:

1) h(x,y) = hash(x || y), might create a collision if we delete the last n characters of x and we append them in
front of y. e.g h(“abc”, “d”) = h(*“ab”, “cd”)

2) we don’t want to sort x and y, because we need the function h(x,y) != h(y,x)

3) extra hashing just avoid that we can’t decompose the input arguments and track if the same args or kwarg
are called several times. More of a security measure I think.

source: https://crypto.stackexchange.com/questions/55162/best-way-to-hash-two-values-into-one

flexmeasures.data.services.utils. job_cache(queue: str)

To avoid recomputing the same task multiple times, this decorator checks if the function has already been called
with the same arguments. Input arguments are hashed and stored as Redis keys with the values being the job IDs
input_arguments_hash:job_id).

The benefits of using redis to store the input arguments over a local cache, such as LRU Cache, are: 1) It will
work in distributed environments (in computing clusters), where multiple workers will avoid repeating

work as the cache will be shared across them.

2) Cached calls are logged, which means that we can easily debug.

3) Cache will still be there on restarts.

Arguments :param queue: name of the queue

flexmeasures.data.services.utils.make_hash_sha256 (o)

SHAZ256 instead of Python’s hash function because apparently, python native hashing function yields different
results on restarts. Source: https://stackoverflow.com/a/42151923

flexmeasures.data.services.utils.make_hashable (o)

Function to create hashes for dictionaries with nested objects Source: https://stackoverflow.com/a/42151923
Business logic

4.53.7 flexmeasures.data.transactional

These, and only these, functions should help you with treating your own code in the context of one database transaction.
Which makes our lives easier.

338 Chapter 4. Where to start reading?

https://crypto.stackexchange.com/questions/55162/best-way-to-hash-two-values-into-one
https://docs.python.org/3/library/stdtypes.html#str
https://stackoverflow.com/a/42151923
https://stackoverflow.com/a/42151923

FlexMeasures Documentation, Release 0.20.1.dev11

Functions

flexmeasures.data.transactional.after_request_exception_rollback_session(exception)

Central place to handle transactions finally. So - usually your view code should not have to deal with rolling
back. Our policy is that we don’t auto-commit (we used to do that here). Some more reading is e.g. here
https://github.com/pallets/flask-sqlalchemy/issues/216

Register this on your app via the teardown_request setup method. We roll back the session if there was any error
(which only has an effect if the session has not yet been committed).

Flask-SQLAIchemy is closing the scoped sessions automatically.

flexmeasures.data.transactional.as_transaction(db_function)

Decorator for handling any function which contains SQLAlchemy commands as one database transaction
(ACID). Calls db operation function and when it is done, commits the db session. Rolls back the session if
anything goes wrong. If useful, the first argument can be the db (SQLAIchemy) object and the rest of the args
are sent through to the function. If this happened, the session is closed at the end.

Exceptions

exception flexmeasures.data.transactional.PartialTaskCompletionException

By raising this Exception in a task, no rollback will happen even if not everything was successful and the data
which was generated will get committed. The task status will still be False, so the non-successful parts can be
inspected.

4.53.8 flexmeasures.data.utils

Utils around the data models and db sessions

Functions

flexmeasures.data.utils.get_data_source(data_source_name: str, data_source_model: str | None = None,
data_source_version: str | None = None, data_source_type: str
= script’) — DataSource

Make sure we have a data source. Create one if it doesn’t exist, and add to session. Meant for scripts that may
run for the first time.

flexmeasures.data.utils.save_to_db(data: BeliefsDataFrame | BeliefsSeries | list[BeliefsDataFrame |
BeliefsSeries], bulk_save_objects: bool = False,
save_changed_beliefs_only: bool = True) — str

Save the timed beliefs to the database.

Note: This function does not commit. It does, however, flush the session. Best to keep transactions short.
We make the distinction between updating beliefs and replacing beliefs.

Updating beliefs

An updated belief is a belief from the same source as some already saved belief, and about the same event, but
with a later belief time. If it has a different event value, then it represents a changed belief. Note that it is possible
to explicitly record unchanged beliefs (i.e. updated beliefs with a later belief time, but with the same event value),
by setting save_changed_beliefs_only to False.

Replacing beliefs

4.53. flexmeasures.data 339

https://github.com/pallets/flask-sqlalchemy/issues/216
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

A replaced belief is a belief from the same source as some already saved belief, and about the same event and
with the same belief time, but with a different event value. Replacing beliefs is not allowed, because messing
with the history corrupts data lineage. Corrections should instead be recorded as updated beliefs. Servers in
‘play’ mode are exempt from this rule, to facilitate replaying simulations.

Parameters
e data - BeliefsDataFrame (or a list thereof) to be saved

* bulk_save_objects — if True, objects are bulk saved with session.bulk_save_objects(),
which is quite fast but has several caveats, see: https://docs.sqlalchemy.org/orm/persistence_
techniques.html#bulk-operations-caveats

» save_changed_beliefs_only - if True, unchanged beliefs are skipped (updated beliefs
are only stored if they represent changed beliefs) if False, all updated beliefs are stored

Returns
status string, one of the following: - ‘success’: all beliefs were saved - ‘suc-
cess_with_unchanged_beliefs_skipped’: not all beliefs represented a state change - ‘suc-
cess_but_nothing_new’: no beliefs represented a state change

flexmeasures.data.utils.save_to_session(objects: list{Model], overwrite: bool = False)

Utility function to save to database, either efficiently with a bulk save, or inefficiently with a merge save.

Models & schemata, as well as business logic (queries & services).

Functions

flexmeasures.data.register_at(app: Flask)

4.54 flexmeasures.ui

Modules
flexmeasures.ui.crud Backoffice UI for CRUD functionality
flexmeasures.ui.error_handlers Error views for Ul purposes.
flexmeasures.ui.utils Utility functions for UI logic
flexmeasures.ui.views This module hosts the views.

4.54.1 flexmeasures.ui.crud

Modules

flexmeasures.ui.crud.accounts
flexmeasures.ui.crud.api_wrapper
flexmeasures.ui.crud.assets

flexmeasures.ui.crud.users

340 Chapter 4. Where to start reading?

https://docs.sqlalchemy.org/orm/persistence_techniques.html#bulk-operations-caveats
https://docs.sqlalchemy.org/orm/persistence_techniques.html#bulk-operations-caveats
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.ui.crud.accounts
Functions

flexmeasures.ui.crud.accounts.get_account (account_id: str) — dict

flexmeasures.ui.crud.accounts.get_accounts() — list[dict]

/accounts

Classes

class flexmeasures.ui.crud.accounts.AccountCrudUI
get (account_id: str)
/accounts/<account_id>

index()

/accounts

flexmeasures.ui.crud.api_wrapper
Classes

class flexmeasures.ui.crud.api_wrapper.InternalApi

Simple wrapper around the requests lib, which we use to talk to our actual internal JSON Api via requests. It can
only be used to perform requests on the same URL root as the current request. - We use this because it is cleaner
than calling the API code directly.

That would re-use the same request we are working on here, which works differently in some ways
like content-type and authentication. The Flask/Werkzeug request is also immutable, so we could not
adapt the request anyways.

* Also, we implement auth token handling

* Finally we have some logic to control which error codes we want to raise.

_maybe_raise (response: requests.Response, do_not_raise_for: list | None = None)

Raise an error in the API (4xx, 5xx) if the error code is not in the list of codes we want to ignore / handle
explicitly.

_url_root() — str
Get the root for the URLSs this API should use to call FlexMeasures.

flexmeasures.ui.crud.assets

Functions

flexmeasures.ui.crud.assets.get_assets_by_account (account_id: int | str | None) — list{GenericAsset]

4.54. flexmeasures.ui 341

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.ui.crud.assets.process_internal_api_response (asser_data: dict, asset_id: int | None =
None, make_obj=False) —
GenericAsset | dict

Turn data from the internal API into something we can use to further populate the UL Either as an asset object
or a dict for form filling.

If we add other data by querying the database, we make sure the asset is not in the session afterwards.

flexmeasures.ui.crud.assets.user_can_create_assets() — bool
flexmeasures.ui.crud.assets.user_can_delete(asset) — bool

flexmeasures.ui.crud.assets.with_options(form: AssetForm | NewAssetForm) — AssetForm |
NewAssetForm

Classes

class flexmeasures.ui.crud.assets.AssetCrudUI

These views help us offer a Jinja2-based UI. The main focus on logic is the API, so these views simply call the
API functions, and deal with the response. Some new functionality, like fetching accounts and asset types, is
added here.

delete_with_data(id: sir)
Delete via /assets/delete_with_data/<id>
get(id: str, **kwargs)

GET from /assets/<id> where id can be ‘new’ (and thus the form for asset creation is shown) The following
query parameters are supported (should be used only together):

e start_time: minimum time of the events to be shown
¢ end_time: maximum time of the events to be shown

index (msg="

GET from /assets

List the user’s assets. For admins, list across all accounts.
owned_by (account_id: str)

/assets/owned_by/<account_id>

post(id: str)
POST to /assets/<id>, where id can be ‘create’ (and thus a new asset is made from POST data) Most of the
code deals with creating a user for the asset if no existing is chosen.

status (id: sir)
GET from /assets/<id>/status to show the staleness of the asset’s sensors.

class flexmeasures.ui.crud.assets.AssetForm(*args, **kwargs)
The default asset form only allows to edit the name and location.
process_api_validation_errors (api_response: dict)
Process form errors from the API for the WTForm
to_json() — dict
turn form data into a JSON we can POST to our internal API

342 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

validate_on_submit()

Call validate() only if the form is submitted. This is a shortcut for form.is_submitted() and form.
validate().

class flexmeasures.ui.crud.assets.NewAssetForm(*args, **kwargs)

Here, in addition, we allow to set asset type and account.

flexmeasures.ui.crud.users
Functions

flexmeasures.ui.crud.users.get_users_by_account (account_id: int | str, include_inactive: bool = False)
— list[User]

flexmeasures.ui.crud.users.process_internal_api_response (user_data: dict, user_id: int | None =
None, make_obj=False) — User | dict

Turn data from the internal API into something we can use to further populate the Ul Either as a user object or
a dict for form filling.

flexmeasures.ui.crud.users.render_user (user: User | None, asset_count: int =0, msg: str | None = None)

Classes

class flexmeasures.ui.crud.users.UserCrudUI
get(id: str)
GET from /users/<id>

index()

lusers

reset_password_for (id: sir)

/users/reset_password_for/<id> Set the password to something random (in case of worries the password
might be compromised) and send instructions on how to reset.

toggle_active(id: str)
Toggle activation status via /users/toggle_active/<id>

class flexmeasures.ui.crud.users.UserForm(*args, **kwargs)

Backoffice UI for CRUD functionality

4.54.2 flexmeasures.ui.error_handlers

Error views for UI purposes.

4.54. flexmeasures.ui 343

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

Functions

flexmeasures.ui.error_handlers.add_html_error_views(app: Flask)
flexmeasures.ui.error_handlers.handle_500_error(e: InternalServerError)
flexmeasures.ui.error_handlers.handle_bad_request (e: BadRequest)

flexmeasures.ui.error_handlers.handle_generic_http_exception(e: HTTPException)
This handles all known exception as fall-back
flexmeasures.ui.error_handlers.handle_not_found(e)
flexmeasures.ui.error_handlers.unauthenticated_handler()
An unauthenticated handler which renders an HTML error page

flexmeasures.ui.error_handlers.unauthorized_handler()

An unauthorized handler which renders an HTML error page

4.54.3 flexmeasures.ui.utils

Modules

flexmeasures.ui.utils.breadcrumb_utils

flexmeasures.ui.utils.chart_defaults

flexmeasures.ui.utils.view_utils Utilities for views

flexmeasures.ui.utils.breadcrumb_utils
Functions

flexmeasures.ui.utils.breadcrumb_utils.get_ancestry(entity: Sensor | Asset | Account | None) —
list[dict]

flexmeasures.ui.utils.breadcrumb_utils.get_breadcrumb_info (entity: Sensor | Asset | Account | None)
— dict

flexmeasures.ui.utils.breadcrumb_utils.get_siblings(entity: Sensor | Asset | Account | None) —
list[dict]

flexmeasures.ui.utils.chart_defaults

flexmeasures.ui.utils.view_utils

Utilities for views

344 Chapter 4. Where to start reading?

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

Functions

flexmeasures.ui.utils.view_utils.accountname (account_id) — str
flexmeasures.ui.utils.view_utils.asset_icon_name (asset_type_name: str) — str
Icon name for this asset type.

This can be used for UI html templates made with Jinja. ui.__init__ makes this function available as the filter
“asset_icon”.

For example:
<i class={{ asset_type.name | asset_icon }}></i>

becomes (for a battery):
<i class="icon-battery”></i>

flexmeasures.ui.utils.view_utils.clear_session()
flexmeasures.ui.utils.view_utils.get_git_description() — tuple[str, int, str]
Get information about the SCM (git) state if possible (if a .git directory exists).

Returns the latest git version (tag) as a string, the number of commits since then as an int and the current commit
hash as string.

flexmeasures.ui.utils.view_utils.render_flexmeasures_template (htmi_filename: str, **variables)

Render template and add all expected template variables, plus the ones given as **variables.

flexmeasures.ui.utils.view_utils.set_session_variables(*var_names: sir)

Store request values as session variables, for a consistent UX across Ul page loads.

{>>> set_session_variables("event_starts_after", "event_ends_before", "chart_type")]

flexmeasures.ui.utils.view_utils.username (user id) — str

Utility functions for Ul logic

4.54.4 flexmeasures.ui.views

Modules

flexmeasures.ui.views.control
flexmeasures.ui.views.logged_in_user
flexmeasures.ui.views.new_dashboard

flexmeasures.ui.views.Ssensors

4.54. flexmeasures.ui 345

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.ui.views.control
Functions

flexmeasures.ui.views.control.control_view()

Control view. This page lists balancing opportunities for a selected time window. The user can place manual
orders or choose to automate the ordering process.

flexmeasures.ui.views.logged_in_user
Functions

flexmeasures.ui.views.logged_in_user.logged_in_user_view()

Basic information about the currently logged-in user. Plus basic actions (logout, reset pwd)

flexmeasures.ui.views.new_dashboard
Functions

flexmeasures.ui.views.new_dashboard.dashboard_view()

Dashboard view. This is the default landing page. It shows a map with the location of all of the assets in the
user’s account, or all assets if the user is an admin. Assets are grouped by asset type, which leads to map layers
and a table with asset counts by type. Admins get to see all assets.

TODO: Assets for which the platform has identified upcoming balancing opportunities are highlighted.

flexmeasures.ui.views.sensors
Classes

class flexmeasures.ui.views.sensors.SensorUI

This view creates several new Ul endpoints for viewing sensors.
todo: consider extending this view for crud purposes
get(id: int)
GET from /sensors/<id>
get_chart (id, **kwargs)
GET from /sensors/<id>/chart

This module hosts the views. This file registers blueprints and hosts some helpful functions

346 Chapter 4. Where to start reading?

https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

Functions

flexmeasures.ui.views.docs_view()

Render the Sphinx documentation

Backoffice user interface & charting support.

Functions

flexmeasures.ui.add_jinja_filters(app)
flexmeasures.ui.add_jinja_variables(app)

flexmeasures.ui.register_at(app: Flask)

This can be used to register this blueprint together with other ui-related things

flexmeasures.ui.register_rq_dashboard(app)

4.55 flexmeasures.utils

Modules

flexmeasures.utils.app_utils
flexmeasures.utils.calculations
flexmeasures.utils.coding utils
flexmeasures.utils.config_defaults
flexmeasures.utils.config_utils
flexmeasures.utils.entity_address_utils

flexmeasures.utils.error_utils
flexmeasures.utils.flexmeasures_inflection
flexmeasures.utils.geo_utils

flexmeasures.utils.grid_cells
flexmeasures.utils.plugin_utils

flexmeasures.utils.time_utils
flexmeasures.utils.unit_utils

Utils for serving the FlexMeasures app

Various calculations

Various coding utils (e.g. around function decoration) .
Our configuration requirements and defaults

Reading in configuration

Utils for handling of errors
FlexMeasures way of handling inflection

Utils for registering FlexMeasures plugins
Utils for dealing with time
Utility module for unit conversion

4.55.1 flexmeasures.utils.app_utils

Utils for serving the FlexMeasures app

4.55. flexmeasures.utils

347

FlexMeasures Documentation, Release 0.20.1.dev11

Functions

flexmeasures.utils.app_utils.find_first_applicable_config_entry(configs: list, setting_name: str,
app: Flask | None = None) —
str | None

flexmeasures.utils.app_utils.init_sentry(app: Flask)

Configure Sentry. We need the app to read the Sentry DSN from configuration, and also to send some additional
meta information.

flexmeasures.utils.app_utils.parse_config_entry_by_account_roles(config: str| tuple[str, list[str]],
setting_name: str, app: Flask |
None = None) — str | None

Parse a config entry (which can be a string, e.g. “dashboard” or a tuple, e.g. (“dashboard”, [“MDC”])). In the
latter case, return the first item (a string) only if the current user’s account roles match with the list of roles in
the second item. Otherwise, return None.

flexmeasures.utils.app_utils.root_dispatcher()
Re-routes to root views fitting for the current user, depending on the FLEXMEASURES_ROOT_VIEW setting.

flexmeasures.utils.app_utils.set_secret_key (app, filename='secret_key")
Set the SECRET_KEY or exit.

We first check if it is already in the config.
Then we look for it in environment var SECRET_KEY.
Finally, we look for filename in the app’s instance directory.

If nothing is found, we print instructions to create the secret and then exit.

4.55.2 flexmeasures.utils.calculations

Various calculations

Functions

flexmeasures.utils.calculations.apply_stock_changes_and_losses(initial: float, changes: list[float],
storage_efficiency: float |
list{float], how: str = 'linear’,
decimal_precision: int | None =
None) — list[float]

Assign stock changes and determine losses from storage efficiency.

The initial stock is exponentially decayed, as with each consecutive (constant-resolution) time step, some constant
percentage of the previous stock remains. For example:

100 -+ 90 — 81 — 72.9 — ...

For computing the decay of the changes, we make an assumption on how a delta d is distributed within a given
time step. In case it happens at a constant rate, this leads to a linear stock change from one time step to the next.

An e is introduced when we apply exponential decay to that. To see that, imagine we cut one time step in n
pieces (each with a stock change %), apply the efficiency to each piece k (for the corresponding fraction of the

348 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

FlexMeasures Documentation, Release 0.20.1.dev11

time step k/n), and then take the limit n — oc:

" d
: Y k/n
D
k=0
which is:

-1
d- 1
el

Parameters
e initial - initial stock
» changes - stock change for each step
» storage_efficiency - ratio of stock left after a step (constant ratio or one per step)

* how - left, right or linear; how stock changes should be applied, which affects how losses are
applied

* decimal_precision — Optional decimal precision to round off results (useful for tests fail-
ing over machine precision)

flexmeasures.utils.calculations.drop_nan_rows(a, b)

flexmeasures.utils.calculations.integrate_time_series(series: pd.Series, initial_stock: float,
up_efficiency: float | pd.Series = 1,
down_efficiency: float | pd.Series = 1,
storage_efficiency: float | pd.Series = 1,
decimal_precision: int | None = None) —
pd.Series

Integrate time series of length n and inclusive="left” (representing a flow) to a time series of length n+1 and
inclusive="both” (representing a stock), given an initial stock (i.e. the constant of integration). The unit of time
is hours: i.e. the stock unit is flow unit times hours (e.g. a flow in kW becomes a stock in kWh). Optionally, set
a decimal precision to round off the results (useful for tests failing over machine precision).

r>>> s = pd.Series([1, 2, 3, 4], index=pd.date_range(datetime(2001, 1, 1, 5),.
—datetime(2001, 1, 1, 6), freq=timedelta(minutes=15), inclusive="left"))
>>> integrate_time_series(s, 10)
2001-01-01 05:00:00 10.00
2001-01-01 05:15:00 10.25
2001-01-01 05:30:00 10.75
2001-01-01 05:45:00 11.50
2001-01-01 06:00:00 12.50
Freq: D, dtype: float64

r>>> s = pd.Series([1, 2, 3, 4], index=pd.date_range(datetime(2001, 1, 1, 5),.
—datetime(2001, 1, 1, 7), freg=timedelta(minutes=30), inclusive="left"))
>>> integrate_time_series(s, 10)
2001-01-01 05:00:00 10.0
2001-01-01 05:30:00 10.5
2001-01-01 06:00:00 11.5
2001-01-01 06:30:00 13.0
2001-01-01 07:00:00 15.0
dtype: float64

4.55. flexmeasures.utils 349

https://www.wolframalpha.com/input?i=Limit%5BSum%5B%5Ceta%5E%28k%2Fn%29%2Fn%2C+%7Bk%2C+0%2C+n%7D%5D%2C+n+-%3E+Infinity%5D&assumption=%22LimitHead%22+-%3E+%7B%22Discrete%22%7D
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.utils.calculations.mean_absolute_error (y_true: ndarray, y_forecast: ndarray)

flexmeasures.utils.calculations.mean_absolute_percentage_error (y_true: ndarray,y_forecast:
ndarray)

flexmeasures.utils.calculations.weighted_absolute_percentage_error(y_true: ndarray,y_forecast:
ndarray)

4.55.3 flexmeasures.utils.coding_utils

Various coding utils (e.g. around function decoration)

Functions

flexmeasures.utils.coding_utils.delete_key_recursive (value, key)
Delete key in a multilevel dictionary

flexmeasures.utils.coding_utils.deprecated (alternative, version: str | None = None)

Decorator for printing a warning error. alternative: importable object to use as an alternative to the func-
tion/method decorated version: version in which the function will be sunset

flexmeasures.utils.coding_utils.find_classes_module (module, superclass)
flexmeasures.utils.coding_utils. find_classes_modules (module, superclass, skiptest=True)
flexmeasures.utils.coding_utils.flatten_unique (nested_list_of objects: list) — list

Returns unique objects in a possibly nested (one level) list of objects.

