FlexMeasures Documentation
Release 0.19.1.dev20

Seita B.\V.

Mar 15, 2024

CONTENTS

1 A quick glance 3
2 What FlexMeasures does 5
3 Use cases & Users 7
4 Where to start reading? 9
Python Module Index 357
HTTP Routing Table 359

Index 361

FlexMeasures Documentation, Release 0.19.1.dev20

FlexMeasures is the intelligent & developer-friendly EMS to support real-time energy flexibility apps, rapidly and
scalable.

The problem it helps you to solve is: What are the best times to run flexible assets, such as batteries or heat pumps?

In a nutshell, FlexMeasures turns data into optimized schedules for flexible assets. Why? Planning ahead allows flexible
assets to serve the whole system with their flexibility, e.g. by shifting energy consumption to more optimal times. For
the asset owners, this creates CO, savings but also monetary value (e.g. through self-consumption, dynamic tariffs and
grid incentives).

Timing

W

Sensors & APIs Flexible assets

FlexMeasures is written in Python, and runs on Flask and Postgres. We aim to create developer-friendly technology
that saves time in developing complex services. Read more on this in Why FlexMeasures adds value for software
developers.

FlexMeasures proudly is an incubation project at the Linux Energy Foundation.

CONTENTS 1

https://www.lfenergy.org/

FlexMeasures Documentation, Release 0.19.1.dev20

2 CONTENTS

CHAPTER
ONE

A QUICK GLANCE

The main purpose of FlexMeasures is to create optimized schedules. Let’s have a quick glance at what that looks like
in the UI and what a code implementation would be like:

Battery optimized by price
Same but constrained by solar

Code example

Day-ahead prices (EUR/MWh)

0
Fri 28 02:00 04:00 06:00

Power (MW)

0.4
0.2
0.0
-0.2+
-0.4
Fri28 02:00

04:00 06:00

Sensor

] doyfoheod{)rices (NL transmission zone)
it

production (toy-solar)
® discharging (toy-battery)

Day-ahead prices (EUR/MWh)

5
0 T ! 1
Fri 28 02:00 04:00 06:00
Power (MW)
0.4
0.2
0.0
-0.24
-0.4
Fri 28 02:00 04:00 06:00
Sensor
® day-ahead prices (NL transmission zone)
production {t]cy—so\ur)

® discharging (toy-battery)

08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat 29
08:00 10:00 12:.00 14:00 16:00 18:00 20:00 22:00 sat 29
Source
forecaster
scheduler k
other
08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat 29
08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat 29
Source
forecaster
scheduler
other

https://raw.githubusercontent.com/FlexMeasures/screenshots/main/tut/toy-schedule/asset-view-without-solar.png
https://raw.githubusercontent.com/FlexMeasures/screenshots/main/tut/toy-schedule/asset-view-with-solar.png

FlexMeasures Documentation, Release 0.19.1.dev20

A tiny, but complete example (corresponding to the left tab): Let’s install FlexMeasures from scratch. Then, using only
the terminal (FlexMeasures of course also has APIs for all of this), load hourly prices and optimize a 12h-schedule for
a battery that is half full at the beginning. Finally, we’ll display our new schedule in the terminal.

$ pip install flexmeasures # FlexMeasures can also be run via Docker
$ docker pull postgres; docker run --name pg-docker -e POSTGRES_PASSWORD=docker -e.
—POSTGRES_DB=flexmeasures-db -d -p 5433:5432 postgres:latest
$ export SQLALCHEMY_DATABASE_URI="postgresql://postgres:docker@127.0.0.1:5433/
—flexmeasures-db" && export SECRET_KEY=notsecret
$ flexmeasures db upgrade # create tables
$ flexmeasures add toy-account --kind battery # setup account incl. a user, battery (ID.
—2) and market (ID 1)
$ flexmeasures add beliefs --sensor 2 --source toy-user prices-tomorrow.csv --timezone..
—utc # load prices, also possible per API
$ flexmeasures add schedule for-storage --sensor 2 --consumption-price-sensor 1 \
--start TOMORROW }TO7:00+01:00 --duration PT12H \
--soc-at-start 50% --roundtrip-efficiency 90% # this is also possible per API
$ flexmeasures show beliefs --sensor 2 --start ${TOMORROW'TO7:00:00+01:00 --duration..
—PT12H # also visible per UI, of course

A short explanation of the optimization shown above: This battery is optimized to buy power cheaply and sell it at
expensive times - the red-dotted line is what FlexMeasures computed to be the best schedule, given all knowledge (in
this case, the prices shown in blue). However, in the example in the middle tab, the battery has to store local solar
power as well (orange line), which constrains how much it can do with its capacity (that’s why the schedule is limited
in capacity and thus cycling less energy overall than on the left).

Want to read more about the example case shown here? We discuss this in more depth at 7oy example I: Scheduling a
battery, from scratch and the tutorials that build on that.

4 Chapter 1. A quick glance

CHAPTER
TWO

WHAT FLEXMEASURES DOES

Main functionality

Interfacing with FlexMeasures

* Scheduling

The main purpose of FlexMeasures is to create optimized schedules. That’s also what the “quick glance”
section above focuses on. Everything else supports this main purpose. FlexMeasures provides in-built
schedulers for storage and processes. Schedulers solve optimization problems for you and are highly cus-
tomizable to the situation at hand. Read more at Scheduling and, for hands-on introductions, at 7oy example
I: Scheduling a battery, from scratch and Toy example I11: Computing schedules for processes.

* Reporting

FlexMeasures needs to give users an idea of its effects and outcomes. For instance, computing the energy
costs are an important use case. But also creating intermediate data for your scheduler can be a crucial
feature (e.g. the allowed headroom for a battery is the difference between the grid connection capacity and
the PV power). Read more at Reporting and Toy example IV: Computing reports.

* Forecasting

Optimizing the future (by scheduling) requires some predictions. Several predictions can be gotten from
third parties (e.g. weather conditions, for which we wrote a plugin), others need to be done manually.
FlexMeasures provides some support for this (read more at Forecasting and Forecasting & scheduling), but
you can also create predictions with one of the many excellent tools out there and feed them into FlexMea-
sures.

* Monitoring

* API

* CLI

As FlexMeasures is a real-time platform, processing data and computing new schedules continuously, host-
ing it requires to be notified when things go wrong. There is in-built Error monitoring for tracking con-
nection problems and tasks that did not finish correctly. Also, you can connect to Sentry. We have further
plans to monitor data quality.

FlexMeasures runs in the cloud (although it can also run on-premise if needed, for instance as Docker
container). Therefore, a well-supported REST-like API is crucial. You can add & retrieve data, trigger
schedule computations and even add and edit the structure (of assets and sensors). Read more at AP/
Introduction.

We built a user interface for FlexMeasures, so assets, data and schedules can be inspected by devs, hosters
and analysts. You can start with _dashboard to get an idea. We expect that real energy flexibility services
will come with their own UI, maybe as they are connecting FlexMeasures as a smart backend to an existing
user-facing ESCO platform. In these cases, the API is more useful. However, FlexMeasures can provide
its data plots and visualizations through the API in these cases, see Building custom Uls.

For the engineers hosting FlexMeasures, a command-line interface is crucial. We developed a range of

https://github.com/SeitaBV/flexmeasures-openweathermap
https://github.com/FlexMeasures/flexmeasures/projects/12
https://github.com/FlexMeasures/flexmeasures/projects/12

FlexMeasures Documentation, Release 0.19.1.dev20

CLI Commands based on the flexmeasures directive (see also the code example above), so that DevOps
personnel can administer accounts & users, load & review data and heck on computation jobs. The CLI is
also useful to automate calls to third party APIs (via CRON jobs for instance) — this is usually done when
plugins add their own flexmeasures commands.

* FlexMeasures Client
For automating the interaction with FlexMeasures from local sites (e.g. from a smart gateway - think Rasp-
berryPi or higher-level), we created the FlexMeasures Client. The Flexmeasures Client package provides
functionality for authentication, posting sensor data, triggering schedules and retrieving schedules from a
FlexMeasures instance through the API.