Preserves the original order in which unique objects first occurred.

For example: >>> flatten_unique([1, [2, 20, 6], 10, [6, 2]]) <<< [1, 2, 20, 6, 10]
flexmeasures.utils.coding_utils.get_classes_module (module, superclass, skiptest=True) — dict
flexmeasures.utils.coding_utils.optional_arg_decorator (fin)

A decorator which _optionally_ accepts arguments.

So a decorator like this:

@optional_arg_decorator def register_something(fn, optional_arg = ‘Default Value’):

. return fn

will work in both of these usage scenarios:

@register_something(‘Custom Name’) def custom_name():

pass

@register_something def default_name():

pass

Thanks to https://stackoverflow.com/questions/3888158/making-decorators-with-optional-arguments#
comment65959042_24617244

flexmeasures.utils.coding_utils.sort_dict (unsorted_dict: dict) — dict

flexmeasures.utils.coding_utils.timeit (func)

Decorator for printing the time it took to execute the decorated function.

350 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://stackoverflow.com/questions/3888158/making-decorators-with-optional-arguments#comment65959042_24617244
https://stackoverflow.com/questions/3888158/making-decorators-with-optional-arguments#comment65959042_24617244
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

4.55.4 flexmeasures.utils.config_defaults

Our configuration requirements and defaults

This can be adjusted per environment here. Anything confidential should be handled outside of source control (e.g. a
SECRET KEY file is generated on first install, and confidential settings can be set via the <app-env>-conf.py file.

Classes

class flexmeasures.utils.config_defaults.Config

If there is a useful default value, set it here. Otherwise, set to None, so that it can be set either by subclasses or
the env-specific config script.

class flexmeasures.utils.config_defaults.DevelopmentConfig
class flexmeasures.utils.config_defaults.DocumentationConfig
class flexmeasures.utils.config_defaults.ProductionConfig
class flexmeasures.utils.config_defaults.StagingConfig

class flexmeasures.utils.config_defaults.TestingConfig

4.55.5 flexmeasures.utils.config_utils

Reading in configuration

Functions

flexmeasures.utils.config_utils.are_required_settings_complete (app) — bool

Check if all settings we expect are not None. Return False if they are not. Printout helpful advice.

flexmeasures.utils.config_utils.check_app_env(env: str| None)

flexmeasures.utils.config_utils.configure_logging()
Configure and register logging

flexmeasures.utils.config_utils.get_config_warnings(app) — tuple[list[str], list[str]]
return missing settings and the warnings for them.
flexmeasures.utils.config_utils.get_configuration_keys(app) — list[str]
Collect all members of DefaultConfig who are not in-built fields or callables.

flexmeasures.utils.config_utils.read_config(app: Flask, custom_path_to_config: str | None)

Read configuration from various expected sources, complain if not setup correctly.

flexmeasures.utils.config_utils.read_custom_config(app: Flask, suggested_path_to_config,
path_to_config_home, path_to_config_instance)
— str

Read in a custom config file and env vars. For the config, there are two fallback options, tried in a specific order:
If no custom path is suggested, we’ll try the path in the home dir first, then in the instance dir.

Return the path to the config file.

4.55. flexmeasures.utils 351

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.utils.config_utils.read_env_vars(app: Flask)

Read in what we support as environment settings. At the moment, these are: - All required and warnable variables
- Logging settings - access tokens - plugins (handled in plugin utils)

4.55.6 flexmeasures.utils.entity_address_utils
Functions

flexmeasures.utils.entity_address_utils.build_ea_scheme_and_naming_authority (host: sir,
host_auth_start_month:
str | None =
None) — str

This function creates the host identification part of USEF’s EA1 addressing scheme, so everything but the locally
unique string.

If not given nor configured, host_auth_start_month is the start of the next month for localhost.

flexmeasures.utils.entity_address_utils.build_entity_address(entity_info: dict, entity_type: str,
host: str | None = None, fm_scheme:
str="fml") — str

Build an entity address.

fm1 type entity address should use entity_info[“sensor_id”] todo: implement entity addresses for actuators with
entity_info[*“actuator_id”] (first ensuring globally unique ids across sensors and actuators)

If the host is not given, it is attempted to be taken from the request. entity_info is expected to contain the required
fields for the custom string.

Returns the address as string.

flexmeasures.utils.entity_address_utils.get_domain_parts(domain: str) — ExtractResult

wrapper for calling tldextract as it logs things about file locks we don’t care about.

flexmeasures.utils.entity_address_utils.get_host() — str

Get host from the context of the request.
Strips off www. but keeps subdomains. Can be localhost, too.

flexmeasures.utils.entity_address_utils.parse_entity_address(entity_address: str, entity_type: str,
fm_scheme: str="fiml") — dict

Parses an entity address into an info dict.

Returns a dictionary with scheme, naming_authority and various other fields, depending on the entity type and
FlexMeasures scheme (see examples above). Returns None if entity type is unknown or entity_address is not
parse-able. We recommend to return invalid_domain() in that case.

Examples for the fm1 scheme:

sensor = eal.2021-01.io.flexmeasures:fm1.42 sensor = eal.2021-
01l.io.flexmeasures:fm1.<sensor_id> connection = eal.2021-01.io.flexmeasures:fm1.<sensor_id>
market = eal.2021-01.io.flexmeasures:fm1.<sensor_id> weather_station = eal.2021-

01.io.flexmeasures:fm1.<sensor_id> todo: UDI events are not yet modelled in the fm1 scheme, but
will probably be eal.2021-01.io.flexmeasures:fm1.<actuator_id>

Examples for the fm0O scheme:

352 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.20.1.dev11

connection = eal.2021-01.localhost:fm0.40:30 connection = eal.2021-
01.io.flexmeasures:fm0.<owner_id>:<asset_id> weather_sensor = eal.2021-
01.io.flexmeasures:fm0.temperature:52:73.0 weather_sensor = eal.2021-
01.io.flexmeasures:fm0.<sensor_type>:<latitude>:<longitude> market = eal.2021-
0l.io.flexmeasures:fmQ.epex_da market = eal.2021-01.io.flexmeasures:fm0.<market_name>
event = eal.2021-01.io.flexmeasures:fm0.40:30:302:soc event = eal.2021-

01.io.flexmeasures:fm0.<owner_id>:<asset_id>:<event_id>:<event_type>
For the fm0 scheme, the ‘fm(.” part is optional, for backwards compatibility.

flexmeasures.utils.entity_address_utils.reverse_domain_name (domain: str | TldExtractResult) — str

Returns the reverse notation of the domain. You can pass in a string domain or an extraction result from tldextract

Exceptions

exception flexmeasures.utils.entity_address_utils.EntityAddressException

4.55.7 flexmeasures.utils.error_utils

Utils for handling of errors

Functions

flexmeasures.utils.error_utils.add_basic_error_handlers(app: Flask)
Register classes we care about with the generic handler. See also the auth package for auth-specific error handling
(Unauthorized, Forbidden)
flexmeasures.utils.error_utils.error_handling_router (error: HTTPException)
Generic handler for errors. We respond in json if the request content-type is JSON. The ui package can also
define how it wants to render HTML errors, by setting a function.
flexmeasures.utils.error_utils.get_err_source_info (original_traceback=None) — dict

Use this when an error is handled to get info on where it occurred.

flexmeasures.utils.error_utils.log_error(exc: Exception, error_msg: str)

Collect meta data about the exception and log it. error_msg comes in as an extra attribute because Exception
implementations differ here.

flexmeasures.utils.error_utils.print_query(query: Query) — str
Print full SQLAlchemy query with compiled parameters.

Recommended use as developer tool only.

Adapted from https://stackoverflow.com/a/63900851/13775459

4.55. flexmeasures.utils 353

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://stackoverflow.com/a/63900851/13775459

FlexMeasures Documentation, Release 0.20.1.dev11

4.55.8 flexmeasures.utils.flexmeasures_inflection

FlexMeasures way of handling inflection

Functions

flexmeasures.utils. flexmeasures_inflection.atoi (fext)
Utility method for the natural_keys method.

flexmeasures.utils. flexmeasures_inflection.capitalize(x: sir, lower_case_remainder: bool = False)
— str

Capitalize string with control over whether to lower case the remainder.

flexmeasures.utils. flexmeasures_inflection.human_sorted(alist: list, attr: Any | None = None, reverse:
bool = False)

Human sort a list (for example, a list of strings or dictionaries).
Parameters
* alist — List to be sorted.
* attr - Optionally, pass a dictionary key or attribute name to sort by
» reverse — If True, sorts descending.

Example: >>> alist = [“PV 107, “CP1”, “PV 27, “PV 17, “CP 2”] >>> sorted(alist) [‘CP 2’, ‘CP1’, ‘PV I’, ‘PV
10°, ‘PV 2’] >>> human_sorted(alist) [‘CP1’, ‘CP 2, ‘PV 1’, ‘PV 2’, ‘PV 10’]

flexmeasures.utils. flexmeasures_inflection.humanize (word)
flexmeasures.utils. flexmeasures_inflection. join_words_into_a_list (words: list[str]) — str
flexmeasures.utils. flexmeasures_inflection.natural_keys(text: str)

Support for human sorting.

alist.sort(key=natural_keys) sorts in human order.

https://stackoverflow.com/a/5967539/13775459

flexmeasures.utils. flexmeasures_inflection.parameterize(word)
Parameterize the word, so it can be used as a python or javascript variable name. For example: >>> word =
“Acme® EV-Charger™” “acme_ev_chargertm”

flexmeasures.utils. flexmeasures_inflection.pluralize(word, count: str | int | None = None)

flexmeasures.utils. flexmeasures_inflection.titleize(word)
Acronym exceptions are not yet supported by the inflection package, even though Ruby on Rails, of which the
package is a port, does.

In most cases it’s probably better to use our capitalize function instead of titleize, because it has less unintended
side effects. For example:

>>> word = "two PV panels"
>>> titleize(word)

"Two Pv Panels"

>>> capitalize(word)

"Two PV panels"

354 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://stackoverflow.com/a/5967539/13775459
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.20.1.dev11

4.55.9 flexmeasures.utils.geo_utils
Functions

flexmeasures.utils.geo_utils.cos_rad_lat (latitude: float) — float

flexmeasures.utils.geo_utils.earth_distance(location: tuple[float, float], other_location: tuple[float,
float]) — float

Great circle distance in km between two locations on Earth.

flexmeasures.utils.geo_utils.parse_lat_lng(kwargs) — tuple[float, float] | tuple[None, None]
Parses latitude and longitude values stated in kwargs.

Can be called with an object that has latitude and longitude properties, for example:
lat, Ing = parse_lat_Ing(object=asset)
Can also be called with latitude and longitude parameters, for example:
lat, Ing = parse_lat_Ing(latitude=32, longitude=54) lat, Ing = parse_lat_Ing(lat=32, Ing=54)

flexmeasures.utils.geo_utils.rad_lng(longitude: float) — float

flexmeasures.utils.geo_utils.sin_rad_lat (latitude: floar) — float

4.55.10 flexmeasures.utils.grid_cells
Functions

flexmeasures.utils.grid_cells.get_cell_nums (¢ tupleffloat, float], br: tuple[float, float], num_cells: int
= 9) — tuple[int, int]

Compute the number of cells in both directions, latitude and longitude. By default, a square grid with N=9 cells
is computed, so 3 by 3. For N with non-integer square root, the function will determine a nice cell pattern. :param
tl: top-left (lat, Ing) tuple of ROI :param br: bottom-right (lat, Ing) tuple of ROI :param num_cells: number of
cells (9 by default, leading to a 3x3 grid)

Classes
class flexmeasures.utils.grid_cells.LatLngGrid(top_left: tuple[float, float], bottom_right: tuple[float,

float], num_cells_lat: int, num_cells_Ing: int)

Represents a grid in latitude and longitude notation for some rectangular region of interest (ROI). The specs are
a top-left and a bottom-right coordinate, as well as the number of cells in both directions. The class provides two
ways of conceptualising cells which nicely cover the grid: square cells and hexagonal cells. For both, locations
can be computed which represent the corners of said cells. Examples:

* 4 cells in square: 9 unique locations in a 2x2 grid (4*4 locations, of which 7 are covered by another cell)
* 4 cells in hex: 13 unique locations in a 2x2 grid (4*6 locations, of which 11 are already covered)

* 10 cells in square: 18 unique locations in a 5x2 grid (10*4 locations, of which 11 are already covered)

¢ 10 cells in hex: 34 unique locations in a 5x2 grid (10*6 locations, of which 26 are already covered)

The top-right and bottom-left locations are always at the center of a cell, unless the grid has 1 row or 1 column.
In those case, these locations are closer to one side of the cell.

4.55. flexmeasures.utils 355

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.20.1.dev11

__init__(top_left: tuple[float, float], bottom_right: tuple[float, float], num_cells_lat: int, num_cells_Ing:
int)

compute_cell_size_lat() — float
Calculate the step size between latitudes

compute_cell_size_lng() — float

Calculate the step size between longitudes

get_locations (method: str) — list[tuple[float, float]]

Get locations by method (“square” or “hex”)

locations_hex () — list[tuple[float, float]]

The hexagonal pattern - actually leaves out one cell for every even row.

locations_square () — list[tuple[float, float]]

square pattern

4.55.11 flexmeasures.utils.plugin_utils

Utils for registering FlexMeasures plugins

Functions

flexmeasures.utils.plugin_utils.check_config_settings(app, settings: dict[str, dict])
Make sure expected config settings exist.

For example:
settings = {

“MY_PLUGIN_URL”: {
“description”: “URL used by my plugin for x.”, “level”: “error”,

}, “MY_PLUGIN_TOKEN": {

CLINT3

“description”: “Token used by my plugin for y.”, “level”: “warning”,

EEINT3

out this token, my plugin will not do y.”, “parse_as”: str,

}, “MY_PLUGIN_COLOR”™: {

message””: “With-

“description”: “Color used to override the default plugin color.”, “level”: “info”,

}

flexmeasures.utils.plugin_utils.log_missing_config_setting(app, setting_name: str, setting_fields:
dict)
Log a message for this missing config setting.

The logging level is taken from the ‘level’ key. If missing, we default to error. If present, we also log the
‘description’ and the ‘message_if_missing’ keys.

flexmeasures.utils.plugin_utils.log_wrong_type_for_config_setting(app, setting_name: str,
setting_fields: dict,
setting_type: type)
Log a message for this config setting that has the wrong type.

356 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#type

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.utils.plugin_utils.register_plugins(app: Flask)
Register FlexMeasures plugins as Blueprints. This is configured by the config setting FLEXMEA-
SURES_PLUGINS.
Assumptions: - a setting EITHER points to a plugin folder containing an __init__.py file

OR it is the name of an installed module, which can be imported.

* each plugin defines at least one Blueprint object. These will be registered with the Flask app, so their
functionality (e.g. routes) becomes available.

If you load a plugin via a file path, we’ll refer to the plugin with the name of your plugin folder (last part of the
path).

4.55.12 flexmeasures.utils.time_utils

Utils for dealing with time

Functions

flexmeasures.utils.time_utils.apply_offset_chain(ds: pd.Timestamp | datetime, offset_chain: str) —
pd.Timestamp | datetime

Apply an offset chain to a date.
An offset chain consist of multiple (pandas) offset strings separated by commas. Moreover, this function im-
plements the offset string “DB”, which stands for Day Begin, to get a date from a datetime, i.e. removing time
details finer than a day.
Args:

dt (pd.Timestamp | datetime) offset_chain (str)
Returns:

pd.Timestamp | datetime (same type as given dt)

flexmeasures.utils.time_utils.as_server_time(d:: datetime) — datetime

The datetime represented in the timezone of the FlexMeasures platform. If dt is naive, we assume it is UTC time.

flexmeasures.utils.time_utils.decide_resolution(start: datetime | None, end: datetime | None) — str
Decide on a practical resolution given the length of the selected time period. Useful for querying or plotting.
flexmeasures.utils.time_utils.determine_minimum_resampling_resolution(event_resolutions:
list{timedelta]) —
timedelta
Return minimum non-zero event resolution, or zero resolution if none of the event resolutions is non-zero.
flexmeasures.utils.time_utils.duration_isoformat (duration: timedelta)
Adapted version of isodate.duration_isoformat for formatting a datetime.timedelta.
The difference is that absolute days are not formatted as nominal days. Workaround for https://github.com/gweis/
isodate/issues/74.

flexmeasures.utils.time_utils.ensure_local_timezone(dr: pd.Timestamp | datetime, t7_name: str =
'Europe/Amsterdam’) — pd.Timestamp |
datetime

If no timezone is given, assume the datetime is in the given timezone and make it explicit. Otherwise, if a
timezone is given, convert to that timezone.

4.55. flexmeasures.utils 357

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://github.com/gweis/isodate/issues/74
https://github.com/gweis/isodate/issues/74
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.utils.time_utils.forecast_horizons_for (resolution: str | timedelta) — list[str] |
list[timedelta]

Return a list of horizons that are supported per resolution. Return values or of the same type as the input.

flexmeasures.utils.time_utils.freq_label_to_human_readable_label (freq_label: sir) — str

Translate pandas frequency labels to human-readable labels.

flexmeasures.utils.time_utils.get_first_day_of_next_month() — datetime

flexmeasures.utils.time_utils.get_max_planning_horizon(resolution: timedelta) — timedelta | None
Determine the maximum planning horizon for the given sensor resolution.
flexmeasures.utils.time_utils.get_most_recent_clocktime_window(window_size_in_minutes: int,
now: datetime | None = None,
grace_period_in_seconds: int |
None = 0) — tuple[datetime,
datetime]

Calculate a recent time window, returning a start and end minute so that a full hour can be filled with such
windows, e.g.:

Calling this function at 15:01:xx with window size 5 -> (14:55:00, 15:00:00) Calling this function at 03:36:xx
with window size 15 -> (03:15:00, 03:30:00)

We can demand a grace period (of x seconds) to have passed before we are ready to accept that we’re in a new
window: Calling this function at 15:00:16 with window size 5 and grace period of 30 seconds -> (14:50:00,
14:55:00)

window_size_in_minutes is assumed to > 0 and < = 60, and a divisor of 60 (1, 2, ..., 30, 60).

If now is not given, the current server time is used. if now / the current time lies within a boundary minute (e.g.
15 when window_size_in_minutes=5), then the window is not deemed over and the previous one is returned (in
this case, [5, 10])

Returns two datetime objects. They’1l be in the timezone (if given) of the now parameter, or in the server timezone
(see FLEXMEASURES_TIMEZONE setting).

flexmeasures.utils.time_utils.get_most_recent_hour() — datetime
flexmeasures.utils.time_utils.get_most_recent_quarter() — datetime

flexmeasures.utils.time_utils.get_timezone (of user=False) — BaseTzlInfo

Return the FlexMeasures timezone, or if desired try to return the timezone of the current user.

flexmeasures.utils.time_utils.localized_datetime(ds: datetime) — datetime
Localise a datetime to the timezone of the FlexMeasures platform. Note: this will change nothing but the tzinfo
field.
flexmeasures.utils.time_utils.localized_datetime_str(dt: datetime, dt_format: str = '%Y-%m-%d
9o1: %M Yop') — str
Localise a datetime to the timezone of the FlexMeasures platform. If no datetime is passed in, use server_now()
as basis.

Hint: This can be set as a jinja filter, so we can display local time in the app, e.g.:
app.jinja_env filters[‘localized_datetime’] = localized_datetime_str
flexmeasures.utils.time_utils.naive_utc_from(d:: datetime) — datetime

Return a naive datetime, that is localised to UTC if it has a timezone. If dt is naive, we assume it is already in
UTC time.

358 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.utils.time_utils.naturalized_datetime_str(d:: datetime | None, now: datetime | None =
None) — str

Naturalise a datetime object (into a human-friendly string). The dt parameter (as well as the now parameter if
you use it) can be either naive or tz-aware. We assume UTC in the naive case.

We use the humanize library to generate a human-friendly string. If dt is not longer ago than 24 hours, we use
humanize.naturaltime (e.g. “3 hours ago”), otherwise humanize.naturaldate (e.g. “one week ago™)

Hint: This can be set as a jinja filter, so we can display local time in the app, e.g.:
app.jinja_env.filters[‘naturalized_datetime’] = naturalized_datetime_str

flexmeasures.utils.time_utils.resolution_to_hour_factor (resolution: str | timedelta) — float

Return the factor with which a value needs to be multiplied in order to get the value per hour, e.g. 10 MW ata
resolution of 15min are 2.5 MWh per time step.

Parameters
resolution - timedelta or pandas offset such as “15T” or “1H”

flexmeasures.utils.time_utils.round_to_closest_hour(d:: datetime) — datetime
flexmeasures.utils.time_utils.round_to_closest_quarter(d:: datetime) — datetime

flexmeasures.utils.time_utils.server_now() — datetime

The current time (timezone aware), converted to the timezone of the FlexMeasures platform.

flexmeasures.utils.time_utils.supported_horizons() — list[timedelta]
flexmeasures.utils.time_utils.timedelta_to_pandas_freq_str (resolution: timedelta) — str

flexmeasures.utils.time_utils.to_http_time(ds: pd Timestamp | datetime) — str

Formats datetime using the Internet Message Format fixdate.

>>> to_http_time(pd.Timestamp(''2022-12-13 14:06:23Z"))
Tue, 13 Dec 2022 14:06:23 GMT

References

IMF-fixdate: https://www.rfc-editor.org/rfc/rfc723 1#section-7.1.1.1

flexmeasures.utils.time_utils.tz_index_naively(data: pd.DataFrame | pd.Series | pd.Datetimelndex)
— pd.DataFrame | pd.Series | pd.DatetimeIndex

Turn any Datetimelndex into a tz-naive one, then return. Useful for bokeh, for instance.

4.55.13 flexmeasures.utils.unit_utils

Utility module for unit conversion

FlexMeasures stores units as strings in short scientific notation (such as ‘kWh’ to denote kilowatt-hour). We use the
pint library to convert data between compatible units (such as ‘m/s’ to ‘km/h’). Three-letter currency codes (such as
‘KRW’ to denote South Korean Won) are valid units. Note that converting between currencies requires setting up a
sensor that registers conversion rates over time. The preferred compact form for combinations of units can be derived
automatically (such as ‘kW*EUR/MWh’ to ‘EUR/h’). Time series with fixed resolution can be converted from units of
flow to units of stock (such as kW’ to ‘kWh’), and vice versa. Percentages can be converted to units of some physical
capacity if a capacity is known (such as ‘%’ to ‘kWh’).

4.55. flexmeasures.utils 359

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://www.rfc-editor.org/rfc/rfc7231#section-7.1.1.1

FlexMeasures Documentation, Release 0.20.1.dev11

Functions

flexmeasures.utils.unit_utils.convert_units(data: tb.BeliefsSeries | pd.Series | list[int | float] | int |
float, from_unit: str, to_unit: str, event_resolution:
timedelta | None = None, capacity: str | None = None) —
pd.Series | list[int | float] | int | float

Updates data values to reflect the given unit conversion.

Handles units in short scientific notation (e.g. m3/h, kW, and °C), as well as three special units to convert from: -
from_unit="datetime” (with data point such as “2023-05-02”, “2023-05-02 05:14:49” or “2023-05-02 05:14:49
+02:00”) - from_unit="dayfirst datetime” (with data point such as “02-05-2023") - from_unit="timedelta” (with
data point such as “0 days 01:18:25”)

flexmeasures.utils.unit_utils.determine_flow_unit (stock_unit: str, time_unit: str ="h")

For example: >>> determine_ﬂow_unit(“m3”) #m3/h>>> determine_flow_unit(“kWh”) # kW

flexmeasures.utils.unit_utils.determine_stock_unit (flow_unit: str, time_unit: str ="'h")

Determine the shortest unit of stock, given a unit of flow.
For example: >>> determine_stock_unit(“m3/h”) # m? >>> determine_stock_unit(“kW”) # kWh

flexmeasures.utils.unit_utils.determine_unit_conversion_multiplier (from_unit: str, to_unit: str,
duration: timedelta | None =
None)

Determine the value multiplier for a given unit conversion. If needed, requires a duration to convert from units
of stock change to units of flow, or vice versa.
flexmeasures.utils.unit_utils.is_currency_unit (unit: str | pint.Quantity | pint.Unit) — bool
For Example: >>> is_energy_price_unit(“EUR”) True >>> is_energy_price_unit(“KRW”) True >>>
is_energy_price_unit(“potatoe”) False >>> is_energy_price_unit(“MW”) False
flexmeasures.utils.unit_utils.is_energy_price_unit (unit: str) — bool
For example: >>> is_energy_price_unit(“EUR/MWh”) True >>> is_energy_price_unit(“KRW/MWh”) True
>>> is_energy_price_unit(“KRW/MW?”) False >>> is_energy_price_unit(‘“beans/MW”) False
flexmeasures.utils.unit_utils.is_energy_unit (unit: sir) — bool
For example: >>> is_energy_unit(“kW”) False >>> is_energy_unit("°C”) False >>> is_energy_unit(“kWh”)
True >>> is_energy_unit(“EUR/MWh”) False
flexmeasures.utils.unit_utils.is_power_unit (unit: str) — bool
For example: >>> is_power_unit(“kW”) True >>> is_power_unit(”°C”) False >>> is_power_unit(“kWh”) False
>>> is_power_unit(“EUR/MWh”) False
flexmeasures.utils.unit_utils.is_valid_unit(unit: str) — bool

Return True if the pint library can work with this unit identifier.

flexmeasures.utils.unit_utils.to_preferred(x: Quantity) — Quantity
From https://github.com/hgrecco/pint/issues/676#issuecomment-689157693
flexmeasures.utils.unit_utils.units_are_convertible(from_unit: str, to_unit: str, duration_known:
bool = True) — bool

For example, a sensor with W units allows data to be posted with units: >>> units_are_convertible(“kW”, “W”’)
True (units just have different prefixes) >>> units_are_convertible(“J/s”, “W”") # True (units can be converted
using some multiplier) >>> units_are_convertible(“Wh”, “W”) # True (units that represent a stock delta can,
knowing the duration, be converted to a flow) >>> units_are_convertible(”°C”, “W”) # False

Utilities for the FlexMeasures project.

360 Chapter 4. Where to start reading?

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://github.com/hgrecco/pint/issues/676#issuecomment-689157693
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PYTHON MODULE INDEX

f flexmeasures.cli.data_edit, 246
flexmeasures.api, 241 flexmeasures.cli.data_show, 246
. flexmeasures.cli.db_ops, 246
flexmeasures.cli. jobs, 247
flexmeasures.cli.monitor, 247
flexmeasures.cli.utils, 247

flexmeasures.api.common, 218
flexmeasures.api.common.implementations, 205
flexmeasures.api.common.responses, 205
flexmeasures.api.common.routes, 208
flexmeasures.api.common.schemas, 214 flexmeasures.data, 340

flexmeasures.api . common. schemas. generic_assetstlexmeasures.data.config, 250
208 flexmeasures.data.models, 296

flexmeasures.api.common.schemas . sensor_data, Ilexmeasures.data.models.annotations, 251

209 flexmeasures.data.models.charts, 255
flexmeasures.api . common. schemas . sensors, 212 flexmeasures.data.models.charts.belief_charts,
254

flexmeasures.api.common.schemas.users, 213
flexmeasures.api.common.utils, 218
flexmeasures.api.common.utils.api_utils, 214
flexmeasures.api.common.utils.args_parsing,

flexmeasures.data.models.charts.defaults, 255
flexmeasures.data.models.data_sources, 256
flexmeasures.data.models. forecasting, 262

215 flexmeasures.data.models. forecasting.exceptions,
flexmeasures.api.common.utils.deprecation_utils, 258)

215 flexmeasures.data.models. forecasting.model_spec_factory
flexmeasures.api.common.utils.validators, 218 258
flexmeasures . api .dev, 220 flexmeasures.data.models. forecasting.model_specs,
flexmeasures.api.dev.sensors, 219 261) .
flexmeasures.api.play, 221 flexmeasures.data.models. forecasting.model_specs.linear_re
flexmeasures.api.play.implementations, 220 261))
flexmeasures.api.play.routes, 220 flexmeasures.data.models. forecasting.model_specs.naive,

261

flexmeasures.api.sunset, 221
flexmeasures.api.sunset.routes, 221

flexmeasures.api.v3_0, 240 261
flexmeasures.api.v3_0.accounts, 222 flexmeasures.data.models.generic_assets, 263

flexmeasures.api.v3_0.assets, 224 flexmeasures.data.models.legacy_migration_utils,
flexmeasures.api.v3_0.health, 228 267

flexmeasures.api.v3_0.public, 228 flexmeasures.data.models.parsing_utils, 269
flexmeasures.api.v3_0.sensors, 229 flexmeasures.data.models.planning, 282
flexmeasures.api.v3_0.users, 237 flexmeasures.data.models.planning.battery,

flexmeasures.data.models. forecasting.utils,

flexmeasures.app, 241 269
flexmeasures. auth, 245 flexmeasures.data.models.planning.charging_station,
269

flexmeasures.auth.decorators, 242
flexmeasures.auth.error_handling, 243
flexmeasures.auth.policy, 244 270

flexmeasures. cli. 249 flexmeasures.data.models.planning.linear_optimization,

flexmeasures.cli.data_add, 245 270
flexmeasures.cli.data_delete, 245 flexmeasures.data.models.planning.process,

flexmeasures.data.models.planning.exceptions,

361

FlexMeasures Documentation, Release 0.20.1.dev11

271
flexmeasures
273
flexmeasures
flexmeasures
flexmeasures
283
flexmeasures
284
flexmeasures
285
flexmeasures
flexmeasures
flexmeasures
flexmeasures
296
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
307
flexmeasures
309
flexmeasures
313
flexmeasures
flexmeasures
316
flexmeasures
317
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
327
flexmeasures
flexmeasures
flexmeasures

.data.

.data.
.data.
.data.

.data.

.data.

.data.
.data.
.data.
.data.

.data.
.data.
.data.
.data.
.data.
.data.
.data.
.data.
.data.
.data.
.data.
.data.
.data.
.data.
.data.

.data.

.data.

.data.
.data.

.data.

.data.
.data.
.data.
.data.
.data.
.data.
.data.
.data.
.data.

.data.
.data.
.data.

flexmeasures.
models.planning.storage, 329
flexmeasures.
models.planning.utils, 278 flexmeasures.
models.reporting, 286 flexmeasures.
models.reporting.aggregator, flexmeasures.
flexmeasures.
models.reporting.pandas_repoftexmmeasures.
flexmeasures.
models.reporting.profit, flexmeasures.
flexmeasures.
models. task_runs, 286 flexmeasures.
models.time_series, 287 flexmeasures.
models.user, 293 flexmeasures
models.validation_utils, flexmeasures
flexmeasures
models.weather, 296 flexmeasures
queries, 301 flexmeasures
queries.annotations, 297 flexmeasures
queries.data_sources, 297 flexmeasures
queries.generic_assets, 297 flexmeasures
queries.sensors, 298 flexmeasures
queries.utils, 299 flexmeasures
schemas, 326 flexmeasures
schemas.account, 302 flexmeasures
schemas.attributes, 303 flexmeasures
schemas.generic_assets, 303 flexmeasures
schemas.io, 305 flexmeasures
schemas.locations, 305 flexmeasures
schemas.reporting, 315 flexmeasures
schemas.reporting.aggregatiofilexmeasures.
flexmeasures
schemas.reporting.pandas_repblkaameasures
flexmeasures
schemas.reporting.profit, flexmeasures
flexmeasures
schemas.scheduling, 318 flexmeasures
schemas.scheduling.process, flexmeasures
354
schemas.scheduling.storage, flexmeasures
flexmeasures
schemas. sensors, 318 flexmeasures
schemas. sources, 322 flexmeasures
schemas.times, 323 flexmeasures

schemas.units, 324
schemas.users, 325
schemas.utils, 325

scripts, 327
scripts.data_gen, 327
scripts.visualize_data_model,

services, 338
services.accounts, 328
services.annotations, 328

.ui
.ui

data.services

data.services

data.services
data.services
data.services
data.services

data.
data.
.ui,
.ui.
.ui
.ui.
.ui
.ui.
.ui.
i.utils, 345
.utils.breadcrumb_utils, 344
.utils.chart_defaults, 344
.utils.view_utils, 344
.views, 346
.views.control, 346
.views.logged_in_user, 346
.views.new_dashboard, 346
.views.sensors, 346

.utils, 360
utils
.utils.
.utils.
.utils.
.utils.
.utils.
.utils.
.utils.

.ui
.ui
.ui
.ui
.ui
.ui
.ui

.utils.
.utils.
.utils
.utils.
.utils

347
crud, 343

.asset_grouping,

.data_sources, 330
data.services.
data.services.
data.services.
data.services.
.time_series, 336
.timerange, 336
.users, 336
.utils, 337
transactional, 338

utils, 339

forecasting, 331
job_cache, 332
scheduling, 333
sensors, 335

.crud.accounts, 341

crud.api_wrapper, 341

.crud.assets, 341
crud.users,

343

error_handlers, 343

.app_utils, 347
calculations, 348
coding_utils, 350
config_defaults, 351
config_utils, 351
entity_address_utils, 352
error_utils, 353
flexmeasures_inflection,

geo_utils, 355
grid_cells, 355
.plugin_utils, 356
time_utils, 357
.unit_utils, 359

362

Python Module Index

/api

GET /api/, 113

GET /api/dev/asset/(id), 129

GET /api/dev/sensor/(id), 129

GET /api/dev/sensor/(id)/chart, 129

GET /api/dev/sensor/(id)/chart_annotations,
129

GET /api/dev/sensor/(id)/chart_data, 129

GET /api/v3_0, 113

GET /api/v3_0/assets, 113

GET /api/v3_0/assets/(id), 115

GET /api/v3_0/assets/(id)/chart, 117

GET /api/v3_0/assets/(id)/chart_data, 117

GET /api/v3_0/assets/public, 117

GET /api/v3_0/health/ready, 117

GET /api/v3_0/sensors, 117

GET /api/v3_0/sensors/(id), 119

GET /api/v3_0/sensors/(id)/schedules/(uuid),
121

GET /api/v3_0/sensors/data, 124

GET /api/v3_0/users, 125

GET /api/v3_0/users/(id), 126

POST /api/requestAuthToken, 113

POST /api/v3_0/assets, 114

POST /api/v3_0/sensors, 118

POST /api/v3_0/sensors/(id)/schedules/trigger,
122

POST /api/v3_0/sensors/data, 125

DELETE /api/v3_0/assets/(id), 115

DELETE /api/v3_0/sensors/(id), 119

PATCH /api/v3_0/assets/(id), 116

PATCH /api/v3_0/sensors/(id), 120

PATCH /api/v3_0/users/(id), 127

PATCH /api/v3_0/users/(id)/password-reset,
128

HTTP ROUTING TABLE

363

FlexMeasures Documentation, Release 0.20.1.dev11

364 HTTP Routing Table

INDEX

Sym bols method), 294

__init__Q (flexmeasures.api.common. responses.BaseMessagPi) (flexmeasures.data.models.user.Role
method), 208 method), 294

__init__QO (ﬂexmeasures.api.common.schemas.sensors.Senﬂjl%Hd-O (flexmeasures.data.models.user.RolesAccounts
method), 212 method), 294

__init__Q (flexmeasures.api.common.schemas.users. Usertdiii— O (flexmeasures.data.models.user.RolesUsers
method), 214 method), 295

__init__ Q) (flexmeasures.cli. utils.DeprecatedDefaultGroup—ini 0O (flexmeasures.data.models.user.User
method), 249 method), 295

__init__Q (flexmeasures.cli.utils.DeprecatedOption __init__ Q) (flexmeasures.data.schemas.locations.LatitudeField

method), 249 method), 305

__init__Q (flexmeasures.data.models. annotations.Accouan%HéfafinM&Wﬁgﬁfﬂ es.data.schemas.locations. LatitudeLongitudeValid
method), 252 method), 305

__init__QO (ﬂexmeasures.data.models.annomtions_Annomﬁ,,i{lit__() (flexmeasures.data.schemas.locations. LatitudeValidator
method), 252 method), 306

__init__(Q) (flexmeasures.data.models.annotations. GenericAXAnnbdllnRuaH 1 10 schemas.locations. LongitudeField
method), 253 method), 306

__init__QO (ﬂexmeasures.data.models.annotatiOns.SensorAn;zB?atir’on@eigﬁWngr es.data.schemas.locations.LongitudeValidator
method), 253 method), 30

__init__Q (flexmeasures.data.models.data_sources. DataGenBiftor O (flexmeasures.data.schemas.scheduling.process.ProcessSched
method), 256 method), 317

__init__Q) (flexmeasures.data.models.data_sources.Data Sorid t—— O (flexmeasures.data.schemas.scheduling.storage. EfficiencyFielc
method), 257 method), 317

__init__Q (ﬂexmeasures.data.models.forecasting.model_speic%m@. Wl%yggsdam.schemas.scheduling.stor age.StorageFlexM
method), 260 method), 318

__init__Q (flexmeasures.data.models.forecasting. model_spéc@.%ﬁfve@’%éfmeas ures.data.schemas.sensors. QuantityOrSensor
method), 261 method), 319

__init__Q (flexmeasures.data.models.generic_assets. GeneritAie— O (flexmeasures.data.schemas.sensors.RepurposeValidatorTolgn
method), 264 method), 321

__init__ Q) (flexmeasures.data.models.generic_assets. Geneﬁiﬂi‘}etﬁ(];e(ﬂexmeas ures.data.schemas.sensors.SensorldField
method), 267 method), 321

__init__Q (flexmeasures.data.models.planning. Scheduler——init——o (flexmeasures.data.schemas.sensors.TimeSeriesOrSensor
method), 282 method), 321

__init__Q (flexmeasures.data.models.task_runs. LatestTastpi t—O (flexmeasures.data.schemas.sensors. TimedEventSchema
method), 286 method), 322

__init__Q (flexmeasures.data.models.time_series.Sensor —init__ O (flexmeasures.data.schemas.units. QuantityField
method), 287 method), 325

__init__Q (flexmeasures.data.models.time_series. TimedB-ei-i% it__Q (flexmeasures.data.schemas.units. QuantityValidator
method), 290 method), 325

__init__O (flexmeasures.data.models.user.Account __init__Q (flexmeasures.data.schemas.utils. MarshmallowClickMixin
method), 293 method), 326