6 Chapter 2. What FlexMeasures does

https://github.com/FlexMeasures/flexmeasures-client

CHAPTER
THREE

USE CASES & USERS

Use cases

Users

Here are a few relevant areas in which FlexMeasures can help you:
* E-mobility (smart EV (Electric Vehicle) charging, V2G (Vehicle to Grid), V2H (Vehicle to Home))
* Heating (heat pump control, in combination with heat buffers)
* Industry (best running times for processes with buffering capacity)

You decide what to optimize for — prices, CO;, peaks.

It becomes even more interesting to use FlexMeasures in integrated scenarios with increased complexity. For example,
in modern domestic/office settings that combine solar panels, electric heating and EV charging, in industry settings
that optimize for self-consumption of local solar panels, or when consumers can engage with multiple markets simul-
taneously.

In these cases, our goal is that FlexMeasures helps you to achieve “value stacking”, which is often required to achieve
a positive business case. Multiple sources of value can combine with multiple types of assets.

As possible users, we see energy service companies (ESCOs) who want to build real-time apps & services around
energy flexibility for their customers, or medium/large industrials who are looking for support in their internal digital
tooling.

However, even small companies and hobby projects might find FlexMeasures useful! We are constantly improving the
ease of use.

Within these organizations, several kinds of engineers might be working with FlexMeasures: gateway installers, ESCO
data engineers and service developers.

FlexMeasures can be used as your EMS, but it can also integrate with existing systems as a smart backend — an add-on
to deal with energy flexibility specifically.

The image below shows the FlexMeasures eco-system and the users, where the server (this repository) is supported by
the FlexMeasures client and several plugins to implement many kinds of services with optimized schedules:

FlexMeasures Documentation, Release 0.19.1.dev20

develops—

ESCO
host (DevOps) data engineer
ESCO Dashboard / views FlexMeasures
ces CLI monitoring platform plots in ESCO app
end user
Gatewqy/EMS Home Assistant 52 uses API
installer Flexibility Protocol
flexmeasures_
y entsoe
sets up
extends Flexmeasures
Server extends—
(+base algorithms) 3rd party APls:
connects flexmeasures_ markets, OEM
openweathermap
X
Local Gateway / Jses. Flexmeasures
EMS Client . e
flexmeasures_plugin | creates :
_template siructure| | athers
writes e
simulation
scripts uses
] *
develops
Analyst Service
developer

This image should also make clear how to extend FlexMeasures on the edges to make it work for your exact use case

— by gateway integration, plugins and using FlexMeasures via its API.

Chapter 3. Use cases & Users

https://raw.githubusercontent.com/FlexMeasures/screenshots/main/architecture/FlexMeasures-IntegrationMap.drawio.png

CHAPTER
FOUR

WHERE TO START READING?

You (the reader) might be a user connecting with a FlexMeasures server or working on hosting FlexMeasures. Maybe
you are planning to develop a plugin or even core functionality. Maybe you are a CTO looking for a suitable open
source framework.

In Getting started, we have some helpful tips how to dive into this documentation!

4.1 Getting started

For a direct intro on running FlexMeasures, go to Installation & First steps. However, FlexMeasures is useful from
different perspectives. Below, we added helpful pointers to start reading.

» For organizations

e For Individuals

Using FlexMeasures

Hosting FlexMeasures

Plugin developers

Core developers

4.1.1 For organizations

We make FlexMeasures, so that your software developers are as productive with energy optimization as possible.
Because we are developers ourselves, we know that it takes a couple smaller steps to engage with new technology.

Your journey, from dipping your toes in the water towards being a productive energy optimization company, could look
like this:

1. Quickstart — Find an optimized schedule for your flexible asset, like a battery, with standard FlexMeasures
tooling. This is basically what we show in Toy example I: Scheduling a battery, from scratch. All you need are
10 minutes and a CSV file with prices to optimize against.

2. Automate — get the prices from an open API, for instance ENTSO-E (using a plugin like flexmeasures-entsoe),
and run the scheduler regularly in a cron job.

3. Integrate — Load the schedules via FlexMeasures’ API, so you can directly control your assets and/or show them
within your own frontend.

https://transparency.entsoe.eu/
https://github.com/SeitaBV/flexmeasures-entsoe

FlexMeasures Documentation, Release 0.19.1.dev20

4. Customize — Load other data (e.g. your solar production or weather forecasts via flexmeasures-
openweathermap). Adapt the algorithms, e.g. do your own forecasting or tweak the standard scheduling algo-
rithm so it optimizes what you care about. Or write a plugin for accessing a new kind of market. The opportunities
are endless!

4.1.2 For Individuals

Using FlexMeasures
You are connecting to a running FlexMeasures server, e.g. for sending data, getting schedules or administrate users
and assets.
First, you’ll need an account from the party running the server. Also, you probably want to:
* Look at the UI, e.g. pages for Dashboard and Administration.
* Read the API Introduction.

e Learn how to interact with the API in Posting data.

Hosting FlexMeasures

You want to run your own FlexMeasures instance, to offer services or for trying it out. You’ll want to:
» Have a first playful scheduling session, following 7oy example I: Scheduling a battery, from scratch.
* Get real with the tutorial on Installation & First steps.
* Discover the power of CLI Commands.

¢ Understand how to How to deploy FlexMeasures.

Plugin developers

You want to extend the functionality of FlexMeasures, e.g. a custom integration or a custom algorithm:
¢ Read the docs on Writing Plugins.
* See how some existing plugins are made flexmeasures-entsoe or flexmeasures-openweathermap

* Of course, some of the developers resources (see below) might be helpful to you, as well.

Core developers

You want to help develop FlexMeasures, e.g. to fix a bug. We provide a getting-started guide to becoming a developer
at Developing for FlexMeasures.

10 Chapter 4. Where to start reading?

https://github.com/SeitaBV/flexmeasures-openweathermap/
https://github.com/SeitaBV/flexmeasures-openweathermap/
https://github.com/SeitaBV/flexmeasures-entsoe
https://github.com/SeitaBV/flexmeasures-openweathermap

FlexMeasures Documentation, Release 0.19.1.dev20

4.2 Getin touch

We want you to succeed in using, hosting or extending FlexMeasures. For all your questions and ideas, you can join
the FlexMeasures community in the following ways:

* View the code and/or create a ticket on GitHub

* Join the #flexmeasures Slack channel over at https://Ifenergy.slack.com

» Write to us at flexmeasures @lists.Ifenergy.org (you can join this mailing list here)
¢ Follow @flexmeasures on Twitter

We’d love to hear from you!

4.3 FlexMeasures Changelog

4.3.1 v0.20.0 | April XX, 2024

Warning: From this version on, the config setting FLEXMEASURES_FORCE_HTTPS decides whether to en-
force HTTPS on requests - and it defaults to False. Previously, this was governed by Flask_ENV or FLEXMEA-
SURES_ENYV being set to something else than “documentation” or “development”. This new way is more clear,
but you might be in need of using this setting before upgrading.

New features
* Add command flexmeasures edit transfer-ownership to transfer the ownership of an asset and its chil-
dren from one account to another[see PR #983]

* Support defining the site-power-capacity, site-consumption-capacity and
site-production-capacity as a sensor in the API and CLI [see PR #985]

 Support defining inflexible power sensors with arbitrary power and energy units [see PR #1007]
 Support saving beliefs with a belief_horizon in the ““PandasReporter " [see PR #1013]

* Skip the check of the output event resolution in any Reporter with the field check_output_resolution [see
PR #1009]

Bugfixes

» Use minimum event resolution of the input (instead of the output) sensors for the belief search parameters [see
PR #1010]

4.2. Getin touch 11

https://github.com/FlexMeasures/flexmeasures
https://lfenergy.slack.com
mailto:flexmeasures@lists.lfenergy.org
https://lists.lfenergy.org/g/flexmeasures
https://twitter.com/flexmeasures
https://github.com/FlexMeasures/flexmeasures/pull/983
https://github.com/FlexMeasures/flexmeasures/pull/985
https://github.com/FlexMeasures/flexmeasures/pull/1007
https://github.com/FlexMeasures/flexmeasures/pull/1013
https://github.com/FlexMeasures/flexmeasures/pull/1009
https://github.com/FlexMeasures/flexmeasures/pull/1010

FlexMeasures Documentation, Release 0.19.1.dev20

Infrastructure / Support

» Improve processing time for deleting beliefs via CLI [see PR #1005]
 Support deleting beliefs via CLI for all offspring assets at once [see PR #1003]

* Add setting FLEXMEASURES_FORCE_HTTPS to explicitly toggle if HTTPS should be used for all requests [see PR
#1008]

* Make flexmeasures installable locally on macOS [see PR #1000]

4.3.2 v0.19.2 | March 1, 2024

Note: Optionally, run flexmeasures db upgrade after upgrading to this version for enhanced database perfor-
mance on time series queries.