__init__Q (flexmeasures.data.models.user.AccountRole __init__Q (flexmeasures.data.services.asset_grouping.AssetGroup

365

FlexMeasures Documentation, Release 0.20.1.dev11

method), 330 method), 302
__init__Q (flexmeasures.data.services.job_cache.JobCachdeserialize () (flexmea-
method), 333 sures.data.schemas.generic_assets.GenericAssetldField
__init__Q (flexmeasures.utils.grid_cells.LatLngGrid method), 303
method), 355 _deserialize() (flexmea-
_apply_transformations() (flexmea- sures.data.schemas.generic_assets.JSON
sures.data.models.reporting.pandas_reporter. PandasReporterethod), 304
method), 284 _deserialize() (flexmea-
_clean_belief_dataframe() (flexmea- sures.data.schemas.sensors.JSON method),
sures.data.models.reporting.pandas_reporter.PandasReportén 9
method), 284 _deserialize() (flexmea-
_clean_belief_series() (flexmea- sures.data.schemas.sensors. QuantityOrSensor
sures.data.models.reporting.pandas_reporter. PandasReporterethod), 320
method), 284 _deserialize() (flexmea-
_clean_parameters() (flexmea- sures.data.schemas.sensors.SensorldField
sures.data.models.data_sources.DataGenerator method), 321
method), 256 _deserialize() (flexmea-
_clean_parameters() (flexmea- sures.data.schemas.sensors.TimeSeriesOrSensor
sures.data.models.reporting.Reporter method), method), 321
286 _deserialize() (flexmea-
_compute() (flexmeasures.data.models.reporting.Reporter sures.data.schemas.sources.DataSourceldField
method), 286 method), 322
_compute_report() (flexmea- _deserialize() (flexmea-
sures.data.models.reporting.Reporter method), sures.data.schemas.times.AwareDateTimeField
286 method), 323
_compute_report() (flexmea- _deserialize() (flexmea-
sures.data.models.reporting.aggregator.AggregatorReportersures.data.schemas.times.DurationField
method), 283 method), 323
_compute_report() (flexmea- _deserialize() (flexmea-
sures.data.models.reporting.pandas_reporter.PandasReportsures.data.schemas.times. TimelntervalField
method), 284 method), 324
_compute_report() (flexmea- _deserialize() (flexmea-
sures.data.models.reporting.profit. ProfitOrLossReporter sures.data.schemas.units. QuantityField
method), 285 method), 325
_deserialize() (flexmea- _load_series() (flexmea-
sures.api.common.schemas.generic_assets.AssetldField sures.data.models.forecasting.model_spec_factory. TBSeriesSpecs
method), 208 method), 260
_deserialize() (flexmea- _maybe_raise() (flexmea-
sures.api.common.schemas.sensor_data.SingleValueField sures.ui.crud.api_wrapper.InternalApi
method), 211 method), 341
_deserialize() (flexmea- _parameters_schema (flexmea-
sures.api.common.schemas.sensors.SensorField sures.data.models.reporting.pandas_reporter.PandasReporter
method), 212 attribute), 284
_deserialize() (flexmea- _prepare() (flexmeasures.data.models.planning.storage.MetaStorageSche
sures.api.common.schemas.sensors.SensorldField method), 276
method), 212 _process_pandas_args() (flexmea-
_deserialize() (flexmea- sures.data.models.reporting.pandas_reporter.PandasReporter
sures.api.common.schemas.users.AccountldField method), 284
method), 213 _process_pandas_kwargs () (flexmea-
_deserialize() (flexmea- sures.data.models.reporting.pandas_reporter.PandasReporter
sures.api.common.schemas.users.UserldField method), 284
method), 214 _serialize() (flexmea-
_deserialize() (flexmea- sures.api.common.schemas.generic_assets.AssetldField
sures.data.schemas.account.AccountldField method), 209

366 Index

FlexMeasures Documentation, Release 0.20.1.dev11

_serialize() (flexmea-

sures.api.common.schemas.sensor_data.SingleValueField

method), 212

AccountAnnotationRelationship (class in flexmea-
sures.data.models.annotations), 252
AccountAPI (class in flexmeasures.api.v3_0.accounts),

_serialize() (flexmea- 222
sures.api.common.schemas.sensors.SensorField AccountCrudUI (class in flexmea-
method), 212 sures.ui.crud.accounts), 341

_serialize() (flexmea- AccountIdField (class in flexmea-
sures.api.common.schemas.sensors.SensorldField sures.api.common.schemas.users), 213
method), 212 AccountIdField (class in flexmea-

_serialize() (flexmea- sures.data.schemas.account), 302
sures.api.common.schemas.users.AccountldField accountname () (in module flexmea-
method), 213 sures.ui.utils.view_utils), 345

_serialize() (flexmea- AccountRole (class in flexmeasures.data.models.user),

sures.api.common.schemas.users.UserldField
method), 214

_serialize() (flexmea-
sures.data.schemas.account.AccountldField
method), 302

_serialize() (flexmea-

sures.data.schemas.generic_assets.GenericAssetldField

method), 303
_serialize() (flexmea-

sures.data.schemas.generic_assets.JSON
method), 304

_serialize() (flexmea-
sures.data.schemas.sensors.JSON method),
319

_serialize() (flexmea-

sures.data.schemas.sensors. QuantityOrSensor
method), 320

_serialize() (flexmea-
sures.data.schemas.sensors.SensorldField
method), 321

_serialize() (flexmea-
sures.data.schemas.sources.DataSourceldField
method), 322

_serialize() (flexmea-
sures.data.schemas.times. DurationField
method), 323

_serialize() (flexmea-
sures.data.schemas.units. QuantityField
method), 325

_url_root() (flexmea-
sures.ui.crud.api_wrapper.InternalApi
method), 341

A

abort () (in module flexmeasures.cli.utils), 248
Account (class in flexmeasures.data.models.user), 293
account_roles_accepted() (in module flexmea-
sures.auth.decorators), 242
account_roles_required() (in module flexmea-
sures.auth.decorators), 242

294
AccountRoleSchema (class in flexmea-
sures.data.schemas.account), 302
AccountRoleSchema.Meta (class in flexmea-
sures.data.schemas.account), 302
AccountSchema (class in Sflexmea-
sures.data.schemas.account), 303
AccountSchema.Meta (class in flexmea-

sures.data.schemas.account), 303

add Q) (flexmeasures.data.models.annotations.Annotation
class method), 252

add O (flexmeasures.data.models.time_series. TimedBelief
class method), 291

add_annotations() (flexmea-
sures.data.models.generic_assets.GenericAsset
method), 264

add_basic_error_handlers() (in module flexmea-
sures.utils.error_utils), 353

add_default_account_roles() (in module flexmea-
sures.data.scripts.data_gen), 327

add_default_asset_types() (in module flexmea-
sures.data.scripts.data_gen), 327

add_default_data_sources() (in module flexmea-
sures.data.scripts.data_gen), 327

add_default_user_roles() (in module flexmea-
sures.data.scripts.data_gen), 327

add_html_error_views() (in module
sures.ui.error_handlers), 344

add_jinja_filters() (in module flexmeasures.ui), 347

add_jinja_variables() (in module flexmeasures.ui),
347

add_storage_constraints() (in module flexmea-
sures.data.models.planning.storage), 273

add_tiny_price_slope() (in module flexmea-
sures.data.models.planning.utils), 278

add_transmission_zone_asset() (in module
flexmeasures.data.scripts.data_gen), 327

after_request_exception_rollback_session()
(in module flexmeasures.data.transactional),
339

aggregate_values() (in

flexmea-

module flexmea-

Index

367

FlexMeasures Documentation, Release 0.20.1.dev11

sures.data.services.time_series), 336
AggregatorConfigSchema (class in flexmea-
sures.data.schemas.reporting.aggregation),
307
AggregatorParametersSchema (class in flexmea-
sures.data.schemas.reporting.aggregation),

belief_horizon (flexmea-
sures.data.models.time_series. TimedBelief
attribute), 291

BeliefsSearchConfigSchema (class in flexmea-
sures.data.schemas.reporting), 315

block_invalid_starting_times_for_whole_process_scheduling(
(flexmeasures.data.models.planning.process.ProcessScheduler
method), 271

build_asset_jobs_data() (in module
sures.data.services.sensors), 335

flexmea-

already_received_and_successfully_processed() build_device_soc_targets() (in module flexmea-

307
AggregatorReporter (class in flexmea-
sures.data.models.reporting.aggregator),
283
(in module flexmea-
sures.api.common.responses), 205
Annotation (class in flexmea-
sures.data.models.annotations), 252
apply_chart_defaults() (in module flexmea-

sures.data.models.charts.defaults), 255
apply_offset_chain() (in module flexmea-
sures.utils.time_utils), 357
apply_stock_changes_and_losses() (in module
flexmeasures.utils.calculations), 348
are_required_settings_complete() (in module
flexmeasures.utils.config_utils), 351

as_server_time() (in module Sflexmea-
sures.utils.time_utils), 357

as_transaction() (in module flexmea-
sures.data.transactional), 339

asset_icon_name() (in module flexmea-

sures.ui.utils.view_utils), 345

sures.data.models.planning.storage), 273
build_device_soc_values() (in module flexmea-

sures.data.models.planning.storage), 273
build_ea_scheme_and_naming_authority()

(in module flexmea-
sures.utils.entity_address_utils), 352
build_entity_address() (in module flexmea-

sures.utils.entity_address_utils), 352
build_sensor_status_data() (in module flexmea-
sures.data.services.sensors), 335

C

capitalize() (in module flexmea-
sures.utils.flexmeasures_inflection), 354

catch_timed_belief_replacements() (in module
flexmeasures.api.common.utils.api_utils), 214

chart Q) (flexmeasures.data.models.generic_assets.GenericAsset
method), 264

asset_type (flexmeasures.data.models.generic_assets.GeneHgpsse) (flexmeasures.data.models.time_series.Sensor

property), 264
AssetAPI (class in flexmeasures.api.dev.sensors), 219
AssetAPI (class in flexmeasures.api.v3_0.assets), 224
AssetCrudUI (class in flexmeasures.ui.crud.assets), 342
AssetForm (class in flexmeasures.ui.crud.assets), 342

AssetGroup (class in flexmea-
sures.data.services.asset_grouping), 330

AssetIdField (class in flexmea-
sures.api.common.schemas.generic_assets),
208

assets_share_location() (in module flexmea-

sures.data.models.generic_assets), 263

(in module flexmea-
sures.utils.flexmeasures_inflection), 354
AuthModelMixin (class in flexmeasures.auth.policy),

atoi()

245

AwareDateTimeField (class in flexmea-
sures.data.schemas.times), 323

B

bar_chart() (in module flexmea-
sures.data.models.charts.belief_charts), 254

BaselMessage (class in Sflexmea-

sures.api.common.responses), 208

method), 287
chart_for_multiple_sensors() (in module flexmea-
sures.data.models.charts.belief_charts), 254
chart_type_to_chart_specs() (in module flexmea-
sures.data.models.charts), 255
check_access() (in module flexmeasures.auth.policy),
244
check_account_membership() (in module flexmea-
sures.auth.policy), 244

check_account_role() (in module flexmea-
sures.auth.policy), 244

check_app_env() (in module flexmea-
sures.utils.config_utils), 351

check_config_settings() (in module flexmea-
sures.utils.plugin_utils), 356

check_data() (flexmea-

sures.data.models.forecasting. model_spec_factory. TBSeriesSpecs
method), 260

check_data_availability() (in module flexmea-
sures.data.models.forecasting.utils), 261

check_errors() (in module flexmeasures.cli.data_add),
245

check_redundant_efficiencies() (flexmea-
sures.data.schemas.scheduling.storage.StorageFlexModelSchema

368

Index

FlexMeasures Documentation, Release 0.20.1.dev11

method), 318 compute_schedule () (flexmea-
check_required_attributes() (flexmea- sures.data.models.planning.storage. MetaStorageScheduler

sures.data.models.time_series.Sensor method), method), 276

288 compute_schedule() (flexmea-
check_required_attributes() (in module flexmea- sures.data.models.planning.storage.StorageScheduler

sures.data.models.validation_utils), 296 method), 278
check_resolution_compatibility_of_sensor_data(Qompute_shiftable() (flexmea-

(flexmeasures.api.common.schemas.sensor_data. PostSensorddaesShiternnodels.planning.process. ProcessScheduler

method), 210 method), 272
check_schema_unit_against_sensor_unit() Config (class in flexmeasures.utils.config_defaults), 351

(flexmeasures.api.common.schemas.sensor_data. Seavdrilduted) e¥lo rifwioGh chenidn module flexmea-

method), 211 sures.data.config), 250
check_sqlalchemy_schemadisplay_installation() configure_logging() (in module flexmea-

(in module flexmea- sures.utils.config_utils), 351

sures.data.scripts.visualize_data_model), configure_regressors_for_nearest_weather_sensor()

327 (in module flexmea-
check_time_window() (flexmea- sures.data.models.forecasting.model_spec_factory),

sures.data.schemas.sensors. TimedEventSchema 258

method), 322 conflicting_resolutions() (in module flexmea-
check_timezone() (in module flexmea- sures.api.common.responses), 205

sures.cli.data_add), 245 control_view() (in module flexmea-
check_user_identity() (in module flexmea- sures.ui.views.control), 346

sures.auth.policy), 244 convert () (flexmeasures.data.schemas.sensors. QuantityOrSensor
check_user_role() (in module flexmea- method), 320

sures.auth.policy), 244 convert () (flexmeasures.data.schemas.utils. MarshmallowClickMixin
clear_session() (in module flexmea- method), 326

sures.ut.utils.view_utils), 345 convert_units() (in module flexmea-
commit_and_start_new_session() (in module sures.utils.unit_utils), 360

flexmeasures.data.config), 250 copy_old_sensor_attributes() (in module flexmea-
compute () (flexmeasures.data.models.data_sources.DataGenerator sures.data.models.legacy_migration_utils), 268

method), 257 cos_rad_lat () (in module flexmeasures.utils.geo_utils),
compute () (flexmeasures.data.models.planning.process.ProcessScheditler

method), 272 count_annotations() (flexmea-
compute () (flexmeasures.data.models.planning.Scheduler sures.data.models.generic_assets.GenericAsset

method), 282 method), 264
compute) (flexmeasures.data.models.planning.storage. StorxgdudlbnckSehedulerflexmeasures.app), 241

method), 277 create_beliefs_query() (in module flexmea-
compute () (flexmeasures.data.models.planning.storage.StorageSchedsdees.data.queries.utils), 299

method), 278 create_circle_layer() (in module flexmea-
compute_breakable() (flexmea- sures.data.models.charts.belief_charts), 254

sures.data.models.planning.process.ProcessSchedatraate_constraint_violations_message()

method), 272 (in module flexmea-
compute_cell_size_lat() (flexmea- sures.data.models.planning.storage), 274

sures.utils.grid_cells.LatLngGrid method), create_fall_dst_transition_layer()

356 (in module flexmea-
compute_cell_size_1lng() (flexmea- sures.data.models.charts.belief_charts), 254

sures.utils.grid_cells.LatLngGrid method), create_forecasting_jobs() (in module flexmea-

356 sures.data.services.forecasting), 331
compute_inflexible() (flexmea- create_generic_asset() (in module flexmea-

sures.data.models.planning.process.ProcessScheduler sures.data.models.generic_assets), 263

method), 272 create_initial_model_specs() (in module flexmea-
compute_schedule() (flexmea- sures.data.models.forecasting.model_spec_factory),

sures.data.models.planning.Scheduler method), 258

282 create_lagsQ) (in module flexmea-

Index 369

FlexMeasures Documentation, Release 0.20.1.dev11

sures.data.models.forecasting.utils), 262
create_line_layer() (in module flexmea-

sures.data.models.charts.belief _charts), 254
create_rect_layer() (in module flexmea-

sures.data.models.charts.belief_charts), 254

create_scheduling_job() (in module flexmea-
sures.data.services.scheduling), 333
create_schema_pic() (in module flexmea-

sures.data.scripts.visualize_data_model),
327
create_uml_picQ) (in module flexmea-
sures.data.scripts.visualize_data_model),
327

create_user() (in module flexmea-
sures.data.services.users), 336
cumulative_probability (flexmea-

sures.data.models.time_series. TimedBelief
attribute), 291

D

daily_heatmap() (in module flexmea-
sures.data.models.charts.belief_charts), 255

dashboard_view() (in module flexmea-
sures.ui.views.new_dashboard), 346
data_source (flexmea-

sures.data.models.data_sources.DataGenerator
property), 257

DataGenerator (class in flexmea-
sures.data.models.data_sources), 256
DataSource (class in flexmea-
sures.data.models.data_sources), 257
DataSourceIdField (class in Sflexmea-

sures.data.schemas.sources), 322
decide_resolution() (in module flexmea-

sures.utils.time_utils), 357

delete() (flexmeasures.api.v3_0.assets.AssetAPI
method), 224

delete() (flexmeasures.api.v3_0.sensors.SensorAPI
method), 229

delete_key_recursive() (in module flexmea-
sures.utils.coding_utils), 350

delete_user() (in module Sflexmea-
sures.data.services.users), 336

delete_with_data(Q) (flexmea-
sures.ui.crud.assets.AssetCrudUI method),
342

deprecate_blueprint() (in module flexmea-

sures.api.common.utils.deprecation_utils),
215

deprecate_fields() (in module flexmea-
sures.api.common.utils.deprecation_utils),
216

deprecated() (in module
sures.utils.coding_utils), 350

flexmea-

deprecated_api_version() (in module flexmea-
sures.api.common.responses), 206

DeprecatedDefaul tGroup (class in
sures.cli.utils), 248

DeprecatedOption (class in flexmeasures.cli.utils), 249

flexmea-

DeprecatedOptionsCommand (class in flexmea-
sures.cli.utils), 249
description (flexmea-

sures.data.models.data_sources.DataSource
property), 257

deserialize_config() (flexmea-
sures.data.models.planning.Scheduler method),
282

deserialize_flex_config() (flexmea-

sures.data.models.planning.process.ProcessScheduler

method), 272

deserialize_flex_config() (flexmea-
sures.data.models.planning.Scheduler method),
282

deserialize_flex_config() (flexmea-

sures.data.models.planning.storage.MetaStorageScheduler

method), 276
deserialize_timing_config(Q) (flexmea-
sures.data.models.planning.Scheduler method),
283
determine_flow_unit() (in
sures.utils.unit_utils), 360
determine_minimum_resampling_resolution() (in
module flexmeasures.utils.time_utils), 357
determine_shared_sensor_type()

module flexmea-

(in module flexmea-
sures.data.models.charts.belief _charts), 255
determine_shared_unit() (in module flexmea-

sures.data.models.charts.belief_charts), 255

determine_stock_unit() (in module flexmea-
sures.utils.unit_utils), 360

determine_unit_conversion_multiplier()
module flexmeasures.utils.unit_utils), 360

DevelopmentConfig (class in flexmea-
sures.utils.config_defaults), 351

device_scheduler() (in module flexmea-
sures.data.models.planning.linear_optimization),
270

display_name (flexmea-
sures.data.services.asset_grouping.AssetGroup
property), 330

docs_view() (in module flexmeasures.ui.views), 347

(in

DocumentationConfig (class in flexmea-
sures.utils.config_defaults), 351

done () (in module flexmeasures.cli.utils), 248

drop_nan_rows () (in module flexmea-

sures.utils.calculations), 349
drop_unchanged_beliefs() (in module flexmea-
sures.data.services.time_series), 336

370

Index

FlexMeasures Documentation, Release 0.20.1.dev11

duration_isoformat() (in module flexmea-
sures.utils.time_utils), 357

DurationField (class in Sflexmea-
sures.data.schemas.times), 323

DurationValidationError, 324

E

earth_distance() (in module Sflexmea-
sures.utils.geo_utils), 355

EfficiencyField (class in flexmea-
sures.data.schemas.scheduling.storage),
317

enqueue_forecasting_jobs() (in module flexmea-
sures.api.common.utils.api_utils), 214

ensure_local_timezone() (in module flexmea-
sures.utils.time_utils), 357
ensure_soc_min_max() (flexmea-

sures.data.models.planning.storage.MetaStorageSEA&FMEASUres . api .

method), 276
EntityAddressException, 353
EntityAddressValidationError, 213

error_handling_router() (in module flexmea-
sures.utils.error_utils), 353

event_resolution (flexmea-
sures.data.models.time_series.Sensor at-
tribute), 288

event_start (flexmea-
sures.data.models.time_series. TimedBelief
attribute), 291

event_value (flexmea-

sures.data.models.time_series. TimedBelief
attribute), 291

F

fallback_charging_policy() (in module flexmea-
sures.data.models.planning.utils), 278

fallback_schedule_redirect() (in module flexmea-
sures.api.common.responses), 206

fallback_scheduler_class (flexmea-

sures.data.models. planning.storage.StorageSchedﬁ%?xmeasur es.api.

attribute), 278

fetch_data(Q) (flexmea-

method), 288
find_duplicates() (in
sures.cli.data_show), 246
find_first_applicable_config_entry() (in mod-
ule flexmeasures.utils.app_utils), 348
find_scheduler_class() (in module
sures.data.services.scheduling), 334
find_user_by_email () (in module
sures.data.services.users), 336
flatten_unique() (in module
sures.utils.coding_utils), 350
FlexContextSchema (class in
sures.data.schemas.scheduling), 318
flexmeasures.api
module, 241
flexmeasures.api.
module, 218

module flexmea-

flexmea-
flexmea-
flexmea-

flexmea-

common
common.implementations
module, 205
flexmeasures.api.
module, 205
flexmeasures.api.
module, 208
flexmeasures.api.
module, 214
flexmeasures.api.
module, 208
flexmeasures.api.
module, 209
flexmeasures.api.
module, 212
flexmeasures.api.
module, 213
flexmeasures.api.
module, 218
flexmeasures.api.
module, 214
flexmeasures.api.
module, 215

common.responses

common.routes

common . schemas

common. schemas.generic_assets

common . schemas.sensor_data

common . schemas . sensors

common . schemas.users

common.utils

common.utils.api_utils

common.utils.args_parsing

common.utils.deprecation_utils
module, 215
flexmeasures.api.

common.utils.validators

sures.data.models.reporting. pandas_reparter.Pandang?%:}]Zle]#’ 218

method), 284

fetch_one() (flexmeasures.api.v3_0.assets.AssetAPI
method), 224

fetch_one() (flexmeasures.api.v3_0.sensors.SensorAPI
method), 229

find_classes_module() (in module flexmea-
sures.utils.coding_utils), 350

find_classes_modules() (in module flexmea-
sures.utils.coding_utils), 350

find_closest() (flexmea-

sures.data.models.time_series.Sensor class

lexmeasures.api.dev
module, 220
flexmeasures.api
module, 219
flexmeasures.api
module, 221
flexmeasures.api
module, 220
flexmeasures.api
module, 220

flexmeasures.api.

.dev.sensors

.play
.play.implementations
.play.routes

sunset

Index

371

FlexMeasures Documentation, Release 0.20.1.dev11

module, 221
flexmeasures.api.sunset.routes
module, 221
flexmeasures.api.v3_0
module, 240
flexmeasures.api.v3_0.accounts
module, 222
flexmeasures.api.v3_0.assets
module, 224
flexmeasures.api.v3_0.health
module, 228
flexmeasures.api.v3_0.public
module, 228
flexmeasures.api.v3_0.sensors
module, 229
flexmeasures.api.v3_0.users
module, 237
flexmeasures. app
module, 241
flexmeasures.auth
module, 245
flexmeasures.auth.decorators
module, 242
flexmeasures.auth.error_handling
module, 243
flexmeasures.auth.policy
module, 244
flexmeasures.cli
module, 249
flexmeasures.cli.data_add
module, 245
flexmeasures.cli.data_delete
module, 245
flexmeasures.cli.data_edit
module, 246
flexmeasures.cli.data_show
module, 246
flexmeasures.cli.db_ops
module, 246
flexmeasures.cli. jobs
module, 247
flexmeasures.cli.monitor
module, 247
flexmeasures.cli.utils
module, 247
flexmeasures.data
module, 340
flexmeasures.data.config
module, 250
flexmeasures.data.models
module, 296
flexmeasures.data.models.annotations
module, 251
flexmeasures.data.models.charts

module, 255

flexmeasures.data.

module, 254

flexmeasures.data.

module, 255

flexmeasures.data.

module, 256

flexmeasures.data.

module, 262

flexmeasures.data.

module, 258

flexmeasures.data.

module, 258

flexmeasures.data.

module, 261

flexmeasures.data.

module, 261

flexmeasures.data.

module, 261

flexmeasures.data.

module, 261

flexmeasures.data.

module, 263

flexmeasures.data.

module, 267

flexmeasures.data.

module, 269

flexmeasures.data.

module, 282

flexmeasures.data.

module, 269

flexmeasures.data.

module, 269

flexmeasures.data.

module, 270

flexmeasures.data.

module, 270

flexmeasures.data.

module, 271

flexmeasures.data.

module, 273

flexmeasures.data.

module, 278

flexmeasures.data.

module, 286

flexmeasures.data.

module, 283

flexmeasures.data.

module, 284

flexmeasures.data.

module, 285

flexmeasures.data.

module, 286

flexmeasures.data.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

charts.belie
charts.defau
data_sources
forecasting
forecasting.
forecasting
forecasting
forecasting
forecasting
forecasting
generic_asse
legacy_migra
parsing_util
planning
planning.bat
planning.cha

planning.exc

f_charts

1ts

exceptions

.model_spec_factory
.model_specs

.model_specs.linear_re
.model_specs.naive

.utils

ts
tion_utils

S

tery
rging_station

eptions

planning.linear_optimization

planning.pro
planning.sto
planning.uti
reporting

reporting.ag
reporting.pa
reporting.pr
task_runs

time_series

cess
rage

1s

gregator
ndas_reporter

ofit

372

Index

FlexMeasures Documentation, Release 0.20.1.dev11

module, 287 module, 325
flexmeasures.data.models.user flexmeasures.data.schemas.utils

module, 293 module, 325
flexmeasures.data.models.validation_utils flexmeasures.data.scripts

module, 296 module, 327
flexmeasures.data.models.weather flexmeasures.data.scripts.data_gen

module, 296 module, 327
flexmeasures.data.queries flexmeasures.data.scripts.visualize_data_model

module, 301 module, 327
flexmeasures.data.queries.annotations flexmeasures.data.services

module, 297 module, 338
flexmeasures.data.queries.data_sources flexmeasures.data.services.accounts

module, 297 module, 328
flexmeasures.data.queries.generic_assets flexmeasures.data.services.annotations

module, 297 module, 328
flexmeasures.data.queries.sensors flexmeasures.data.services.asset_grouping

module, 298 module, 329
flexmeasures.data.queries.utils flexmeasures.data.services.data_sources

module, 299 module, 330
flexmeasures.data.schemas flexmeasures.data.services. forecasting

module, 326 module, 331
flexmeasures.data.schemas.account flexmeasures.data.services. job_cache

module, 302 module, 332
flexmeasures.data.schemas.attributes flexmeasures.data.services.scheduling

module, 303 module, 333
flexmeasures.data.schemas.generic_assets flexmeasures.data.services.sensors

module, 303 module, 335
flexmeasures.data.schemas.io flexmeasures.data.services.time_series

module, 305 module, 336
flexmeasures.data.schemas.locations flexmeasures.data.services.timerange

module, 305 module, 336
flexmeasures.data.schemas.reporting flexmeasures.data.services.users

module, 315 module, 336
flexmeasures.data.schemas.reporting.aggregatiofilexmeasures.data.services.utils

module, 307 module, 337
flexmeasures.data.schemas.reporting.pandas_repblkeameasures.data.transactional

module, 309 module, 338
flexmeasures.data.schemas.reporting.profit flexmeasures.data.utils

module, 313 module, 339
flexmeasures.data.schemas.scheduling flexmeasures.ui

module, 318 module, 347
flexmeasures.data.schemas.scheduling.process flexmeasures.ui.crud

module, 316 module, 343
flexmeasures.data.schemas.scheduling.storage flexmeasures.ui.crud.accounts

module, 317 module, 341
flexmeasures.data.schemas.sensors flexmeasures.ui.crud.api_wrapper

module, 318 module, 341
flexmeasures.data.schemas.sources flexmeasures.ui.crud.assets

module, 322 module, 341
flexmeasures.data.schemas.times flexmeasures.ui.crud.users

module, 323 module, 343
flexmeasures.data.schemas.units flexmeasures.ui.error_handlers

module, 324 module, 343
flexmeasures.data.schemas.users flexmeasures.ui.utils

Index 373

FlexMeasures Documentation, Release 0.20.1.dev11

module, 345
flexmeasures.ui
module, 344
flexmeasures.ui
module, 344
flexmeasures.ui
module, 344
flexmeasures.ui
module, 346
flexmeasures.ui
module, 346
flexmeasures.ui
module, 346
flexmeasures.ui
module, 346
flexmeasures.ui
module, 346
flexmeasures.utils
module, 360
flexmeasures.utils.
module, 347
flexmeasures.utils.
module, 348
flexmeasures.utils.
module, 350
flexmeasures.utils
module, 351
flexmeasures.utils.
module, 351
flexmeasures.utils.
module, 352
flexmeasures.utils.
module, 353
flexmeasures.utils.
module, 354
flexmeasures.utils
module, 355
flexmeasures.utils.
module, 355
flexmeasures.utils
module, 356
flexmeasures.utils.
module, 357
flexmeasures.utils
module, 359
FMValidationError, 326
forecast_horizons_for() (in
sures.utils.time_utils), 357
freq_label_to_human_readable_label() (in mod-
ule flexmeasures.utils.time_utils), 358

.utils.breadcrumb_utils

.utils.chart_defaults
.utils.view_utils
.views
.views.control
.views.logged_in_user
.views.new_dashboard
.views.sensors
app_utils

calculations
coding_utils
.config_defaults
config_utils
entity_address_utils
error_utils
flexmeasures_inflection
.geo_utils

grid_cells
.plugin_utils

time_utils

.unit_utils

module flexmea-

G

GenericAsset (class in flexmea-
sures.data.models.generic_assets), 264

GenericAssetAnnotationRelationship (class in
flexmeasures.data.models.annotations), 253

GenericAssetIdField (class in flexmea-
sures.data.schemas.generic_assets), 303
GenericAssetSchema (class in flexmea-

sures.data.schemas.generic_assets), 303

GenericAssetSchema.Meta (class in flexmea-
sures.data.schemas.generic_assets), 303

GenericAssetType (class in flexmea-
sures.data.models.generic_assets), 267

GenericAssetTypeSchema (class in flexmea-
sures.data.schemas.generic_assets), 303

GenericAssetTypeSchema.Meta (class in flexmea-
sures.data.schemas.generic_assets), 303

get() (flexmeasures.api.dev.sensors.AssetAPl method),
219

get) (flexmeasures.api.dev.sensors.SensorAPI method),

219

(flexmeasures.api.v3_0.accounts.AccountAPI

method), 222

get() (flexmeasures.api.v3_0.users.UserAPI method),
237

get(Q

get() (flexmeasures.ui.crud.accounts.AccountCrudUI
method), 341
getQ (flexmeasures.ui.crud.assets.AssetCrudUI

method), 342
get) (flexmeasures.ui.crud.users.UserCrudUI method),

343
get Q) (flexmeasures.ui.views.sensors.SensorUI method),
346
get_account() (in module flexmea-
sures.ui.crud.accounts), 341
get_account_roles() (in module flexmea-
sures.data.services.accounts), 328
get_accounts() (in module Sflexmea-
sures.data.services.accounts), 328
get_accounts() (in module flexmea-
sures.ui.crud.accounts), 341
get_affected_classes() (in module flexmea-
sures.data.scripts.data_gen), 327
get_ancestry() (in module flexmea-

sures.ui.utils.breadcrumb_utils), 344
get_asset_group_queries() (in module flexmea-
sures.data.queries.generic_assets), 297
get_asset_group_queries() (in module flexmea-
sures.data.services.asset_grouping), 329
get_asset_or_sensor_from_ref() (in module
flexmeasures.data.services.utils), 337
get_asset_or_sensor_ref() (in module flexmea-
sures.data.services.utils), 337

get_assets_by_account() (in module flexmea-
sures.ui.crud.assets), 341
get_attribute() (flexmea-

sures.data.models.data_sources.DataSource

374

Index

FlexMeasures Documentation, Release 0.20.1.dev11

method), 257

get_attribute() (flexmea-
sures.data.models.time_series.Sensor method),
288

get_belief_timing_criteria() (in module flexmea-
sures.data.queries.utils), 299

get_breadcrumb_info() (in module
sures.ui.utils.breadcrumb_utils), 344

get_cell _nums() (in module
sures.utils.grid_cells), 355

get_center_location_of_assets() (in module
flexmeasures.data.models.generic_assets), 263

get_chart() (flexmeasures.api.dev.sensors.SensorAPI
method), 219

get_chart() (flexmeasures.api.v3_0.assets.AssetAPI
method), 225

get_chart() (flexmeasures.ui.views.sensors.SensorUI
method), 346

flexmea-

flexmea-

get_chart_annotations() (flexmea-
sures.api.dev.sensors.SensorAPI method),
219

get_chart_data() (flexmea-
sures.api.dev.sensors.SensorAPI method),
219

get_chart_data() (flexmea-
sures.api.v3_0.assets.AssetAPI method),
225

get_classes_module() (in module flexmea-
sures.utils.coding_utils), 350

get_command () (flexmea-

sures.cli.utils. DeprecatedDefaultGroup
method), 249
get_config_warnings() (in
sures.utils.config_utils), 351
get_configuration_keys() (in module flexmea-
sures.utils.config_utils), 351
get_continuous_series_sensor_or_quantity()
(in module flexmea-
sures.data.models.planning.utils), 278
get_data() (flexmeasures.api.v3_0.sensors.SensorAPI
method), 230
get_data_source() (in
sures.data.utils), 339
get_data_source_for_job() (in module flexmea-
sures.data.services.scheduling), 334
get_data_source_info() (flexmea-
sures.data.models.data_sources.DataGenerator
class method), 257
get_data_source_info()
sures.data.models.planning.Scheduler
method), 283
get_domain_parts() (in module
sures.utils.entity_address_utils), 352
get_err_source_info() (in module

module flexmea-

module flexmea-

(flexmea-
class

flexmea-

flexmea-

sures.utils.error_utils), 353

get_first_day_of_next_month() (in module
flexmeasures.utils.time_utils), 358

get_git_description() (in module flexmea-
sures.ui.utils.view_utils), 345

get_host() (in module flexmea-
sures.utils.entity_address_utils), 352

get_location_queries() (in module flexmea-

sures.data.queries.generic_assets), 297

get_locations() (flexmea-
sures.utils.grid_cells.LatLngGrid method),
356

get_market() (in module Sflexmea-

sures.data.models.planning.utils), 280

get_mask_from_events() (flexmea-

sures.data.schemas.scheduling.process.ProcessSchedulerFlexMoc

method), 317
get_max_planning_horizon() (in module flexmea-
sures.utils.time_utils), 358

get_metavar() (flexmea-

sures.data.schemas.utils. MarshmallowClickMixin

method), 326
get_most_recent_clocktime_window() (in module
flexmeasures.utils.time_utils), 358

get_most_recent_hour() (in module flexmea-
sures.utils.time_utils), 358
get_most_recent_knowledge_time() (in module

flexmeasures.data.services.sensors), 335
get_most_recent_quarter() (in module flexmea-
sures.utils.time_utils), 358

get_normalization_transformation_from_sensor_attributes()

(in module flexmea-

sures.data.models.forecasting.model_spec_factory),

259
get_number_of_assets_in_account() (in module
flexmeasures.data.services.accounts), 328
get_object_or_literal() (flexmea-

sures.data.models.reporting.pandas_reporter. PandasReporter

method), 285

get_old_model_type() (in module flexmea-
sures.data.models.legacy_migration_utils),
268

get_or_create_annotation() (in module flexmea-
sures.data.models.annotations), 251

get_or_create_model() (in module flexmea-
sures.data.services.utils), 337
get_or_create_source() (in module flexmea-

sures.data.queries.data_sources), 297
get_or_create_source() (in module flexmea-
sures.data.services.data_sources), 330
get_pattern_match_word() (in module flexmea-

sures.data.models.planning.storage), 274
get_ping(Q (in module flexmea-
sures.api.common.routes), 208

Index

375

FlexMeasures Documentation, Release 0.20.1.dev11

get_power_values() (in module flexmea-
sures.data.models.planning.utils), 280
get_prices() (in module flexmea-

sures.data.models.planning.utils), 280
get_quantity_from_ attribute() (in module
flexmeasures.data.models.planning.utils), 280
get_query_window() (in module flexmea-
sures.data.models.forecasting.utils), 262
get_schedule() (flexmea-
sures.api.v3_0.sensors.SensorAPI method),
231
get_scheduler_instance() (in module flexmea-
sures.data.services.utils), 337

get_sensor_or_abort() (in module flexmea-
sures.api.dev.sensors), 219
get_sensors() (in module flexmea-

sures.data.services.sensors), 335
get_series_from_quantity_or_sensor() (in mod-

ule flexmeasures.data.models.planning.utils),
281
get_siblings() (in module flexmea-
sures.ut.utils.breadcrumb_utils), 344
get_source_criteria() (in module flexmea-
sures.data.queries.utils), 300
get_source_or_none() (in module flexmea-

sures.data.queries.data_sources), 297
get_source_or_none() (in module flexmea-
sures.data.services.data_sources), 330

get_staleness() (in module Sflexmea-
sures.data.services.sensors), 335
get_status() (in module flexmea-
sures.data.services.sensors), 335
get_status_specs() (in module flexmea-
sures.data.services.sensors), 336
get_task_run(Q) (in module Sflexmea-

sures.api.common.implementations), 205

get_task_run() (in module flexmea-
sures.api.common.routes), 208
get_timerange() (flexmea-

sures.data.models.generic_assets.GenericAsset
class method), 264
get_timerange() (in module
sures.data.services.timerange), 336
get_timerange_from_flag() (in module flexmea-
sures.cli.utils), 248

flexmea-

get_timezone() (in module flexmea-
sures.utils.time_utils), 358

get_user() (in module flexmea-
sures.data.services.users), 337

get_users() (in module Sflexmea-
sures.data.services.users), 337

get_users_by_account() (in module flexmea-

sures.ui.crud.users), 343
get_versions() (in module flexmeasures.api), 241

GetSensorDataSchema (class in flexmea-
sures.api.common.schemas.sensor_data),
210

great_circle_distance() (flexmea-

sures.data.models.generic_assets.GenericAsset
method), 265
ground_from() (flexmea-
sures.data.schemas.times.DurationField static
method), 323
group_assets_by_location() (in module flexmea-
sures.data.queries.generic_assets), 298

H

handle_500_error() (in module Sflexmea-
sures.ui.error_handlers), 344

handle_bad_request() (in module flexmea-
sures.ui.error_handlers), 344

handle_error() (in module flexmea-

sures.api.common.utils.args_parsing), 215
handle_forecasting_exception() (in module
flexmeasures.data.services.forecasting), 331

handle_generic_http_exception() (in module
flexmeasures.ui.error_handlers), 344

handle_not_found() (in module flexmea-
sures.ui.error_handlers), 344

handle_scheduling_exception() (in module

flexmeasures.data.services.scheduling), 334

handle_worker_exception() (in module flexmea-
sures.cli.jobs), 247

has_energy_sensors (flexmea-
sures.data.models.generic_assets.GenericAsset
property), 265

has_power_sensors (flexmea-
sures.data.models.generic_assets.GenericAsset
property), 265

has_role() (flexmeasures.data.models.user.Account
method), 293

has_role() (flexmeasures.data.models.user.User
method), 295

hash_function_arguments() (in module flexmea-
sures.data.services.utils), 338

HealthAPI (class in flexmeasures.api.v3_0.health), 228

heatmap () (in module flexmea-
sures.data.models.charts.belief_charts), 255
hover_label (flexmea-

sures.data.services.asset_grouping.AssetGroup
property), 330
human_sorted() (in module flexmea-
sures.utils.flexmeasures_inflection), 354
humanize() (in module flexmea-
sures.utils.flexmeasures_inflection), 354

id (flexmeasures.data.models.data_sources.DataSource

376

Index

FlexMeasures Documentation, Release 0.20.1.dev11

attribute), 257
id (flexmeasures.data.models.time_series.Sensor
tribute), 288
idle_after_reaching_target() (in module flexmea-
sures.data.models.planning.utils), 281

at-

implementation_gone() (in module flexmea-
sures.api.sunset.routes), 221
incomplete_event() (in module Sflexmea-

sures.api.common.responses), 206
(flexmeasures.api.v3_0.accounts.AccountAPI
method), 223
(flexmeasures.api.v3_0.assets.AssetAPI
method), 225
(flexmeasures.api.v3_0.public.ServicesAPI
method), 228
(flexmeasures.api.v3_0.sensors.SensorAPI
method), 231
index () (flexmeasures.api.v3_0.users.UserAPI method),
238
index() (flexmeasures.ui.crud.accounts.AccountCrudUI
method), 341
(flexmeasures.ui.crud.assets.AssetCrudUI
method), 342
(flexmeasures.ui.crud.users.UserCrudUI
method), 343
InfeasibleProblemException, 270
init_dbQ (in module flexmeasures.data.config), 250

index()

index()

index()

index()

index()

index()

init_sentry() (in module flexmea-
sures.utils.app_utils), 348
initialize_dfQ) (in module flexmea-

sures.data.models.planning.utils), 281
initialize_index() (in module

sures.data.models.planning.utils), 281
initialize_series() (in module

sures.data.models.planning.utils), 281
Input (class in flexmeasures.data.schemas.io), 305

flexmea-

flexmea-

invalid_period() (in module flexmea-
sures.api.common.responses), 206
invalid_ptu_duration() (in module flexmea-
sures.api.common.responses), 206
invalid_replacement () (in module flexmea-
sures.api.common.responses), 206
invalid_resolution_str() (in module flexmea-
sures.api.common.responses), 206
invalid_role() (in module flexmea-
sures.api.common.responses), 206
invalid_sender() (in module flexmea-
sures.api.common.responses), 206
invalid_source() (in module Sflexmea-
sures.api.common.responses), 206
invalid_timezone() (in module flexmea-
sures.api.common.responses), 206
invalid_unit(Q) (in module flexmea-
sures.api.common.responses), 206
InvalidFlexMeasuresUser, 337
InvalidHorizonException, 258
is_authenticated (flexmea-

sures.data.models.user.User property), 295
is_currency_unit() (in module flexmea-

sures.utils.unit_utils), 360
is_eligible_for_comparing_individual_traces()