¢ Upgrade timely-beliefs to enhance our main time series query and fix a database index on time series data, leading
to significantly better performance [see PR #992]

* Fix server error on loading the asset page for a public asset, due to a bug in the breadcrumb’s sibling navigation
[see PR #991]

* Restore compatibility with the flexmeasures-openweathermap plugin by fixing the query for the closest weather
sensor to a given asset [see PR #997]

4.3.3 v0.19.1 | February 26, 2024

* Support defining the power-capacity as a sensor in the API and CLI [see PR #987]

4.3.4 v0.19.0 | February 18, 2024

Note: Read more on these features on the FlexMeasures blog.

Warning: This version replaces FLASK_ENV with FLEXMEASURES_ENV (FLASK_ENV will still be used
as a fallback).

New features

* List child assets on the asset page [see PR #967]

» Expand the UI’s breadcrumb functionality with the ability to navigate directly to sibling assets and sensors using
their child-parent relationship [see PR #977]

* Enable the use of QuantityOrSensor fields for the flexmeasures add schedule for-storage CLI com-
mand [see PR #966]

* CLI support for showing/savings time series data for a given type of source only, with the new --source-type
option of flexmeasures show beliefs, which let’s you filter out schedules, forecasts, or data POSTed by
users (through the API), which each have a different source type [see PR #976]

12 Chapter 4. Where to start reading?

https://github.com/FlexMeasures/flexmeasures/pull/1005
https://github.com/FlexMeasures/flexmeasures/pull/1003
https://github.com/FlexMeasures/flexmeasures/pull/1008
https://github.com/FlexMeasures/flexmeasures/pull/1008
https://github.com/FlexMeasures/flexmeasures/pull/1000
https://github.com/FlexMeasures/flexmeasures/pull/992
https://github.com/FlexMeasures/flexmeasures/pull/991
https://github.com/SeitaBV/flexmeasures-openweathermap
https://github.com/FlexMeasures/flexmeasures/pull/997
https://github.com/FlexMeasures/flexmeasures/pull/987
https://flexmeasures.io/019-asset-nesting/
https://github.com/FlexMeasures/flexmeasures/pull/967
https://github.com/FlexMeasures/flexmeasures/pull/977
https://github.com/FlexMeasures/flexmeasures/pull/966
https://github.com/FlexMeasures/flexmeasures/pull/976

FlexMeasures Documentation, Release 0.19.1.dev20

e New CLI command flexmeasures delete beliefs to delete all beliefs on a given sensor (or multiple sen-
sors) or on sensors of a given asset (or multiple assets) [see PR #975]

* Support for defining the storage efficiency as a sensor or quantity for the StorageScheduler [see PR #965]

* Support a less verbose way of setting the same SoC (state of charge) constraint for a given time window [see PR
#899]

Infrastructure / Support

* Deprecate use of flask’s FLASK_ENV variable and replace it with FLEXMEASURES_ENV [see PR #907]
* Streamline CLI option naming by favoring --<entity> over --<entity>-id [see PR #946]

* Documentation: improve index page, installation overview, feature overview incl. flex-model overview and UI
screenshots [see PR #953]

« Faster database queries of time series data by upgrading SQLAIchemy and timely-beliefs [see PR #938]

4.3.5 v0.18.2 | February 26, 2024

» Convert unit of the power capacities to MW instead of that of the storage power sensor [see PR #979]

» Automatically update table navigation in the Ul without requiring users to hard refresh their browser [see PR
#961]

» Updated documentation to enhance clarity for integrating plugins within the FlexMeasures Docker container [see
PR #958]

* Support defining the power-capacity as a sensor in the API [see PR #987]

4.3.6 v0.18.1 | January 15, 2024

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Bugfixes

* Fix database migrations meant to clean up deprecated tables [see PR #960]
» Allow showing beliefs (plot and file export) via the CLI for sensors with non-unique names [see PR #947]

¢ Added Redis credentials to the Docker Compose configuration for the web server to ensure proper interaction
with the Redis queue [see PR #945]

* Fix API version listing (GET /api/v3_0) for hosts running on Python 3.8 [see PR #917 and PR #950]

* Fix the validation of the option --parent-asset of command flexmeasures add asset [see PR #959]

4.3. FlexMeasures Changelog 13

https://github.com/FlexMeasures/flexmeasures/pull/975
https://github.com/FlexMeasures/flexmeasures/pull/965
https://github.com/FlexMeasures/flexmeasures/pull/899
https://github.com/FlexMeasures/flexmeasures/pull/899
https://github.com/FlexMeasures/flexmeasures/pull/907
https://github.com/FlexMeasures/flexmeasures/pull/946
https://github.com/FlexMeasures/flexmeasures/pull/953
https://github.com/FlexMeasures/flexmeasures/pull/938
https://github.com/FlexMeasures/flexmeasures/pull/979
https://github.com/FlexMeasures/flexmeasures/pull/961
https://github.com/FlexMeasures/flexmeasures/pull/961
https://github.com/FlexMeasures/flexmeasures/pull/958
https://github.com/FlexMeasures/flexmeasures/pull/987
https://github.com/FlexMeasures/flexmeasures/pull/960
https://github.com/FlexMeasures/flexmeasures/pull/947
https://github.com/FlexMeasures/flexmeasures/pull/945
https://github.com/FlexMeasures/flexmeasures/pull/917
https://github.com/FlexMeasures/flexmeasures/pull/950
https://github.com/FlexMeasures/flexmeasures/pull/959

FlexMeasures Documentation, Release 0.19.1.dev20

4.3.7 v0.18.0 | December 23, 2023

Note: Read more on these features on the FlexMeasures blog.

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup
first with flexmeasures db-ops dump). If this fails, update to flexmeasures==0.18.1 first (and then run
flexmeasures db upgrade).

New features
 Better navigation experience through listings (sensors / assets / users / accounts) in the UI (user interface), by
heading to the selected entity upon a click (or CTRL + click) anywhere within a row [see PR #923]

¢ Introduce a breadcrumb to navigate through assets and sensor pages using its child-parent relationship [see PR
#930]

* Define device-level power constraints as sensors to create schedules with changing power limits [see PR #897]

* Allow to provide external storage usage or gain components using the soc-usage and soc-gain fields of the
flex-model [see PR #906]

* Define time-varying charging and discharging efficiencies as sensors or as constant values which allows to define
the COP (coefficient of performance) [see PR #933]

Infrastructure / Support

» Align database and models of annotations, data_sources, and timed_belief [see PR #929]
* New documentation section on constructing a flex model for V2G [see PR #885]
* Allow charts in plugins to show currency codes (such as EUR) as currency symbols (€) [see PR #922]

* Remove obsolete database tables price, power, market, market_type, weather, asset, and weather_sensor [see
PR #921]

* New flexmeasures configuration setting FLEXMEASURES_ENFORCE_SECURE_CONTENT_POLICY for up-
grading insecure http requests to secured requests https [see PR #920]

Bugfixes

* Give admin-reader role access to the RQ Scheduler dashboard [see PR #901]

* Assets without a geographical position (i.e. no lat/Ing coordinates) can be edited through the UI [see PR #924]

14 Chapter 4. Where to start reading?

https://flexmeasures.io/018-better-use-of-future-knowledge/
https://github.com/FlexMeasures/flexmeasures/pull/923
https://github.com/FlexMeasures/flexmeasures/pull/930
https://github.com/FlexMeasures/flexmeasures/pull/930
https://github.com/FlexMeasures/flexmeasures/pull/897
https://github.com/FlexMeasures/flexmeasures/pull/906
https://github.com/FlexMeasures/flexmeasures/pull/933
https://github.com/FlexMeasures/flexmeasures/pull/929
https://github.com/FlexMeasures/flexmeasures/pull/885
https://github.com/FlexMeasures/flexmeasures/pull/922
https://github.com/FlexMeasures/flexmeasures/pull/921
https://github.com/FlexMeasures/flexmeasures/pull/920
https://github.com/FlexMeasures/flexmeasures/pull/901
https://github.com/FlexMeasures/flexmeasures/pull/924

FlexMeasures Documentation, Release 0.19.1.dev20

4.3.8 v0.17.1 | December 7, 2023
Bugfixes

» Show Assets, Users, Tasks and Accounts pages in the navigation bar for the admin-reader role [see PR #900]
* Reduce worker logs when datetime exceeds the end of the schedule [see PR #918]
* Fix infeasible problem due to incorrect estimation of the big-M value [see PR #905]

¢ [Incomplete fix; full fix in v0.18.1] Fix API version listing (GET /api/v3_0) for hosts running on Python 3.8 [see
PR #917]

4.3.9 v0.17.0 | November 8, 2023

Note: Read more on these features on the FlexMeasures blog.