(flexmeasures.data.services.asset_grouping.AssetGroup

method), 330

is_energy_price_unit() (in module flexmea-
sures.utils.unit_utils), 360

is_energy_unit() (in module flexmea-
sures.utils.unit_utils), 360

is_power_unit() (in module flexmea-

sures.utils.unit_utils), 360
is_ready() (flexmeasures.api.v3_0.health.HealthAPI
method), 228

is_response_tuple() (in module flexmea-

integrate_time_series() (in module flexmea- sures.api.common.responses), 207
sures.utils.calculations), 349 is_running) (in module flexmeasures.cli), 250
InternalApi (class in flexmea- is_strictly_non_negative (flexmea-
sures.ui.crud.api_wrapper), 341 sures.data.models.time_series.Sensor ~ prop-
invalid_datetime() (in module flexmea- erty), 288
sures.api.common.responses), 206 is_strictly_non_positive (flexmea-
invalid_domain() (in module flexmea- sures.data.models.time_series.Sensor prop-
sures.api.common.responses), 206 erty), 288
invalid_flex_config() (in module flexmea- is_unique_asset (flexmea-
sures.api.common.responses), 206 sures.data.services.asset_grouping.AssetGroup
invalid_horizon() (in module flexmea- property), 330
sures.api.common.responses), 206 is_user() (in module flexmeasures.data.models.user),
invalid_market() (in module flexmea- 293
sures.api.common.responses), 206 is_valid_unitQ) (in module flexmea-
invalid_message_type() (in module flexmea- sures.utils.unit_utils), 360
sures.api.common.responses), 206
invalid_method() (in module flexmea- J
sures.api.common.responses), 206 job_cache() (in module flexmea-
Index 377

FlexMeasures Documentation, Release 0.20.1.dev11

sures.data.services.utils), 338
JobCache (class in

sures.data.services.job_cache), 333
join_words_into_a_list() (in module flexmea-
sures.utils.flexmeasures_inflection), 354

(class in flexmea-

sures.data.schemas.generic_assets), 303
JSON (class in flexmeasures.data.schemas.sensors), 318

K

knowledge_horizon_fnc

flexmea-

JSON

(flexmea-

sures.data.models.time_series.Sensor at-
tribute), 288

knowledge_horizon_par (flexmea-
sures.data.models.time_series.Sensor at-

tribute), 289

L

label (flexmeasures.data.models.data_sources.DataSource

property), 258

latest_state() (flexmea-
sures.data.models.time_series.Sensor method),
289

LatestTaskRun (class in Sflexmea-
sures.data.models.task_runs), 286

LatitudeField (class in flexmea-
sures.data.schemas.locations), 305

LatitudeLongitudeValidator (class in flexmea-
sures.data.schemas.locations), 305

LatitudeValidator (class in Sflexmea-

sures.data.schemas.locations), 306
LatLngGrid (class in flexmeasures.utils.grid_cells), 355
launch_editor() (in module flexmea-

sures.cli.data_add), 245
list_items() (in module flexmeasures.cli.data_show),

246

localized_datetime_str() (in module flexmea-
sures.utils.time_utils), 358

locations_hex() (flexmea-
sures.utils.grid_cells.LatLngGrid method),
356

locations_square() (flexmea-
sures.utils.grid_cells.LatLngGrid method),
356

log_error () (in module flexmeasures.utils.error_utils),
353

log_missing_config_setting() (in module flexmea-
sures.utils.plugin_utils), 356

log_wrong_type_for_config_setting() (in module
flexmeasures.utils.plugin_utils), 356

logged_in_user_view() (in module flexmea-
sures.ui.views.logged_in_user), 346

LongitudeField (class in flexmea-
sures.data.schemas.locations), 306

LongitudeValidator (class in flexmea-

sures.data.schemas.locations), 306
lookup_model_specs_configurator() (in module
flexmeasures.data.models.forecasting), 263

make_fixed_viewpoint_forecasts() (in module
flexmeasures.data.services.forecasting), 331

make_hash_sha256() (in module Sflexmea-
sures.data.services.utils), 338
make_hashable() (flexmea-

sures.data.models.time_series.Sensor method),
289

make_hashable() (in module flexmea-
sures.data.services.utils), 338
make_parser() (flexmea-

sures.cli.utils. DeprecatedOptionsCommand
method), 249

load_bdf() (flexmeasures.api.common.schemas. sensor_da%%%@lﬂéflg&fﬁ@ﬂ%&nt—f orecasts() (in module

static method), 210

load_current () (flexmea-

sures.api.common.schemas.users.AccountldField

class method), 213

load_custom_scheduler() (in module flexmea-
sures.data.services.scheduling), 334
load_data() (in module flexmea-

sures.api.common.utils.args_parsing), 215
load_data_and_make_response() (flexmea-

sures.api.common.schemas.sensor_data.GetSensoFPDapFentn€rgy

flexmeasures.data.services.forecasting), 331

make_schedule() (in module flexmea-
sures.data.services.scheduling), 334

MarshmallowClickMixin (class in flexmea-
sures.data.schemas.utils), 326

mean_absolute_error() (in module flexmea-

sures.utils.calculations), 349
mean_absolute_percentage_error() (in module
flexmeasures.utils.calculations), 350
(flexmea-

static method), 210 sures.data.models.time_series.Sensor — prop-
load_default() (flexmea- erty), 289

sures.data.schemas.times.PlanningDurationField M€asures_energy_price (flexmea-

class method), 323 sures.data.models.time_series.Sensor ~ prop-
localized_datetime() (in module flexmea- erty), 289

sures.utils.time_utils), 358 measures_power (flexmea-

sures.data.models.time_series.Sensor ~ prop-

378 Index

FlexMeasures Documentation, Release 0.20.1.dev11

erty), 289

merge_vega_lite_specs()
sures.data.models.charts.defaults), 255

(class in
sures.data.models.planning.storage), 276

MisconfiguredForecastingJobException, 332

MissingAttributeException, 270, 296

model (flexmeasures.data.schemas.account.AccountRoleSchema. Fle¢ameasures .

MetaStorageScheduler

attribute), 302 flexmeasures.
model (flexmeasures.data.schemas.account.AccountSchema.Metaf1 exmeasures.
attribute), 303 flexmeasures.
model (flexmeasures.data.schemas.generic_assets.GenericAssetSthemmnddstires . cl1i,
attribute), 303 flexmeasures.cli
model (flexmeasures.data.schemas.generic_assets.GenericAssetTipeSotwasubbgacl i
attribute), 303 flexmeasures.cli
model (flexmeasures.data.schemas.sensors.SensorSchema.Meta flexmeasures.cli
attribute), 321 flexmeasures.cli
model (flexmeasures.data.schemas.users.UserSchema.Meta flexmeasures.cli.
attribute), 325 flexmeasures.cli
ModelException, 296 flexmeasures.cli
module flexmeasures.data
flexmeasures.api, 241 flexmeasures.data.
flexmeasures.api.common, 218 flexmeasures.data.
flexmeasures.api.common.implementations, flexmeasures.data.
205 flexmeasures.data.
flexmeasures.api.common.responses, 205 flexmeasures.data.
flexmeasures.api.common.routes, 208 254
flexmeasures.api.common.schemas, 214 flexmeasures.data.
flexmeasures.api.common.schemas.generic_assets, 255
208 flexmeasures.data.
flexmeasures.api.common.schemas.sensor_data, 256
209 flexmeasures.data.
flexmeasures.api.common.schemas.sensors, flexmeasures.data.
212 258
flexmeasures.api.common. schemas.users, flexmeasures.data.
213 258
flexmeasures.api.common.utils, 218 flexmeasures.data.
flexmeasures.api.common.utils.api_utils, 261
214 flexmeasures.data.
flexmeasures.api.common.utils.args_parsing, 261
215 flexmeasures.data
flexmeasures.api.common.utils.deprecation_utils, 261
215 flexmeasures.data.
flexmeasures.api.common.utils.validators, 261
218 flexmeasures.data.
flexmeasures.api.dev, 220 263
flexmeasures.api.dev.sensors, 219 flexmeasures.data.
flexmeasures.api.play, 221 267
flexmeasures.api.play.implementations, flexmeasures.data.
220 269
flexmeasures.api.play.routes, 220 flexmeasures.data.
flexmeasures.api.sunset, 221 flexmeasures.data.
flexmeasures.api.sunset.routes, 221 269
flexmeasures.api.v3_0, 240

(in

flexmeasures.
flexmeasures.
flexmeasures.
flexmeasures.
flexmeasures.
flexmeasures.
flexmeasures.

module flexmea-

flexmea-

api
api
api
api
api
api
app,
auth

.v3_0.
.v3_0.
.v3_0.
.v3_0.
.v3_0.
.v3_0.

241
, 245

accounts, 222
assets, 224
health, 228
public, 228
sensors, 229
users, 237

auth.decorators, 242
auth.error_handling, 243
auth.policy, 244

249

, 340

config,
models,
models.
models.
models.
models.

models.

models.
models.

models.
models.
models.
.models.
models.
models.
models.
models.

models.
models.

.data_add, 245
.data_delete, 245
.data_edit, 246
.data_show, 246
.db_ops, 246
jobs, 247
.monitor,
.utils, 247

247

250

296

annotations, 251
charts, 255
charts.belief_charts,
charts.defaults,

data_sources,

forecasting, 262
forecasting.exceptions,

forecasting.model_spec_factor
forecasting.model_specs,
forecasting.model_specs.linea
forecasting.model_specs.naive
forecasting.utils,
generic_assets,
legacy_migration_utils,
parsing_utils,

planning, 282
planning.battery,

Index

379

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures
269
flexmeasures
270
flexmeasures
270
flexmeasures
271
flexmeasures
273
flexmeasures
278
flexmeasures
flexmeasures
283
flexmeasures
284
flexmeasures
285
flexmeasures
flexmeasures
flexmeasures
flexmeasures
296
flexmeasures
flexmeasures
flexmeasures
297
flexmeasures
297
flexmeasures
297
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
303
flexmeasures
flexmeasures
flexmeasures
flexmeasures
307
flexmeasures
309
flexmeasures
313
flexmeasures
flexmeasures
316
flexmeasures
317
flexmeasures

.data.

.data.

.data.

.data.

.data.

.data.

.data.
.data.

.data.

.data.

.data.
.data.
.data.
.data.

.data.
.data
.data.

.data.
.data
.data.
.data.
.data.
.data.
.data.
.data.
.data.
.data.
.data.
.data.
.data.

.data.

.data.
.data.

.data.

.data.

models

models

models

models

models

models

models
models

models

models

models.

models
models
models

models

.planning.exceptions,

.planning.process,
.planning.storage,
.planning.utils,

.reporting, 286
.reporting.aggregator, flexmeasures

.reporting.profit,

task_runs, 286

.time_series, 287
.user, 293
.validation_utils,

.weather, 296
.queries, 301

queries.annotations,

queries.data_sources,

queries.

.queries.generic_assets,

sensors, 298

queries.utils, 299

schemas,

326

schemas.account, 302
schemas.attributes, 303
schemas.generic_assets,

schemas.
schemas.

io, 305
locations, 305

schemas.reporting, 315

schemas.

schemas.

schemas.reporting.profit

schemas.
schemas.

schemas.

schemas.

scheduling, 318
scheduling.process,

scheduling.storage,

sensors, 318

.planning.charging_stafliexmeasures.
.data.schemas. times, 323
.data.schemas.units, 324
.data.schemas.users, 325
.data.schemas.utils, 325
.data.scripts, 327
.data.scripts.data_gen, 327
.data.scripts.visualize_data_model

flexmeasures
flexmeasures
flexmeasures

.planning.linear_optimfikednemsures

flexmeasures

flexmeasures

flexmeasures
327

flexmeasures

flexmeasures

flexmeasures
328

329

.reporting.pandas_repofitexmeasures

330
flexmeasures
331
flexmeasures
flexmeasures
333
flexmeasures
flexmeasures
336
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
344
flexmeasures
flexmeasures

reporting.aggregatiofilexmeasures

flexmeasures

reporting.pandas_repblkecameasures

flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures
flexmeasures

data.schemas.sources, 322

.ui
.ui
.ui
.ui
.ui
.ui
.ui

.data.services, 338
.data.services.accounts, 328
.data.services.annotations,

.data.services.asset_grouping,
.data.services.data_sources,
.data.services.forecasting,

.data.services. job_cache, 332
.data.services.scheduling,

.data.services.sensors, 335
.data.services.time_series,

.data.services.timerange, 336
.data.services.users, 336
.data.services.utils, 337
.data.transactional, 338
.data.utils, 339

.ui,
.ui.
.ui.
.ui.
.ui.
.ui
.ui.
.ui
.ui

347

crud, 343
crud.accounts, 341
crud.api_wrapper, 341
crud.assets, 341

.crud.users, 343

error_handlers, 343

.utils, 345
.utils.breadcrumb_utils,

.utils.chart_defaults, 344
.utils.view_utils, 344
.views, 346
.views.control, 346
.views.logged_in_user, 346
.views.new_dashboard, 346
.views.sensors, 346

.utils, 360

.utils
.utils.
.utils.
.utils.
.utils.

.app_utils, 347
calculations, 348
coding_utils, 350
config_defaults, 351
config_utils, 351

380

Index

FlexMeasures Documentation, Release 0.20.1.dev11

flexmeasures.utils.entity_address_utils,
352
flexmeasures.utils.error_utils, 353

flexmeasures.utils. flexmeasures_inflectiongptional_arg_decorator()

354
flexmeasures.utils.geo_utils, 355
flexmeasures.utils.grid_cells, 355
flexmeasures.utils.plugin_utils, 356
flexmeasures.utils.time_utils, 357
flexmeasures.utils.unit_utils, 359

MsgStyle (class in flexmeasures.cli.utils), 249

multiply_dataframe_with_deterministic_beliefs@pts (flexmeasures.data.schemas.generic_assets.GenericAssetSchema

(in module
300

flexmeasures.data.queries.utils),

N

Naive (class in flexmea-

OptimizationDirection (class in flexmea-
sures.data.schemas.scheduling.process),
316

(in module flexmea-
sures.utils.coding_utils), 350

optional_duration_accepted() (in module flexmea-

sures.api.common.utils.validators), 218

opts (flexmeasures.data.schemas.account.AccountRoleSchema

attribute), 302
opts (flexmeasures.data.schemas.account.AccountSchema
attribute), 303

attribute), 303

opts (flexmeasures.data.schemas.generic_assets. GenericAssetTypeSchema

attribute), 303
opts (flexmeasures.data.schemas.sensors.SensorSchema
attribute), 321

sures.data.models.forecasting. model_specs.naive)opts (flexmeasures.data.schemas.users.UserSchema at-

261
naive_specs_configurator() (in module flexmea-

sures.data.models.forecasting.model_specs.naive),

261
naive_utc_from() (in module
sures.utils.time_utils), 358

flexmea-

name (flexmeasures.data.models.data_sources.DataSource

attribute), 258
name (flexmeasures.data.models.time_series.Sensor at-
tribute), 289

tribute), 325
outdated_event_id(Q) (in module
sures.api.common.responses), 207
Output (class in flexmeasures.data.schemas.io), 305
override_from_config() (in module flexmea-

sures.api.common.utils.deprecation_utils),

217
owned_by() (flexmeasures.ui.crud.assets.AssetCrudUI

method), 342

flexmea-

name (flexmeasures.data.schemas.utils. MarshmallowClickM Ec’m

attribute), 326
nanmin_of_series_and_value() (in module flexmea-
sures.data.models.planning.utils), 281
natural_keys() (in module flexmea-

sures.utils.flexmeasures_inflection), 354
naturalized_datetime_str() (in module flexmea-
sures.utils.time_utils), 358
NewAssetForm (class in flexmeasures.ui.crud.assets),
343

no_backup() (in module flexmea-
sures.api.common.responses), 207

no_message_type() (in module flexmea-
sures.api.common.responses), 207

NoRedisConfigured, 333

NotEnoughDataException, 258

num_forecasts() (in module flexmea-

sures.data.services.forecasting), 332

O

PandasMethodCall (class in flexmea-
sures.data.schemas.reporting.pandas_reporter),
309

PandasReporter (class in flexmea-
sures.data.models.reporting.pandas_reporter),
284

PandasReporterConfigSchema (class in flexmea-

sures.data.schemas.reporting.pandas_reporter),
309

PandasReporterParametersSchema (class in flexmea-
sures.data.schemas.reporting.pandas_reporter),
311

parameterize() (in module Sflexmea-
sures.utils.flexmeasures_inflection), 354

parameterized_name (flexmea-
sures.data.services.asset_grouping.AssetGroup
property), 330

parse_attribute_value() (in
sures.cli.data_edit), 246

module flexmea-

offspring (flexmeasures.data.models.generic_assets.Genefieisserconfig_entry_by_account_roles() (in mod-

property), 265

ols_specs_configurator() (in module flexmea-

ule flexmeasures.utils.app_utils), 348

parse_duration() (in module flexmea-

sures.data.models.forecasting. model_specs.linear_regressiofijres.api.common.utils.validators), 218

261

parse_entity_address() (in module
sures.utils.entity_address_utils), 352

flexmea-

Index

381

FlexMeasures Documentation, Release 0.20.1.dev11

parse_horizon() (in module flexmea-
sures.api.common.utils.validators), 218

parse_lat_lng(Q) (in module flexmea-
sures.utils.geo_utils), 355

parse_queue_list () (in module flexmeasures.cli.jobs),
247

parse_source () (in module flexmeasures.cli.data_add),
245

parse_source_arg() (in module
sures.data.models.parsing_utils), 269

PartialTaskCompletionException, 339

patch() (flexmeasures.api.v3_0.assets.AssetAPI

method), 226

(flexmeasures.api.v3_0.sensors.SensorAPI

method), 232

patch () (flexmeasures.api.v3_0.users.UserAPI method),
239

permission_required_for_context() (in module
flexmeasures.auth.decorators), 242

persist_flex_model () (flexmea-
sures.data.models.planning.Scheduler method),
283

persist_flex_model ()

flexmea-

patch()

(flexmea-

sures.data.schemas.scheduling.storage.StorageFlexModelSchema
method), 318

post_load_time_restrictions() (flexmea-
sures.data.schemas.scheduling.process.ProcessSchedulerFlexMoc
method), 317

post_task_run() (in module flexmea-
sures.api.common.implementations), 205

post_task_run() (in module flexmea-
sures.api.common.routes), 208
PostSensorDataSchema (class in flexmea-

sures.api.common.schemas.sensor_data),
210

potentially_limit_assets_query_to_account()
(in module flexmeasures.data.queries.utils),
301

power_value_too_big() (in module flexmea-
sures.api.common.responses), 207

power_value_too_small() (in module flexmea-
sures.api.common.responses), 207

pre_load_process_type() (flexmea-

sures.data.schemas.scheduling.process.ProcessSchedulerFlexMoc
method), 317
prepare_annotations_for_chart()

(in module

sures.data.models.planning.storage.MetaStorageScheduler flexmeasures.data.services.annotations), 328

method), 276
(in module flexmea-
sures.api.common.implementations), 205

ping O

PlanningDurationField (class in flexmea-
sures.data.schemas.times), 323

pluralize() (in module flexmea-
sures.api.common.responses), 207

pluralize() (in module flexmea-

sures.utils.flexmeasures_inflection), 354
possibly_convert_units() (flexmea-

sures.api.common.schemas.sensor_data.PostSens®@ifdwveSshahedul er

static method), 210

prepend_serie() (in module flexmea-
sures.data.models.planning.storage), 274

print_gquery() (in module flexmea-
sures.utils.error_utils), 353
process_api_validation_errors() (flexmea-

sures.ui.crud.assets.AssetForm method), 342

process_internal_api_response() (in module
flexmeasures.ui.crud.assets), 341

process_internal_api_response() (in module
flexmeasures.ui.crud.users), 343

(class in flexmea-

sures.data.models.planning.process), 271

possibly_extend_end() (flexmea- ProcessSchedulerFlexModelSchema
sures.data.models.planning.storage.MetaStorageScheduler (class in flexmea-
method), 277 sures.data.schemas.scheduling.process),
possibly_upsample_values() (flexmea- 316
sures.api.common.schemas.sensor_data. PostSens®@idweSs/ligme (class in flexmea-
static method), 211 sures.data.schemas.scheduling.process),
post) (flexmeasures.api.v3_0.assets.AssetAPI method), 317
226 ProductionConfig (class in flexmea-
post(Q) (flexmeasures.api.v3_0.sensors.SensorAPI sures.utils.config_defaults), 351
method), 233 ProfitOrLossReporter (class in flexmea-
post(Q) (flexmeasures.ui.crud.assets.AssetCrudUI sures.data.models.reporting.profit), 285

method), 342
post_data(Q) (flexmeasures.api.v3_0.sensors.SensorAPI
method), 234

post_load_sequence() (flexmea-

ProfitOrLossReporterConfigSchema (class in
flexmeasures.data.schemas.reporting.profit),
313

ProfitOrLossReporterParametersSchema (class in

sures.api.common.schemas.sensor_data.PostSensorDataSch@exmeasures.data.schemas.reporting.profit),

method), 211

post_load_sequence() (flexmea-

313

ptus_incomplete() (in module flexmea-

382

Index

FlexMeasures Documentation, Release 0.20.1.dev11

sures.api.common.responses), 207
public() (flexmeasures.api.v3_0.assets.AssetAPI
method), 227

Q

QuantityField (class in flexmea-
sures.data.schemas.units), 324

QuantityOrSensor (class in flexmea-
sures.data.schemas.sensors), 319

QuantityValidator (class in flexmea-

sures.data.schemas.units), 325

R

rad_Ing() (in module flexmeasures.utils.geo_utils), 355

read_config(Q) (in module flexmea-
sures.utils.config_utils), 351

read_custom_config() (in module flexmea-
sures.utils.config_utils), 351

read_env_vars() (in module flexmea-
sures.utils.config_utils), 351

record_run() (flexmea-

sures.data.models.task_runs.LatestTaskRun
static method), 287

query (flexmeasures.data.models.annotations.AccountAnnotegipidledationsty{in module flexmeasures. api), 241

attribute), 252
query (flexmeasures.data.models.annotations.Annotation
attribute), 253

register_at() (in module flexmeasures.api.common),
218
register_at () (in module flexmeasures.api.dev), 220

query (flexmeasures.data.models.annotations. GenericAssetgagaitionRetajoishipodule flexmeasures.api.play), 221

attribute), 253

register_at() (in module flexmeasures.api.sunset),

query (flexmeasures.data.models.annotations.SensorAnnotationRelationzhip

attribute), 253

register_at() (in module flexmeasures.api.v3_0), 241

query (flexmeasures.data.models.generic_assets.GenericAsg@dgister_at () (in module flexmeasures.auth), 245

attribute), 265

register_at () (in module flexmeasures.cli), 250

query (flexmeasures.data.models.generic_assets. GenericAssa@gipger_at () (in module flexmeasures.data), 340

attribute), 267

query (flexmeasures.data.models.task_runs. LatestTaskRun register_plugins()

attribute), 287

query (flexmeasures.data.models.time_series.Sensor at-
tribute), 289

query (flexmeasures.data.models.time_series. TimedBelief
attribute), 291

query (flexmeasures.data.models.user.Account attribute),
293

query (flexmeasures.data.models.user.AccountRole at-
tribute), 294

query (flexmeasures.data.models.user.Role attribute),
294

query (flexmeasures.data.models.user.RolesAccounts at-

tribute), 294

(flexmeasures.data.models.user.RolesUsers

attribute), 295

query (flexmeasures.data.models.user.User attribute),
295

query_asset_annotations() (in module flexmea-
sures.data.queries.annotations), 297

query_assets_by_type() (in module flexmea-
sures.data.queries.generic_assets), 298

query

query_sensor_by_name_and_generic_asset_type_naRedorterParametersSchema

(in module flexmeasures.data.queries.sensors),
298
query_sensors_by_proximity () (in module flexmea-
sures.data.queries.sensors), 299
quickref_directive() (in module
sures.api.v3_0.public), 228

flexmea-

register_at () (in module flexmeasures.ui), 347

(in module flexmea-
sures.utils.plugin_utils), 356
register_rq_dashboard() (in module flexmea-
sures.ui), 347
remember_last_seen() (in module flexmea-
sures.data.models.user), 293
remember_login() (in module flexmea-

sures.data.models.user), 293
remove_cookie_and_token_access() (in module
flexmeasures.data.services.users), 337

removeprefix() (in module flexmea-
sures.api.v3_0.public), 228

removesuffix() (in module flexmea-
sures.api.v3_0.public), 228

render_flexmeasures_template() (in module

flexmeasures.ui.utils.view_utils), 345
render_user () (in module flexmeasures.ui.crud.users),

343
Reporter (class in flexmeasures.data.models.reporting),
286
ReporterConfigSchema (class in flexmea-
sures.data.schemas.reporting), 315
(class in flexmea-
sures.data.schemas.reporting), 315
RepurposeValidatorToIgnoreSensors (class in

flexmeasures.data.schemas.sensors), 321
request_auth_token() (in module flexmeasures.api),
241
request_processed() (in module
sures.api.common.responses), 207

flexmea-

Index

383

FlexMeasures Documentation, Release 0.20.1.dev11

required_info_missing() (in module flexmea-
sures.api.common.responses), 207
RequiredInput (class in flexmeasures.data.schemas.io),

305

RequiredOutput (class in flexmea-
sures.data.schemas.io), 305

reset_db() (in module Sflexmea-
sures.data.scripts.data_gen), 327

reset_password_for() (flexmea-
sures.ui.crud.users.UserCrudUI method),
343

reset_user_password() (flexmea-

sures.api.v3_0.users.UserAPI method), 240
resolution_to_hour_factor() (in module flexmea-
sures.utils.time_utils), 359
restore_data() (in module flexmea-
sures.api.play.routes), 220
restore_data_response() (in module flexmea-
sures.api.play.implementations), 220
reverse_domain_name() (in module flexmea-
sures.utils.entity_address_utils), 353
Role (class in flexmeasures.data.models.user), 294
roles (flexmeasures.data.models.user.User attribute),

295

roles_accepted() (in module flexmea-
sures.auth.decorators), 243

roles_required() (in module flexmea-
sures.auth.decorators), 243

RolesAccounts (class in Sflexmea-

sures.data.models.user), 294
RolesUsers (class in flexmeasures.data.models.user),
295
root_dispatcher() (in module flexmea-
sures.utils.app_utils), 348
round_to_closest_hour() (in module flexmea-
sures.utils.time_utils), 359
round_to_closest_quarter() (in module flexmea-
sures.utils.time_utils), 359

S

sanitize_expression() (in module flexmea-
sures.data.models.planning.storage), 274

save_and_enqueue () (in module flexmea-
sures.api.common.utils.api_utils), 215
save_tables() (in module flexmea-

sures.data.scripts.data_gen), 327
save_to_db () (in module flexmeasures.data.utils), 339

save_to_session() (in module Sflexmea-
sures.data.utils), 340
schedule_battery() (in module flexmea-

sures.data.models.planning.battery), 269

schedule_charging_station() (in module flexmea-
sures.data.models.planning.charging_station),
269

Scheduler (class in flexmeasures.data.models.planning),
282

search() (flexmeasures.data.models.time_series.TimedBelief
class method), 291

search_annotations() (flexmea-
sures.data.models.generic_assets.GenericAsset
method), 265

search_annotations() (flexmea-
sures.data.models.time_series.Sensor method),
289

search_annotations() (flexmea-
sures.data.models.user.Account method),
293

search_beliefs() (flexmea-

sures.data.models.generic_assets.GenericAsset
method), 265

search_beliefs() (flexmea-
sures.data.models.time_series.Sensor method),
289
select_schema_to_ensure_list_of_floats()
(in module flexmea-
sures.api.common.schemas.sensor_data),
209

send_lastseen_monitoring_alert() (in module
flexmeasures.cli.monitor), 247

send_task_monitoring_alert() (in module flexmea-
sures.cli.monitor), 247

Sensor (class in flexmeasures.data.models.time_series),
287

sensor_id (flexmeasures.data.models.time_series. TimedBelief
attribute), 293

SensorAnnotationRelationship (class in flexmea-
sures.data.models.annotations), 253

SensorAPI (class in flexmeasures.api.dev.sensors), 219

SensorAPI (class in flexmeasures.api.v3_0.sensors), 229

SensorDataDescriptionSchema (class in flexmea-
sures.api.common.schemas.sensor_data), 211

SensorField (class in flexmea-
sures.api.common.schemas.sensors), 212
SensorIdField (class in Sflexmea-
sures.api.common.schemas.sensors), 212
SensorIdField (class in flexmea-
sures.data.schemas.sensors), 321
sensors_to_show (flexmea-

sures.data.models.generic_assets.GenericAsset
property), 266

SensorSchema (class in flexmea-
sures.data.schemas.sensors), 321

SensorSchema.Meta (class in flexmea-
sures.data.schemas.sensors), 321

SensorSchemaMixin (class in flexmea-

sures.data.schemas.sensors), 321
SensorUI (class in flexmeasures.ui.views.sensors), 346
server_now() (in module flexmeasures.utils.time_utils),

384

Index

FlexMeasures Documentation, Release 0.20.1.dev11

359
ServicesAPI (class in flexmeasures.api.v3_0.public),
228
set_random_password() (in module flexmea-
sures.data.services.users), 337
set_secret_key() (in module flexmea-
sures.utils.app_utils), 348
set_session_variables() (in module flexmea-

sures.ui.utils.view_utils), 345

set_training and_testing dates() (in module
flexmeasures.data.models.forecasting.utils),
262

show_image () (in module Sflexmea-
sures.data.scripts.visualize_data_model),
327

simplify_index() (in module flexmea-

sures.data.queries.utils), 301
sin_rad_lat Q) (in module flexmeasures.utils.geo_utils),

355

single_true() (in module flexmeasures.cli.data_edit),
246

SingleValueField (class in flexmea-
sures.api.common.schemas.sensor_data),
211

sort_dict(Q) (in module flexmea-

sures.utils.coding_utils), 350

source_id (lexmeasures.data.models.time_series. TimedBelief

attribute), 293
source_type_criterion() (in

sures.data.queries.utils), 301
source_type_exclusion_criterion() (in module

flexmeasures.data.queries.utils), 301

module flexmea-

stack_annotations() (in module flexmea-
sures.data.services.annotations), 329

StagingConfig (class in flexmea-
sures.utils.config_defaults), 351

StartEndTimeSchema (class in flexmea-

sures.data.schemas.times), 323

status() (flexmeasures.ui.crud.assets.AssetCrudUI
method), 342

StatusSchema (class in flexmea-
sures.data.schemas.reporting), 316

StorageFallbackScheduler (class in flexmea-

sures.data.models.planning.storage), 277
StorageFlexModelSchema (class in flexmea-
sures.data.schemas.scheduling.storage),
317
StorageScheduler (class in flexmea-
sures.data.models.planning.storage), 277
sunset_blueprint() (in module Sflexmea-
sures.api.common.utils.deprecation_utils),
217
supported_horizons() (in
sures.utils.time_utils), 359

module flexmea-

T

TBSeriesSpecs (class in flexmea-
sures.data.models.forecasting.model_spec_factory),
260

TestingConfig (class in Sflexmea-
sures.utils.config_defaults), 351

TimedBelief (class in flexmea-
sures.data.models.time_series), 290

timedelta_to_pandas_freq_str() (in module
flexmeasures.utils.time_utils), 359

TimedEventSchema (class in Sflexmea-
sures.data.schemas.sensors), 322

TimeIntervalField (class in flexmea-
sures.data.schemas.times), 323

TimeIntervalSchema (class in Sflexmea-

sures.data.schemas.times), 324
timeit() (in module flexmeasures.utils.coding_utils),
350

timerange (flexmeasures.data.models.generic_assets.GenericAsset

property), 266
timerange (flexmeasures.data.models.time_series.Sensor
property), 290
timerange_of_sensors_to_show (flexmea-
sures.data.models.generic_assets.GenericAsset
property), 267
TimeSeriesOrSensor (class in

sures.data.schemas.sensors), 321

flexmea-

timezone (flexmeasures.data.models.generic_assets.GenericAsset

property), 267

timezone (flexmeasures.data.models.time_series.Sensor
attribute), 290

titleize() (in module Sflexmea-
sures.utils.flexmeasures_inflection), 354

to_annotation_frame() (in module flexmea-
sures.data.models.annotations), 251
to_http_time() (in module flexmea-

sures.utils.time_utils), 359
to_json(Q) (flexmeasures.ui.crud.assets.AssetForm
method), 342

to_preferred() (in module flexmea-
sures.utils.unit_utils), 360

toggle_active() (flexmea-
sures.ui.crud.users.UserCrudUI method),

343
trigger_optional_fallback() (in module flexmea-
sures.data.services.scheduling), 334

trigger_schedule() (flexmea-
sures.api.v3_0.sensors.SensorAPI method),
235

tz_index_naively() (in module flexmea-

sures.utils.time_utils), 359

U

unapplicable_resolution() (in module flexmea-

Index

385

FlexMeasures Documentation, Release 0.20.1.dev11

sures.api.common.responses), 207
unauthenticated_handler() (in module flexmea-
sures.auth.error_handling), 244
unauthenticated_handler() (in module flexmea-
sures.ui.error_handlers), 344
unauthenticated_handler_e() (in module flexmea-
sures.auth.error_handling), 244

unauthorized_handler() (in module flexmea-
sures.auth.error_handling), 244
unauthorized_handler() (in module flexmea-

sures.ui.error_handlers), 344
unauthorized_handler_e() (in module flexmea-
sures.auth.error_handling), 244
unique_ever_seen() (in module
sures.api.common.utils.api_utils), 215
unit (flexmeasures.data.models.time_series.Sensor at-
tribute), 290
units_are_convertible() (in
sures.utils.unit_utils), 360
unknown_prices() (in module
sures.api.common.responses), 207
unknown_schedule () (in module
sures.api.common.responses), 207
UnknownForecastException, 270
UnknownMarketException, 270
UnknownPricesException, 270
unrecognized_asset() (in module
sures.api.common.responses), 207
unrecognized_backup() (in module
sures.api.common.responses), 207
unrecognized_connection_group() (in module
flexmeasures.api.common.responses), 207
unrecognized_event () (in module flexmea-
sures.api.common.responses), 207
unrecognized_event_type() (in module flexmea-
sures.api.common.responses), 207

flexmea-
module flexmea-
flexmea-

flexmea-

flexmea-

flexmea-

unrecognized_market () (in module flexmea-
sures.api.common.responses), 207

unrecognized_sensor() (in module flexmea-
sures.api.common.responses), 208

upsample_values() (in module flexmea-

sures.api.common.utils.api_utils), 215
User (class in flexmeasures.data.models.user), 295
user_can_create_assets() (in module flexmea-
sures.ui.crud.assets), 342

user_can_delete() (in module flexmea-
sures.ui.crud.assets), 342
user_has_admin_access() (in module flexmea-

sures.auth.policy), 244
user_matches_principals() (in module flexmea-

sures.auth.policy), 244
user_source_criterion() (in

sures.data.queries.utils), 301
UserAPI (class in flexmeasures.api.v3_0.users), 237

module flexmea-

UserCrudUI (class in flexmeasures.ui.crud.users), 343
UserForm (class in flexmeasures.ui.crud.users), 343
UserIdField (class in flexmea-
sures.api.common.schemas.users), 213
username () (in module flexmeasures.ui.utils.view_utils),

345

UserSchema (class in flexmeasures.data.schemas.users),
325

UserSchema.Meta (class in flexmea-
sures.data.schemas.users), 325

uses_dot() (in module flexmea-
sures.data.scripts.visualize_data_model),
327

\Y

validate(Q) (flexmeasures.data.schemas.times.StartEndTimeSchema

method), 323

validate_chaining() (flexmea-

sures.data.schemas.reporting.pandas_reporter.PandasReporterCe

method), 311
validate_constraint() (in module flexmea-
sures.data.models.planning.storage), 275

validate_on_submit() (flexmea-
sures.ui.crud.assets.AssetForm method),
342

validate_price_sensors() (flexmea-

sures.data.schemas.reporting.profit. ProfitOrLossReporterConfig$

method), 313
validate_special_attributes() (in module
flexmeasures.data.schemas.attributes), 303
validate_storage_constraints() (in module
flexmeasures.data.models.planning.storage),
275

validate_time_parameters() (flexmea-

sures.data.schemas.reporting.pandas_reporter.PandasReporterPa

method), 312

validate_unique() (in module flexmeasures.cli.utils),
248

validation_error_handler() (in module flexmea-
sures.api.common.utils.args_parsing), 215

weekly_heatmap() (in module flexmea-
sures.data.models.charts.belief_charts), 255
weighted_absolute_percentage_error() (in mod-
ule flexmeasures.utils.calculations), 350
with_appcontext_if_needed() (in module flexmea-
sures.data.schemas.utils), 325
with_options() (in module
sures.ui.crud.assets), 342
wrap_up_message() (in module flexmeasures.cli.jobs),
247
WrongEntityException, 270
WrongTypeAttributeException, 270, 296

flexmea-

386

Index

	A quick glance
	What FlexMeasures does
	Use cases & Users
	Where to start reading?
	Getting started
	For organizations
	For Individuals
	Using FlexMeasures
	Hosting FlexMeasures
	Plugin developers
	Core developers

	Get in touch
	FlexMeasures Changelog
	v0.21.0 | April XX, 2024
	New features
	Bugfixes
	Infrastructure / Support

	v0.20.1 | April XX, 2024
	Bugfixes

	v0.20.0 | March 26, 2024
	New features
	Bugfixes
	Infrastructure / Support

	v0.19.2 | March 1, 2024
	v0.19.1 | February 26, 2024
	v0.19.0 | February 18, 2024
	New features
	Infrastructure / Support

	v0.18.2 | February 26, 2024
	v0.18.1 | January 15, 2024
	Bugfixes

	v0.18.0 | December 23, 2023
	New features
	Infrastructure / Support
	Bugfixes

	v0.17.1 | December 7, 2023
	Bugfixes

	v0.17.0 | November 8, 2023
	New features
	Infrastructure / Support

	v0.16.1 | October 2, 2023
	Bugfixes

	v0.16.0 | September 27, 2023
	New features
	Infrastructure / Support

	v0.15.2 | October 2, 2023
	Bugfixes

	v0.15.1 | August 28, 2023
	Bugfixes

	v0.15.0 | August 9, 2023
	New features
	Bugfixes
	Infrastructure / Support

	v0.14.3 | October 2, 2023
	Bugfixes

	v0.14.2 | July 25, 2023
	Bugfixes

	v0.14.1 | June 26, 2023
	Bugfixes

	v0.14.0 | June 15, 2023
	New features
	Bugfixes
	Infrastructure / Support

	v0.13.3 | June 10, 2023
	Bugfixes

	v0.13.2 | June 9, 2023
	Bugfixes

	v0.13.1 | May 12, 2023
	Bugfixes

	v0.13.0 | May 1, 2023
	New features
	Bugfixes
	Infrastructure / Support

	v0.12.3 | February 28, 2023
	Bugfixes

	v0.12.2 | February 4, 2023
	Bugfixes

	v0.12.1 | January 12, 2023
	Bugfixes

	v0.12.0 | January 4, 2023
	New features
	Bugfixes
	Infrastructure / Support

	v0.11.3 | November 2, 2022
	Bugfixes

	v0.11.2 | September 6, 2022
	Bugfixes

	v0.11.1 | September 5, 2022
	Bugfixes

	v0.11.0 | August 28, 2022
	New features
	Bugfixes
	Infrastructure / Support

	v0.10.1 | August 12, 2022
	Bugfixes

	v0.10.0 | May 8, 2022
	New features
	Bugfixes
	Infrastructure / Support

	v0.9.4 | April 28, 2022
	Bugfixes

	v0.9.3 | April 15, 2022
	Bugfixes

	v0.9.2 | April 10, 2022
	Bugfixes

	v0.9.1 | March 31, 2022
	Bugfixes

	v0.9.0 | March 25, 2022
	New features
	Bugfixes
	Infrastructure / Support

	v0.8.0 | January 24, 2022
	New features
	Deprecations
	Bugfixes
	Infrastructure / Support

	v0.7.1 | November 8, 2021
	Bugfixes

	v0.7.0 | October 26, 2021
	New features
	Bugfixes
	Infrastructure / Support

	v0.6.1 | October 23, 2021
	New features
	Bugfixes
	Infrastructure / Support

	v0.6.0 | September 3, 2021
	New features
	Bugfixes
	Infrastructure / Support

	v0.5.0 | June 7, 2021
	New features
	Bugfixes
	Infrastructure / Support

	v0.4.1 | May 7, 2021
	Bugfixes

	v0.4.0 | April 29, 2021
	New features
	Bugfixes
	Infrastructure / Support

	v0.3.1 | April 9, 2021
	Bugfixes

	v0.3.0 | April 2, 2021
	New features
	Bugfixes
	Infrastructure / Support

	v0.2.3 | February 27, 2021
	New features
	Bugfixes
	Infrastructure / Support

	Scheduling
	Describing flexibility
	The flex-context
	The flex-models & corresponding schedulers
	Storage
	Shiftable loads (processes)