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

New features
* Different site-level production and consumption limits can be defined for the storage scheduler via the API
(flex-context) or via asset attributes [see PR #884]

* Scheduling data better distinguishes (e.g. in chart tooltips) when a schedule was the result of a fallback mecha-
nism, by splitting off the fallback mechanism from the main scheduler (as a separate job) [see PR #846]

» New accounts can set a consultancy relationship with another account to give read access to external consultants
[see PR #877 and PR #892]

Infrastructure / Support

* Introduce a new one-to-many relation between assets, allowing the definition of an asset’s parent (which is also
an asset), which leads to a hierarchical relationship that enables assets to be related in a structured manner [see
PR #855 and PR #874]

¢ Introduce a new format for the output of Scheduler to prepare for multiple outputs [see PR #879]

4.3.10 v0.16.1 | October 2, 2023

Bugfixes

» Fix infeasible problem due to incorrect parsing of soc units of the soc-minima and soc-maxima fields within
the flex-model field [see PR #864]

4.3. FlexMeasures Changelog 15

https://github.com/FlexMeasures/flexmeasures/pull/900
https://github.com/FlexMeasures/flexmeasures/pull/918
https://github.com/FlexMeasures/flexmeasures/pull/905
https://github.com/FlexMeasures/flexmeasures/pull/917
https://flexmeasures.io/017-consultancy/
https://github.com/FlexMeasures/flexmeasures/pull/884
https://github.com/FlexMeasures/flexmeasures/pull/846
https://github.com/FlexMeasures/flexmeasures/pull/877
https://github.com/FlexMeasures/flexmeasures/pull/892
https://github.com/FlexMeasures/flexmeasures/pull/855
https://github.com/FlexMeasures/flexmeasures/pull/874
https://github.com/FlexMeasures/flexmeasures/pull/879
https://github.com/FlexMeasures/flexmeasures/pull/864

FlexMeasures Documentation, Release 0.19.1.dev20

4.3.11 v0.16.0 | September 27, 2023

Note: Read more on these features on the FlexMeasures blog.

New features

Introduce new reporter to compute profit/loss due to electricity flows: ProfitOrLossReporter [see PR #808 and
PR #844]

Charts visible in the UI can be exported to PNG or SVG formats in a more automated fashion, using the new CLI
command flexmeasures show chart [see PR #833]

Chart data visible in the UI can be exported to CSV format [see PR #849]

Sensor charts showing instantaneous observations can be interpolated by setting the interpolate sensor at-
tribute to one of the supported Vega-Lite interpolation methods [see PR #851]

API users can ask for a schedule to take into account an explicit power-capacity (flex-model) and/or
site-power-capacity (flex-context), thereby overriding any existing defaults for their asset [see PR #850]

API users (and hosts) are warned in case a fallback scheduling policy has been used to create their schedule (as
part of the the /sensors/<id>/schedules/<uuid> (GET) response message) [see PR #859]

Infrastructure / Support

Allow additional datetime conversions to quantitative time units, specifically, from timezone-naive and/or dayfirst
datetimes, which can be useful when importing data [see PR #831]

Add a new tutorial to explain the use of the AggregatorReporter to compute the headroom and the ProfitOrLoss-
Reporter to compute the cost of running a process [see PR #825 and PR #856]

Updated admin dashboard for inspecting asynchronous tasks (scheduling, forecasting, reporting, etc.), and im-
proved performance and security of the server by upgrading Flask and Flask extensions [see PR #838]

Script to update dependencies across supported Python versions [see PR #843]
Test all supported Python versions in our CI pipeline (GitHub Actions) [see PR #847]
Have our CI pipeline (GitHub Actions) build the Docker image and make a schedule [see PR #800]

Updated documentation on the consequences of setting the FLEXMEASURES_MODE config setting [see PR
#8571

Implement cache-busting to avoid the need for users to hard refresh the browser when new JavaScript function-
ality is added to the Ul in a new FlexMeasures version [see PR #860]

16

Chapter 4. Where to start reading?

https://flexmeasures.io/016-profitloss-reporter/
https://github.com/FlexMeasures/flexmeasures/pull/808
https://github.com/FlexMeasures/flexmeasures/pull/844
https://github.com/FlexMeasures/flexmeasures/pull/833
https://github.com/FlexMeasures/flexmeasures/pull/849
https://vega.github.io/vega-lite/docs/area.html#properties
https://github.com/FlexMeasures/flexmeasures/pull/851
https://github.com/FlexMeasures/flexmeasures/pull/850
https://github.com/FlexMeasures/flexmeasures/pull/859
https://github.com/FlexMeasures/flexmeasures/pull/831
https://github.com/FlexMeasures/flexmeasures/pull/825
https://github.com/FlexMeasures/flexmeasures/pull/856
https://github.com/FlexMeasures/flexmeasures/pull/838
https://github.com/FlexMeasures/flexmeasures/pull/843
https://github.com/FlexMeasures/flexmeasures/pull/847
https://github.com/FlexMeasures/flexmeasures/pull/800
https://github.com/FlexMeasures/flexmeasures/pull/857
https://github.com/FlexMeasures/flexmeasures/pull/857
https://github.com/FlexMeasures/flexmeasures/pull/860

FlexMeasures Documentation, Release 0.19.1.dev20

4.3.12 v0.15.2 | October 2, 2023
Bugfixes

* Fix infeasible problem due to incorrect parsing of soc units of the soc-minima and soc-maxima fields within
the flex-model field [see PR #864]

4.3.13 v0.15.1 | August 28, 2023
Bugfixes

* Fix infeasible problem due to floating point error in SoC targets [see PR #832]

 Use the source to filter beliefs in the AggregatorReporter and fix the case of having multiple sources [see PR
#819]

* Disable HiGHS logs on the standard output when LOGGING_LEVEL=INFO [see PR #824 and PR #820]

* Fix showing sensor data on the asset page of public assets, and searching for annotations on public assets [see
PR #830]

* Make the command flexmeasures add schedule for-storage to pass the soc-target timestamp to the flex model as
strings instead of pd.Timestamp [see PR #834]

4.3.14 v0.15.0 | August 9, 2023

Note: Read more on these features on the FlexMeasures blog.

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Warning: Upgrading to this version requires installing the LP/MILP solver HIGHS using pip install
highspy.

Warning: If your server is running in play mode (FLEXMEASURES_MODE = "play"), users will be able to see
sensor data from any account [see PR #740].

4.3. FlexMeasures Changelog 17

https://github.com/FlexMeasures/flexmeasures/pull/864
https://github.com/FlexMeasures/flexmeasures/pull/832
https://github.com/FlexMeasures/flexmeasures/pull/819
https://github.com/FlexMeasures/flexmeasures/pull/819
https://github.com/FlexMeasures/flexmeasures/pull/824
https://github.com/FlexMeasures/flexmeasures/pull/826
https://github.com/FlexMeasures/flexmeasures/pull/830
https://github.com/FlexMeasures/flexmeasures/pull/834
https://flexmeasures.io/015-process-scheduling-heatmap/
https://www.github.com/FlexMeasures/flexmeasures/pull/740

FlexMeasures Documentation, Release 0.19.1.dev20

New features

Add ProcessScheduler class to optimize the starting time of processes one of the policies developed (INFLEXI-
BLE, SHIFTABLE and BREAKABLE), accessible via the CLI command flexmeasures add schedule for-process
[see PR #729 and PR #768]

Users can select a new chart type (daily heatmap) on the sensor page of the Ul, showing how sensor values are
distributed over the time of day [see PR #715]

Added API endpoints /sensors/<id> (GET) for fetching a single sensor, /sensors (POST) for adding a sensor,
/sensors/<id> (PATCH) for updating a sensor and /sensors/<id> (DELETE) for deleting a sensor [see PR #759]
and [see PR #767] and [see PR #773] and [see PR #784]

Users are warned in the UI on when the data they are seeing includes one or more Daylight Saving Time (DST)
transitions, and heatmaps (see previous feature) visualize these transitions intuitively [see PR #723]

Allow deleting multiple sensors with a single call to flexmeasures delete sensor by passing the --id
option multiple times [see PR #734]

Make it a lot easier to read off the color legend on the asset page, especially when showing many sensors, as
they will now be ordered from top to bottom in the same order as they appear in the chart (as defined in the
sensors_to_show attribute), rather than alphabetically [see PR #742]

Users on FlexMeasures servers in play mode (FLEXMEASURES_MODE = "play")canuse the sensors_to_show
attribute to show any sensor on their asset pages, rather than only sensors registered to assets in their own account
or to public assets [see PR #740]

Having percentages within the [0, 100] domain is such a common use case that we now always include it in
sensor charts with % units, making it easier to read off individual charts and also to compare across charts [see
PR #739]

DataSource table now allows storing arbitrary attributes as a JSON (without content validation), similar to the
Sensor and GenericAsset tables [see PR #750]

Users will be able to see (e.g. in the UI) exactly which reporter created the report (saved as sensor data), and
hosts will be able to identify exactly which configuration was used to create a given report [see PR #751 and PR
#788]

The CLI flexmeasures add report now allows passing config and parameters in YAML format as files or editable
via the system’s default editor [see PR #752 and PR #788]

The CLI now allows to set lists and dicts as asset & sensor attributes (formerly only single values) [see PR #762]

Bugfixes

* Add binary constraint to avoid energy leakages during periods with negative prices [see PR #770]

Infrastructure / Support

Add support for profiling Flask API calls using pyinstrument (if installed). Can be enabled by setting the
environment variable FLEXMEASURES_PROFILE_REQUESTS to True [see PR #722]

The endpoint [POST] /health/ready returns the status of the Redis connection, if configured [see PR #699]
Document the device_scheduler linear program [see PR #764]

Add support for HIGHS solver [see PR #766]

Add support for installing FlexMeasures under Python 3.11 [see PR #771]

18

Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/729
https://www.github.com/FlexMeasures/flexmeasures/pull/768
https://www.github.com/FlexMeasures/flexmeasures/pull/715
https://www.github.com/FlexMeasures/flexmeasures/pull/759
https://www.github.com/FlexMeasures/flexmeasures/pull/767
https://www.github.com/FlexMeasures/flexmeasures/pull/773
https://www.github.com/FlexMeasures/flexmeasures/pull/784
https://www.github.com/FlexMeasures/flexmeasures/pull/723
https://www.github.com/FlexMeasures/flexmeasures/pull/734
https://www.github.com/FlexMeasures/flexmeasures/pull/742
https://www.github.com/FlexMeasures/flexmeasures/pull/740
https://www.github.com/FlexMeasures/flexmeasures/pull/739
https://www.github.com/FlexMeasures/flexmeasures/pull/750
https://www.github.com/FlexMeasures/flexmeasures/pull/751
https://www.github.com/FlexMeasures/flexmeasures/pull/788
https://www.github.com/FlexMeasures/flexmeasures/pull/788
https://www.github.com/FlexMeasures/flexmeasures/pull/752
https://www.github.com/FlexMeasures/flexmeasures/pull/788
https://www.github.com/FlexMeasures/flexmeasures/pull/762
https://www.github.com/FlexMeasures/flexmeasures/pull/770
https://www.github.com/FlexMeasures/flexmeasures/pull/722
api/v3_0.html#get--api-v3_0-health-ready
https://www.github.com/FlexMeasures/flexmeasures/pull/699
https://www.github.com/FlexMeasures/flexmeasures/pull/764
https://highs.dev/
https://www.github.com/FlexMeasures/flexmeasures/pull/766
https://www.github.com/FlexMeasures/flexmeasures/pull/771

FlexMeasures Documentation, Release 0.19.1.dev20

* Start keeping sets of pinned requirements per supported Python version, which also fixes recent Docker build
problem [see PR #776]

* Removed obsolete code dealing with deprecated data models (e.g. assets, markets and weather sensors), and
sunset the fm0 scheme for entity addresses [see PR #695 and project 11]

4.3.15 v0.14.3 | October 2, 2023
Bugfixes

* Fix infeasible problem due to incorrect parsing of soc units of the soc-minima and soc-maxima fields within
the flex-model field [see PR #864]

4.3.16 v0.14.2 | July 25, 2023
Bugfixes

* The error handling for infeasible constraints in storage.py was given too many arguments, which caused the
response from the API to be unhelpful when a schedule was requested with infeasible constraints [see PR #758]

4.3.17 v0.14.1 | June 26, 2023
Bugfixes
* Relax constraint validation of StorageScheduler to accommodate violations caused by floating point precision

[see PR #731]

* Avoid saving any NAN (not a number) values to the database, when calling flexmeasures add report [see
PR #735]

* Fix browser console error when loading asset or sensor page with only a single data point [see PR #732]

* Fix showing multiple sensors with bare 3-letter currency code as their units (e.g. EUR) in one chart [see PR
#738]

* Fix defaults for the --start-offset and --end-offset options to flexmeasures add report, which
weren’t being interpreted in the local timezone of the reporting sensor [see PR #744]

* Relax constraint for overlaying plot traces for sensors with various resolutions, making it possible to show e.g.
two price sensors in one chart, where one of them records hourly prices and the other records quarter-hourly
prices [see PR #743]

* Resolve bug where different page loads would potentially influence the time axis of each other’s charts, by avoid-
ing mutation of shared field definitions [see PR #746]

4.3. FlexMeasures Changelog 19

https://www.github.com/FlexMeasures/flexmeasures/pull/776
https://www.github.com/FlexMeasures/flexmeasures/pull/695
https://www.github.com/FlexMeasures/flexmeasures/projects/11
https://github.com/FlexMeasures/flexmeasures/pull/864
https://github.com/FlexMeasures/flexmeasures/pull/758
https://www.github.com/FlexMeasures/flexmeasures/pull/731
https://www.github.com/FlexMeasures/flexmeasures/pull/735
https://www.github.com/FlexMeasures/flexmeasures/pull/732
https://www.github.com/FlexMeasures/flexmeasures/pull/738
https://www.github.com/FlexMeasures/flexmeasures/pull/738
https://www.github.com/FlexMeasures/flexmeasures/pull/744
https://www.github.com/FlexMeasures/flexmeasures/pull/743
https://www.github.com/FlexMeasures/flexmeasures/pull/746

FlexMeasures Documentation, Release 0.19.1.dev20

4.3.18 v0.14.0 | June 15, 2023

Note: Read more on these features on the FlexMeasures blog.