	Work on other schedulers

	Forecasting
	Technical specs
	A use case: automating solar production prediction
	Rolling vs fixed-point
	Regressors
	Performance benchmarks
	Future work

	Reporting
	Example: solar feed-in / self-consumption delta
	Example: Profits & losses

	Toy example: Introduction and setup
	Install Flexmeasures and the database
	Add some structural data
	Add some price data

	Toy example I: Scheduling a battery, from scratch
	Make a schedule

	Toy example II: Adding solar production and limited grid connection
	Adding PV production forecasts
	Trigger an updated schedule

	A flex-modeling tutorial for storage: Vehicle-to-grid
	Battery protection
	Car reservations
	Earning by cycling

	Toy example III: Computing schedules for processes
	Setup
	Trigger an updated schedule
	Results

	Toy example IV: Computing reports
	Setup
	Compute headroom
	Process scheduler profit
	Inflexible process
	Breakable process
	Shiftable process

	Posting data
	Prerequisites
	Posting sensor data
	Being explicit when posting power data
	Single value, single sensor
	Multiple values, single sensor

	Observations vs forecasts: The time of knowledge
	Posting flexibility states

	Forecasting & scheduling
	Maintaining the queues
	How forecasting jobs are queued
	Historical forecasts

	How scheduling jobs are queued
	Getting power forecasts (prognoses)
	Getting schedules (control signals)

	Building custom UIs
	Get an authentication token
	Load user information
	Load asset information
	Embedding charts

	Energy flexibility
	Behind-the-meter and front-of-the-meter
	Flexibility opportunities and activation
	Opportunities
	Activation

	An example: the balancing market
	Types of flexibility
	Curtailment
	Shifting

	Profits of flexibility activation
	Computing value
	Accounting / Sharing value

	A word on terminology

	The FlexMeasures data model
	Assets
	Sensors
	Data sources
	Beliefs
	Accounts & Users

	Security aspects
	Data
	Authentication
	Authorization

	Storage device scheduler: Linear model
	Introduction
	Notation
	Indexes
	Parameters
	Variables

	Cost function
	State dynamics
	Perfect efficiency
	Left efficiency
	Right efficiency
	Linear efficiency

	Constraints
	Device bounds
	Upwards/Downwards activation selection
	Grid constraints
	Power coupling constraints

	Dashboard
	Interactive map of assets
	Summary of asset types
	Grouping by accounts

	Assets & sensor data
	Asset page
	Sensor page

	Account overview
	Administration
	Assets
	Users

	API Introduction
	Main endpoint and API versions
	Authentication
	Deprecation and sunset
	Clients
	Hosts
	Stage 1: Deprecation
	Stage 2: Preliminary sunset
	Stage 3: Definitive sunset

	Notation
	Singular vs plural keys
	Sensors and entity addresses
	Entity address structure
	Types of sensor identification used in FlexMeasures

	Timeseries
	Tracking the recording time of beliefs
	Querying by recording time
	Setting the recording time

	Frequency and resolution
	Sources
	Units
	Signs of power values

	Version 3.0
	Summary
	API Details

	Developer API
	Summary
	API Details

	API change log
	v3.0-18 | 2024-03-07
	v3.0-17 | 2024-02-26
	v3.0-16 | 2024-02-26
	v3.0-15 | 2024-01-11
	v3.0-14 | 2023-12-07
	v3.0-13 | 2023-10-31
	v3.0-12 | 2023-09-20
	v3.0-11 | 2023-08-02
	v3.0-10 | 2023-06-12
	v3.0-9 | 2023-04-26
	v3.0-8 | 2023-03-23
	v3.0-7 | 2023-02-28
	v3.0-6 | 2023-02-01
	v3.0-5 | 2023-01-04
	v3.0-4 | 2022-12-08
	v3.0-3 | 2022-08-28
	v3.0-2 | 2022-07-08
	v3.0-1 | 2022-05-08
	v3.0-0 | 2022-03-25
	v2.0-7 | 2022-05-05
	v2.0-6 | 2022-04-26
	v2.0-5 | 2022-02-13
	v2.0-4 | 2022-01-04
	v2.0-3 | 2021-06-07
	v2.0-2 | 2021-04-02
	v2.0-1 | 2021-02-19
	v2.0-0 | 2020-11-14
	v1.3-14 | 2022-05-05
	v1.3-13 | 2022-04-26
	v1.3-12 | 2022-02-13
	v1.3-11 | 2022-01-05
	v1.3-10 | 2021-11-08
	v1.3-9 | 2021-04-21
	v1.3-8 | 2020-04-02
	v1.3-7 | 2020-12-16
	v1.3-6 | 2020-12-11
	v1.3-5 | 2020-10-29
	v1.3-4 | 2020-06-18
	v1.3-3 | 2020-06-07
	v1.3-2 | 2020-03-11
	v1.3-1 | 2020-02-08
	v1.3-0 | 2020-01-28
	v1.2-6 | 2022-05-05
	v1.2-5 | 2022-04-26
	v1.2-4 | 2022-02-13
	v1.2-3 | 2020-01-28
	v1.2-2 | 2018-10-08
	v1.2-1 | 2018-09-24
	v1.2-0 | 2018-09-08
	v1.1-8 | 2022-05-05
	v1.1-7 | 2022-04-26
	v1.1-6 | 2022-02-13
	v1.1-5 | 2020-06-18
	v1.1-4 | 2020-03-11
	v1.1-3 | 2018-09-08
	v1.1-2 | 2018-08-15
	v1.1-1 | 2018-08-06
	v1.1-0 | 2018-07-15
	v1.0-4 | 2022-05-05
	v1.0-3 | 2022-04-26
	v1.0-2 | 2022-02-13
	v1.0-1 | 2018-07-10
	v1.0-0 | 2018-07-10

	CLI Commands
	add - Add data
	show - Show data
	edit - Edit data
	delete - Delete data
	jobs - Job queueing
	db-ops - Operations on the whole database

	FlexMeasures CLI Changelog
	since v.0.21.0 | April 12, 2024
	since v.0.20.0 | March 26, 2024
	since v0.19.1 | February 26, 2024
	since v0.19.0 | February 18, 2024
	since v0.18.1 | January 15, 2024
	since v0.17.0 | November 8, 2023
	since v0.16.0 | September 29, 2023
	since v0.15.0 | August 9, 2023
	since v0.14.1 | June 20, 2023
	since v0.14.0 | June 15, 2023
	since v0.13.0 | May 1, 2023
	since v0.12.0 | January 04, 2023
	since v0.11.0 | August 28, 2022
	since v0.9.0 | March 25, 2022
	since v0.8.0 | January 26, 2022
	since v0.6.0 | April 2, 2021
	since v0.4.0 | April 2, 2021
	since v0.3.0 | April 2, 2021

	Installation & First steps
	Installing and running FlexMeasures
	Make a secret key for sessions and password salts
	Choose the environment
	Tell FlexMeasures where the time series database is
	Use a config file

	Adding data
	Add an account & user
	Add initial structure
	Add your first asset
	Add your first sensor

	Seeing it work and next steps
	Add time series data (beliefs)
	Set mail settings
	Install an LP solver
	Install and configure Redis

	Where to go from here?

	Running via Docker
	Getting the flexmeasures image
	Running
	Configuration and customization
	Installing plugins within the container

	Postgres database
	Getting ready to use
	Install
	Make sure postgres represents datetimes in UTC timezone
	Create “flexmeasures” and “flexmeasures_test” databases and users
	Add Postgres Extensions to your database(s)
	Configure FlexMeasures app for that database
	Get structure (and some data) into place
	Import from another database
	Create data manually

	Visualize the data model
	Maintenance
	Make first migration
	Make another migration
	Get database structure updated
	Working with the migration history
	Check out database status

	Transaction management

	How to deploy FlexMeasures
	WSGI configuration
	Install the linear solver on the server

	Configuration
	Basic functionality
	LOGGING_LEVEL
	FLEXMEASURES_MODE
	FLEXMEASURES_ALLOW_DATA_OVERWRITE
	FLEXMEASURES_LP_SOLVER
	FLEXMEASURES_HOSTS_AND_AUTH_START
	FLEXMEASURES_PLUGINS
	FLEXMEASURES_DB_BACKUP_PATH
	FLEXMEASURES_PROFILE_REQUESTS

	UI
	FLEXMEASURES_PLATFORM_NAME
	FLEXMEASURES_MENU_LOGO_PATH
	FLEXMEASURES_EXTRA_CSS_PATH
	FLEXMEASURES_ROOT_VIEW
	FLEXMEASURES_MENU_LISTED_VIEWS
	FLEXMEASURES_MENU_LISTED_VIEW_ICONS
	FLEXMEASURES_MENU_LISTED_VIEW_TITLES
	FLEXMEASURES_HIDE_NAN_IN_UI
	RQ_DASHBOARD_POLL_INTERVAL
	FLEXMEASURES_ASSET_TYPE_GROUPS
	FLEXMEASURES_JS_VERSIONS

	Timing
	FLEXMEASURES_TIMEZONE
	FLEXMEASURES_JOB_TTL
	FLEXMEASURES_PLANNING_TTL
	FLEXMEASURES_JOB_CACHE_TTL
	FLEXMEASURES_DEFAULT_DATASOURCE
	FLEXMEASURES_PLANNING_HORIZON
	FLEXMEASURES_MAX_PLANNING_HORIZON

	Access Tokens
	MAPBOX_ACCESS_TOKEN
	SENTRY_SDN

	SQLAlchemy
	SQLALCHEMY_DATABASE_URI (**)
	SQLALCHEMY_ENGINE_OPTIONS
	SQLALCHEMY_TEST_DATABASE_URI

	Security
	SECRET_KEY (**)
	SECURITY_PASSWORD_SALT
	SECURITY_TOKEN_AUTHENTICATION_HEADER
	SECURITY_TOKEN_MAX_AGE
	SECURITY_TRACKABLE
	CORS_ORIGINS
	CORS_RESOURCES:
	CORS_SUPPORTS_CREDENTIALS
	FLEXMEASURES_FORCE_HTTPS
	FLEXMEASURES_ENFORCE_SECURE_CONTENT_POLICY

	Mail
	MAIL_SERVER (*)
	MAIL_PORT (*)
	MAIL_USE_TLS
	MAIL_USE_SSL
	MAIL_USERNAME (*)
	MAIL_DEFAULT_SENDER (*)
	MAIL_PASSWORD

	Monitoring
	SENTRY_DSN
	FLEXMEASURES_SENTRY_CONFIG
	FLEXMEASURES_TASK_CHECK_AUTH_TOKEN
	FLEXMEASURES_MONITORING_MAIL_RECIPIENTS

	Redis
	FLEXMEASURES_REDIS_URL (*)
	FLEXMEASURES_REDIS_PORT (*)
	FLEXMEASURES_REDIS_DB_NR (*)
	FLEXMEASURES_REDIS_PASSWORD (*)

	Demonstrations
	FLEXMEASURES_PUBLIC_DEMO_CREDENTIALS

	Sunset
	FLEXMEASURES_API_SUNSET_ACTIVE
	FLEXMEASURES_API_SUNSET_DATE
	FLEXMEASURES_API_SUNSET_LINK

	Redis Queues
	Requirements
	Run workers
	Inspect the queue and jobs
	Redis queues on Windows

	Error monitoring
	Monitoring the time users were last seen
	Monitoring task runs

	Modes
	Demo
	Play

	Writing Plugins
	How to make FlexMeasures load your plugin

	Plugin showcase
	Using other code files in your non-package plugin
	Notes on writing tests for your plugin

	Plugin Customizations
	Adding your own scheduling algorithm
	Deploying your plugin via Docker
	Adding your own style sheets
	Adding config settings
	Using a custom favicon icon
	Validating arguments in your CLI commands with marshmallow
	Customising the login page teaser

	Why FlexMeasures adds value for software developers
	I need help with integrating real-time data and continuously computing new data
	It’s hard to correctly model data with different sources, resolutions, horizons and even uncertainties
	I want to build new features quickly, not spend days solving basic problems

	Developing for FlexMeasures
	Getting started
	Virtual environment
	Download FlexMeasures
	Dependencies
	Configuration
	Database
	Loading data
	Run locally

	Logfile
	Tests
	Versioning
	Auto-applying formatting and code style suggestions
	Using Visual Studio, including spell checking
	A hint about using notebooks
	A hint for Unix developers

	Developing on the API
	Introducing a new API version
	Set up new module with routes
	Set up a new blueprint
	New or updated endpoint implementations
	Testing
	UI Crud
	Documentation

	Continuous integration
	Automate deployment via Github actions and Git
	Using git to deploy code (remote upstream)
	Authenticate at the deployment server (with an ssh key)
	(Re-)start FlexMeasures on the deployment server (install Post-Receive Hook)

	Custom authorization
	Permission-based authorization
	Account roles
	User roles

	Running a complete stack with docker-compose
	Build the compose stack
	Run the compose stack
	Configuration
	Data
	Seeing it work: Running the toy tutorial
	Scripting with the Docker stack
	Running tests

	Dependency Management
	Requirements
	Python versions

	flexmeasures.api
	flexmeasures.api.common
	flexmeasures.api.common.implementations
	flexmeasures.api.common.responses
	flexmeasures.api.common.routes
	flexmeasures.api.common.schemas
	flexmeasures.api.common.schemas.generic_assets
	flexmeasures.api.common.schemas.sensor_data
	flexmeasures.api.common.schemas.sensors
	flexmeasures.api.common.schemas.users

	flexmeasures.api.common.utils
	flexmeasures.api.common.utils.api_utils
	flexmeasures.api.common.utils.args_parsing
	flexmeasures.api.common.utils.deprecation_utils
	References
	References

	flexmeasures.api.common.utils.validators

	flexmeasures.api.dev
	flexmeasures.api.dev.sensors

	flexmeasures.api.play
	flexmeasures.api.play.implementations
	flexmeasures.api.play.routes

	flexmeasures.api.sunset
	flexmeasures.api.sunset.routes

	flexmeasures.api.v3_0
	flexmeasures.api.v3_0.accounts
	flexmeasures.api.v3_0.assets
	flexmeasures.api.v3_0.health
	flexmeasures.api.v3_0.public
	flexmeasures.api.v3_0.sensors
	flexmeasures.api.v3_0.users

	flexmeasures.app
	flexmeasures.auth
	flexmeasures.auth.decorators
	flexmeasures.auth.error_handling
	flexmeasures.auth.policy

	flexmeasures.cli
	flexmeasures.cli.data_add
	flexmeasures.cli.data_delete
	flexmeasures.cli.data_edit
	flexmeasures.cli.data_show
	flexmeasures.cli.db_ops
	flexmeasures.cli.jobs
	flexmeasures.cli.monitor
	flexmeasures.cli.utils
	References
	References

	flexmeasures.data
	flexmeasures.data.config
	flexmeasures.data.models
	flexmeasures.data.models.annotations
	flexmeasures.data.models.charts
	flexmeasures.data.models.charts.belief_charts
	flexmeasures.data.models.charts.defaults

	flexmeasures.data.models.data_sources
	flexmeasures.data.models.forecasting
	flexmeasures.data.models.forecasting.exceptions
	flexmeasures.data.models.forecasting.model_spec_factory
	flexmeasures.data.models.forecasting.model_specs
	flexmeasures.data.models.forecasting.model_specs.linear_regression
	flexmeasures.data.models.forecasting.model_specs.naive

	flexmeasures.data.models.forecasting.utils

	flexmeasures.data.models.generic_assets
	flexmeasures.data.models.legacy_migration_utils
	flexmeasures.data.models.parsing_utils
	flexmeasures.data.models.planning
	flexmeasures.data.models.planning.battery
	flexmeasures.data.models.planning.charging_station
	flexmeasures.data.models.planning.exceptions
	flexmeasures.data.models.planning.linear_optimization
	flexmeasures.data.models.planning.process
	Parameters

	flexmeasures.data.models.planning.storage
	flexmeasures.data.models.planning.utils

	flexmeasures.data.models.reporting
	flexmeasures.data.models.reporting.aggregator
	flexmeasures.data.models.reporting.pandas_reporter
	flexmeasures.data.models.reporting.profit
	Sign convention (by default)

	flexmeasures.data.models.task_runs
	flexmeasures.data.models.time_series
	flexmeasures.data.models.user
	flexmeasures.data.models.validation_utils
	flexmeasures.data.models.weather

	flexmeasures.data.queries
	flexmeasures.data.queries.annotations
	flexmeasures.data.queries.data_sources
	flexmeasures.data.queries.generic_assets
	flexmeasures.data.queries.sensors
	flexmeasures.data.queries.utils

	flexmeasures.data.schemas
	flexmeasures.data.schemas.account
	flexmeasures.data.schemas.attributes
	flexmeasures.data.schemas.generic_assets
	flexmeasures.data.schemas.io
	flexmeasures.data.schemas.locations
	flexmeasures.data.schemas.reporting
	flexmeasures.data.schemas.reporting.aggregation
	flexmeasures.data.schemas.reporting.pandas_reporter
	flexmeasures.data.schemas.reporting.profit

	flexmeasures.data.schemas.scheduling
	flexmeasures.data.schemas.scheduling.process
	flexmeasures.data.schemas.scheduling.storage

	flexmeasures.data.schemas.sensors
	flexmeasures.data.schemas.sources
	flexmeasures.data.schemas.times
	flexmeasures.data.schemas.units
	flexmeasures.data.schemas.users
	flexmeasures.data.schemas.utils

	flexmeasures.data.scripts
	flexmeasures.data.scripts.data_gen
	flexmeasures.data.scripts.visualize_data_model

	flexmeasures.data.services
	flexmeasures.data.services.accounts
	flexmeasures.data.services.annotations
	flexmeasures.data.services.asset_grouping
	flexmeasures.data.services.data_sources
	flexmeasures.data.services.forecasting
	Parameters

	flexmeasures.data.services.job_cache
	flexmeasures.data.services.scheduling
	flexmeasures.data.services.sensors
	flexmeasures.data.services.time_series
	flexmeasures.data.services.timerange
	flexmeasures.data.services.users
	flexmeasures.data.services.utils

	flexmeasures.data.transactional
	flexmeasures.data.utils

	flexmeasures.ui
	flexmeasures.ui.crud
	flexmeasures.ui.crud.accounts
	flexmeasures.ui.crud.api_wrapper
	flexmeasures.ui.crud.assets
	flexmeasures.ui.crud.users

	flexmeasures.ui.error_handlers
	flexmeasures.ui.utils
	flexmeasures.ui.utils.breadcrumb_utils
	flexmeasures.ui.utils.chart_defaults
	flexmeasures.ui.utils.view_utils

	flexmeasures.ui.views
	flexmeasures.ui.views.control
	flexmeasures.ui.views.logged_in_user
	flexmeasures.ui.views.new_dashboard
	flexmeasures.ui.views.sensors

	flexmeasures.utils
	flexmeasures.utils.app_utils
	flexmeasures.utils.calculations
	flexmeasures.utils.coding_utils
	flexmeasures.utils.config_defaults
	flexmeasures.utils.config_utils
	flexmeasures.utils.entity_address_utils
	flexmeasures.utils.error_utils
	flexmeasures.utils.flexmeasures_inflection
	flexmeasures.utils.geo_utils
	flexmeasures.utils.grid_cells
	flexmeasures.utils.plugin_utils
	flexmeasures.utils.time_utils
	References

	flexmeasures.utils.unit_utils

	Python Module Index
	HTTP Routing Table
	Index