New features

* Allow setting a storage efficiency using the new storage-efficiency field when calling /sen-
sors/<id>/schedules/trigger (POST) through the API (within the flex-model field), or when calling
flexmeasures add schedule for-storage through the CLI [see PR #679]

e Allow setting multiple SoC maxima and minima constraints for the StorageScheduler, using the new
soc-minima and soc-maxima fields when calling /sensors/<id>/schedules/trigger (POST) through the API
(within the flex-model field) [see PR #680]

e New CLI command flexmeasures add report to calculate a custom report from sensor data and save the
results to the database, with the option to export them to a CSV or Excel file [see PR #659]

¢ New CLI commands flexmeasures show reporters and flexmeasures show schedulers to list avail-
able reporters and schedulers, respectively, including any defined in registered plugins [see PR #686 and PR
#708]

* Allow creating public assets through the CLI, which are available to all users [see PR #727]

Bugfixes

* Fix charts not always loading over https in secured scenarios [see PR #716]

Infrastructure / Support
* Introduction of the classes Reporter, PandasReporter and AggregatorReporter to help customize your own re-
porter functions (experimental) [see PR #641 and PR #712]

* The setting FLEXMEASURES_PLUGINS can be set as environment variable now (as a comma-separated list)
[see PR #6060]

» Packaging was modernized to stop calling setup.py directly [see PR #671]

* Remove API versions 1.0, 1.1, 1.2, 1.3 and 2.0, while making sure that sunset endpoints keep returning HTTP
status 410 (Gone) responses [see PR #0667 and PR #717]

* Support Pandas 2 [see PR #673]

* Add code documentation from package structure and docstrings to official docs [see PR #698]

Warning: The setting FLEXMFEASURES_PLUGIN_PATHS has been deprecated since v0.7. It has now been
sunset. Please replace it with FLEXMEASURES_PLUGINS.

20 Chapter 4. Where to start reading?

https://flexmeasures.io/014-reporting-power/
https://www.github.com/FlexMeasures/flexmeasures/pull/679
https://www.github.com/FlexMeasures/flexmeasures/pull/680
https://www.github.com/FlexMeasures/flexmeasures/pull/659
https://www.github.com/FlexMeasures/flexmeasures/pull/686
https://github.com/FlexMeasures/flexmeasures/pull/708
https://github.com/FlexMeasures/flexmeasures/pull/708
https://github.com/FlexMeasures/flexmeasures/pull/727
https://www.github.com/FlexMeasures/flexmeasures/pull/716
https://www.github.com/FlexMeasures/flexmeasures/pull/641
https://www.github.com/FlexMeasures/flexmeasures/pull/712
https://www.github.com/FlexMeasures/flexmeasures/pull/660
https://www.github.com/FlexMeasures/flexmeasures/pull/671
https://www.github.com/FlexMeasures/flexmeasures/pull/667
https://www.github.com/FlexMeasures/flexmeasures/pull/717
https://www.github.com/FlexMeasures/flexmeasures/pull/673
https://www.github.com/FlexMeasures/flexmeasures/pull/698

FlexMeasures Documentation, Release 0.19.1.dev20

4.3.19 v0.13.3 | June 10, 2023
Bugfixes

* Fix forwarding arguments in deprecated util function [see PR #719]

4.3.20 v0.13.2 | June 9, 2023
Bugfixes

* Fix failing to save results of scheduling and reporting on subsequent calls for the same time period [see PR #709]

4.3.21 v0.13.1 | May 12, 2023
Bugfixes

* @deprecated not returning the output of the decorated function [see PR #678]

4.3.22 v0.13.0 | May 1, 2023

Warning: Sunset notice for API versions 1.0, 1.1, 1.2, 1.3 and 2.0: after upgrading to flexmeasures==0.
13, users of these API versions may receive HTTP status 410 (Gone) responses. See the documentation for
deprecation and sunset. The relevant endpoints have been deprecated since flexmeasures==0.12.

Warning: The API endpoint ([POST] /sensors/(id)/schedules/trigger) to make new schedules sunsets the depre-
cated (since v0.12) storage flexibility parameters (they move to the flex-model parameter group), as well as the
parameters describing other sensors (they move to flex-context).

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Note: Read more on these features on the FlexMeasures blog.

4.3. FlexMeasures Changelog 21

https://github.com/FlexMeasures/flexmeasures/pull/719
https://github.com/FlexMeasures/flexmeasures/pull/709
https://www.github.com/FlexMeasures/flexmeasures/pull/678
https://flexmeasures.readthedocs.io/en/latest/api/introduction.html#deprecation-and-sunset
https://flexmeasures.readthedocs.io/en/latest/api/introduction.html#deprecation-and-sunset
api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
https://flexmeasures.io/013-overlay-charts/

FlexMeasures Documentation, Release 0.19.1.dev20

New features

» Keyboard control over replay [see PR #562]

 Overlay charts (e.g. power profiles) on the asset page using the sensors_to_show attribute, and distinguish plots

by source (different trace), sensor (different color) and source type (different stroke dash) [see PR #534]

e The FLEXMEASURES_MAX_PLANNING_HORIZON config setting can also be set as an integer number of planning

steps rather than just as a fixed duration, which makes it possible to schedule further ahead in coarser time steps
[see PR #583]

* Different text styles for CLI output for errors, warnings or success messages [see PR #609]

* Added API endpoints and webpages /accounts and /accounts/<id> to list accounts and show an overview of the
assets, users and account roles of an account [see PR #605]

* Avoid redundantly recomputing jobs that are triggered without a relevant state change, where the FLEXMEA-
SURES_JOB_CACHE_TTL config setting defines the time in which the jobs with the same arguments are not
being recomputed [see PR #616]

Bugfixes

* Fix copy button on tutorials and other documentation, so that only commands are copied and no output or com-
ments [see PR #636]

e GET /api/v3_0/assets/public should ask for token authentication and not forward to login page [see PR #649]

Infrastructure / Support

* Support blackout tests for sunset API versions [see PR #651]
Sunset API versions 1.0, 1.1, 1.2, 1.3 and 2.0 [see PR #650]

* Sunset several API fields for /sensors/<id>/schedules/trigger (POST) that have moved into the flex-model or
flex-context fields [see PR #580]

¢ Fix broken make show-data-model command [see PR #638]

* Bash script for a clean database to run toy-tutorial by using make clean-db db_name=database_name command
[see PR #640]

4.3.23 v0.12.3 | February 28, 2023

Bugfixes

* Fix premature deserialization of flex-context field for /sensors/<id>/schedules/trigger (POST) [see PR #593]

22

Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/562
https://www.github.com/FlexMeasures/flexmeasures/pull/534
https://www.github.com/FlexMeasures/flexmeasures/pull/583
https://www.github.com/FlexMeasures/flexmeasures/pull/609
https://github.com/FlexMeasures/flexmeasures/pull/605
https://www.github.com/FlexMeasures/flexmeasures/pull/616
https://www.github.com/FlexMeasures/flexmeasures/pull/636
https://www.github.com/FlexMeasures/flexmeasures/pull/649
https://www.github.com/FlexMeasures/flexmeasures/pull/651
https://www.github.com/FlexMeasures/flexmeasures/pull/650
https://www.github.com/FlexMeasures/flexmeasures/pull/580
https://www.github.com/FlexMeasures/flexmeasures/pull/638
https://github.com/FlexMeasures/flexmeasures/pull/640
https://www.github.com/FlexMeasures/flexmeasures/pull/593

FlexMeasures Documentation, Release 0.19.1.dev20

4.3.24 v0.12.2 | February 4, 2023

Bugfixes

Fix CLI command flexmeasures schedule for-storage without --as-job flag [see PR #589]

4.3.25 v0.12.1 | January 12, 2023

Bugfixes

Fix validation of (deprecated) API parameter roundtrip-efficiency [see PR #582]

4.3.26 v0.12.0 | January 4, 2023

Warning: After upgrading to flexmeasures==0.12, users of API versions 1.0, 1.1, 1.2, 1.3 and 2.0 will receive
"Deprecation" and "Sunset" response headers, and warnings are logged for FlexMeasures hosts whenever users
call API endpoints in these deprecated API versions. The relevant endpoints are planned to become unresponsive
in flexmeasures==0.13.

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Note: Read more on these features on the FlexMeasures blog.

New features

Hit the replay button to visually replay what happened, available on the sensor and asset pages [see PR #463 and
PR #560]

Ability to provide your own custom scheduling function [see PR #505]

Visually distinguish forecasts/schedules (dashed lines) from measurements (solid lines), and expand the tooltip
with timing info regarding the forecast/schedule horizon or measurement lag [see PR #503]

The asset page also allows to show sensor data from other assets that belong to the same account [see PR #500]

The CLI command flexmeasures monitor latest-login supports to check if (bot) users who are expected
to contact FlexMeasures regularly (e.g. to send data) fail to do so [see PR #541]

The CLI command flexmeasures show beliefs supports showing beliefs data in a custom resolution and/or
timezone, and also saving the shown beliefs data to a CSV file [see PR #519]

Improved import of time series data from CSV file: 1) drop duplicate records with warning, 2) allow configuring
which column contains explicit recording times for each data point (use case: import forecasts) [see PR #501],
3) localize timezone naive data, 4) support reading in datetime and timedelta values, 5) remove rows with NaN
values, and 6) filter by values in specific columns [see PR #521]

Filter data by source in the API endpoint /sensors/data (GET) [see PR #543]

4.3.

FlexMeasures Changelog 23

https://www.github.com/FlexMeasures/flexmeasures/pull/589
https://www.github.com/FlexMeasures/flexmeasures/pull/582
https://flexmeasures.io/012-replay-custom-scheduling/
https://www.github.com/FlexMeasures/flexmeasures/pull/463
https://www.github.com/FlexMeasures/flexmeasures/pull/560
https://www.github.com/FlexMeasures/flexmeasures/pull/505
https://www.github.com/FlexMeasures/flexmeasures/pull/503
https://www.github.com/FlexMeasures/flexmeasures/pull/500
https://www.github.com/FlexMeasures/flexmeasures/pull/541
https://www.github.com/FlexMeasures/flexmeasures/pull/519
https://www.github.com/FlexMeasures/flexmeasures/pull/501
https://www.github.com/FlexMeasures/flexmeasures/pull/521
https://www.github.com/FlexMeasures/flexmeasures/pull/543

FlexMeasures Documentation, Release 0.19.1.dev20

* Allow posting null values to /sensors/data (POST) to correctly space time series that include missing values

(the missing values are not stored) [see PR #549]

* Allow setting a custom planning horizon when calling /sensors/<id>/schedules/trigger (POST), using the new

duration field [see PR #568]

* New resampling functionality for instantaneous sensor data: 1) flexmeasures show beliefs can now handle

showing (and saving) instantaneous sensor data and non-instantaneous sensor data together, and 2) the API
endpoint /sensors/data (GET) now allows fetching instantaneous sensor data in a custom frequency, by using
the “resolution” field [see PR #542]

Bugfixes

The CLI command flexmeasures show beliefs now supports plotting time series data that includes NaN
values, and provides better support for plotting multiple sensors that do not share the same unit [see PR #516
and PR #539]

Fixed JSON wrapping of return message for /sensors/data (GET) [see PR #543]

Consistent CLI/UI support for asset lat/Ing positions up to 7 decimal places (previously the UI rounded to 4
decimal places, whereas the CLI allowed more than 4) [see PR #522]

Stop trimming the planning window in response to price availability, which is a problem when SoC targets occur
outside of the available price window, by making a simplistic assumption about future prices [see PR #538]

Faster loading of initial charts and calendar date selection [see PR #533]

Infrastructure / Support

Reduce size of Docker image (from 2GB to 1.4GB) [see PR #512]
Allow extra requirements to be freshly installed when running docker-compose up [see PR #528]
Remove bokeh dependency and obsolete Ul views [see PR #476]

Fix flexmeasures db-ops dump and flexmeasures db-ops restore not working in docker containers
[see PR #530] and incorrectly reporting a success when pg_dump and pg_restore are not installed [see PR #526]

Plugins can save BeliefsSeries, too, instead of just BeliefsDataFrames [see PR #523]

Improve documentation and code w.r.t. storage flexibility modelling — prepare for handling other schedulers &
merge battery and car charging schedulers [see PR #511, PR #537 and PR #566]

Revised strategy for removing unchanged beliefs when saving data: retain the oldest measurement (ex-post be-
lief), too [see PR #518]

Scheduling test for maximizing self-consumption, and improved time series db queries for fixed tariffs (and other
long-term constants) [see PR #532]

Clean up table formatting for flexmeasures show CLI commands [see PR #540]

Add "Deprecation” and "Sunset" response headers for API users of deprecated API versions, and log warn-
ings for FlexMeasures hosts when users still use them [see PR #554 and PR #565]

Explain how to avoid potential SMTPRecipientsRefused errors when using FlexMeasures in combination with
a mail server [see PR #558]

Set a limit to the allowed planning window for API users, using the FLEXMEASURES_MAX_PLANNING_HORIZON
setting [see PR #568]

24

Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/549
https://www.github.com/FlexMeasures/flexmeasures/pull/568
https://www.github.com/FlexMeasures/flexmeasures/pull/542
https://www.github.com/FlexMeasures/flexmeasures/pull/516
https://www.github.com/FlexMeasures/flexmeasures/pull/539
https://www.github.com/FlexMeasures/flexmeasures/pull/543
https://www.github.com/FlexMeasures/flexmeasures/pull/522
https://www.github.com/FlexMeasures/flexmeasures/pull/538
https://www.github.com/FlexMeasures/flexmeasures/pull/533
https://www.github.com/FlexMeasures/flexmeasures/pull/512
https://www.github.com/FlexMeasures/flexmeasures/pull/528
https://www.github.com/FlexMeasures/flexmeasures/pull/476
https://www.github.com/FlexMeasures/flexmeasures/pull/530
https://www.github.com/FlexMeasures/flexmeasures/pull/526
https://www.github.com/FlexMeasures/flexmeasures/pull/523
https://www.github.com/FlexMeasures/flexmeasures/pull/511
https://www.github.com/FlexMeasures/flexmeasures/pull/537
https://www.github.com/FlexMeasures/flexmeasures/pull/566
https://www.github.com/FlexMeasures/flexmeasures/pull/518
https://www.github.com/FlexMeasures/flexmeasures/pull/532
https://www.github.com/FlexMeasures/flexmeasures/pull/540
https://www.github.com/FlexMeasures/flexmeasures/pull/554
https://www.github.com/FlexMeasures/flexmeasures/pull/565
https://www.github.com/FlexMeasures/flexmeasures/pull/558
https://www.github.com/FlexMeasures/flexmeasures/pull/568

FlexMeasures Documentation, Release 0.19.1.dev20

Warning: The API endpoint ([POST] /sensors/(id)/schedules/trigger) to make new schedules will (in v0.13) sun-
set the storage flexibility parameters (they move to the flex-model parameter group), as well as the parameters
describing other sensors (they move to flex-context).

Warning: The CLI command flexmeasures monitor tasks has been deprecated (it’s being renamed to
flexmeasures monitor last-run). The old name will be sunset in version 0.13.

Warning: The CLI command flexmeasures add schedule has been renamed to flexmeasures add
schedule for-storage. The old name will be sunset in version 0.13.

4.3.27 v0.11.3 | November 2, 2022
Bugfixes

* Fix scheduling with imperfect efficiencies, which resulted in exceeding the device’s lower SoC limit [see PR
#520]

* Fix scheduler for Charge Points when taking into account inflexible devices [see PR #517]

* Prevent rounding asset lat/long positions to 4 decimal places when editing an asset in the UI [see PR #522]

4.3.28 v0.11.2 | September 6, 2022
Bugfixes

* Fix regression for sensors recording non-instantaneous values [see PR #498]

* Fix broken auth check for creating assets with CLI [see PR #497]

4.3.29 v0.11.1 | September 5, 2022
Bugfixes

* Do not fail asset page if none of the sensors has any data [see PR #493]

* Do not fail asset page if one of the shown sensors records instantaneous values [see PR #491]

4.3.30 v0.11.0 | August 28, 2022

New features

* The asset page now shows the most relevant sensor data for the asset [see PR #449]
¢ Individual sensor charts show available annotations [see PR #428]

* New API options to further customize the optimization context for scheduling, including the ability to use dif-
ferent prices for consumption and production (feed-in) [see PR #451]

4.3. FlexMeasures Changelog 25

api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
https://www.github.com/FlexMeasures/flexmeasures/pull/520
https://www.github.com/FlexMeasures/flexmeasures/pull/520
https://www.github.com/FlexMeasures/flexmeasures/pull/517
https://www.github.com/FlexMeasures/flexmeasures/pull/522
https://www.github.com/FlexMeasures/flexmeasures/pull/498
https://www.github.com/FlexMeasures/flexmeasures/pull/497
https://www.github.com/FlexMeasures/flexmeasures/pull/493
https://www.github.com/FlexMeasures/flexmeasures/pull/491
https://www.github.com/FlexMeasures/flexmeasures/pull/449
https://www.github.com/FlexMeasures/flexmeasures/pull/428
https://www.github.com/FlexMeasures/flexmeasures/pull/451

FlexMeasures Documentation, Release 0.19.1.dev20

* Admins can group assets by account on dashboard & assets page [see PR #461]

Collapsible side-panel (hover/swipe) used for date selection on sensor charts, and various styling improvements
[see PR #447 and PR #448]

Add CLI command flexmeasures jobs show-queues [see PR #455]
e Switched from 12-hour AM/PM to 24-hour clock notation for time series chart axis labels [see PR #446]

* Get data in a given resolution [see PR #458]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

* Do not fail asset page if entity addresses cannot be built [see PR #457]
* Asynchronous reloading of a chart’s dataset relies on that chart already having been embedded [see PR #472]

» Time scale axes in sensor data charts now match the requested date range, rather than stopping at the edge of the
available data [see PR #449]

¢ The docker-based tutorial now works with UI on all platforms (port 5000 did not expose on MacOS) [see PR
#465]

¢ Fix interpretation of scheduling results in toy tutorial [see PR #466 and PR #475]
* Avoid formatting datetime.timedelta durations as nominal ISO durations [see PR #459]

¢ Account admins cannot add assets to other accounts any more; and they are shown a button for asset creation in
UI [see PR #488]

Infrastructure / Support

* Docker compose stack now with Redis worker queue [see PR #455]

* Allow access tokens to be passed as env vars as well [see PR #443]

* Queue workers can get initialised without a custom name and name collisions are handled [see PR #455]
* New API endpoint to get public assets [see PR #461]

* Allow editing an asset’s JSON attributes through the UI [see PR #474]

* Allow a custom message when monitoring latest run of tasks [see PR #489]

4.3.31 v0.10.1 | August 12, 2022
Bugfixes

* Fix some UI styling regressions in e.g. color contrast and hover effects [see PR #441]

26 Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/461
https://www.github.com/FlexMeasures/flexmeasures/pull/447
https://www.github.com/FlexMeasures/flexmeasures/pull/448
https://www.github.com/FlexMeasures/flexmeasures/pull/455
https://www.github.com/FlexMeasures/flexmeasures/pull/446
https://www.github.com/FlexMeasures/flexmeasures/pull/458
https://flexmeasures.io/011-better-data-views/
https://www.github.com/FlexMeasures/flexmeasures/pull/457
https://www.github.com/FlexMeasures/flexmeasures/pull/472
https://www.github.com/FlexMeasures/flexmeasures/pull/449
https://www.github.com/FlexMeasures/flexmeasures/pull/465
https://www.github.com/FlexMeasures/flexmeasures/pull/465
https://www.github.com/FlexMeasures/flexmeasures/pull/466
https://www.github.com/FlexMeasures/flexmeasures/pull/475
https://www.github.com/FlexMeasures/flexmeasures/pull/459
https://www.github.com/FlexMeasures/flexmeasures/pull/488
https://www.github.com/FlexMeasures/flexmeasures/pull/455
https://www.github.com/FlexMeasures/flexmeasures/pull/443
https://www.github.com/FlexMeasures/flexmeasures/pull/455
https://www.github.com/FlexMeasures/flexmeasures/pull/461
https://www.github.com/FlexMeasures/flexmeasures/pull/474
https://www.github.com/FlexMeasures/flexmeasures/pull/489
https://www.github.com/FlexMeasures/flexmeasures/pull/441

FlexMeasures Documentation, Release 0.19.1.dev20

4.3.32 v0.10.0 | May 8, 2022
New features

* New design for FlexMeasures’ UI back office [see PR #425]
* Improve legibility of chart axes [see PR #413]
» API provides health readiness check at /api/v3_0/health/ready [see PR #416]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

* Fix small problems in support for the admin-reader role & role-based authorization [see PR #422]

Infrastructure / Support

* Dockerfile to run FlexMeasures in container; also docker-compose file [see PR #416]
» Unit conversion prefers shorter units in general [see PR #415]
* Shorter CI builds in Github Actions by caching Python environment [see PR #361]
* Allow to filter data by source using a tuple instead of a list [see PR #421]
4.3.33 v0.9.4 | April 28, 2022
Bugfixes

* Support checking validity of custom units (i.e. non-SI, non-currency units) [see PR #424]

4.3.34 v0.9.3 | April 15, 2022
Bugfixes

 Let registered plugins use CLI authorization [see PR #411]

4.3.35 v0.9.2 | April 10, 2022
Bugfixes

¢ Prefer unit conversions to short stock units [see PR #412]

« Fix filter for selecting one deterministic belief per event, which was duplicating index levels [see PR #414]

4.3. FlexMeasures Changelog 27

https://www.github.com/FlexMeasures/flexmeasures/pull/425
https://www.github.com/FlexMeasures/flexmeasures/pull/413
https://www.github.com/FlexMeasures/flexmeasures/pull/416
https://flexmeasures.io/010-docker-styling/
https://www.github.com/FlexMeasures/flexmeasures/pull/422
https://www.github.com/FlexMeasures/flexmeasures/pull/416
https://www.github.com/FlexMeasures/flexmeasures/pull/415
https://www.github.com/FlexMeasures/flexmeasures/pull/361
https://www.github.com/FlexMeasures/flexmeasures/pull/421
https://www.github.com/FlexMeasures/flexmeasures/pull/424
https://www.github.com/FlexMeasures/flexmeasures/pull/411
https://www.github.com/FlexMeasures/flexmeasures/pull/412
https://www.github.com/FlexMeasures/flexmeasures/pull/414

FlexMeasures Documentation, Release 0.19.1.dev20

4.3.36 v0.9.1 | March 31, 2022

Bugfixes

Fix auth bug not masking locations of inaccessible assets on map [see PR #409]
Fix CLI auth check [see PR #407]
Fix resampling of sensor data for scheduling [see PR #406]

4.3.37 v0.9.0 | March 25, 2022

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

New features

Three new CLI commands for cleaning up your database: delete 1) unchanged beliefs, 2) NaN values or 3) a
sensor and all of its time series data [see PR #328]

Add CLI option to pass a data unit when reading in time series data from CSV, so data can automatically be
converted to the sensor unit [see PR #341]

Add CLI option to specify custom strings that should be interpreted as NaN values when reading in time series
data from CSV [see PR #357]

Add CLI commands flexmeasures add sensor, flexmeasures add asset-type, flexmeasures add
beliefs (which were experimental features before) [see PR #337]

Add CLI commands for showing organisational structure [see PR #339]
Add CLI command for showing time series data [see PR #379]

Add CLI command for attaching annotations to assets: flexmeasures add holidays adds public holidays
[see PR #343]

Add CLI command for resampling existing sensor data to new resolution [see PR #360]
Add CLI command to delete an asset, with its sensors and data [see PR #395]

Add CLI command to edit/add an attribute on an asset or sensor [see PR #380]

Add CLI command to add a toy account for tutorials and trying things [see PR #368]
Add CLI command to create a charging schedule [see PR #372]

Support for percent (%) and permille (%o) sensor units [see PR #359]

Note:

Read more on these features on the FlexMeasures blog.

28

Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/409
https://www.github.com/FlexMeasures/flexmeasures/pull/407
https://www.github.com/FlexMeasures/flexmeasures/pull/406
https://www.github.com/FlexMeasures/flexmeasures/pull/328
https://www.github.com/FlexMeasures/flexmeasures/pull/341
https://www.github.com/FlexMeasures/flexmeasures/pull/357
https://www.github.com/FlexMeasures/flexmeasures/pull/337
https://www.github.com/FlexMeasures/flexmeasures/pull/339
https://www.github.com/FlexMeasures/flexmeasures/pull/379
https://www.github.com/FlexMeasures/flexmeasures/pull/343
https://www.github.com/FlexMeasures/flexmeasures/pull/360
https://www.github.com/FlexMeasures/flexmeasures/pull/395
https://www.github.com/FlexMeasures/flexmeasures/pull/380
https://www.github.com/FlexMeasures/flexmeasures/pull/368
https://www.github.com/FlexMeasures/flexmeasures/pull/372
https://www.github.com/FlexMeasures/flexmeasures/pull/359
https://flexmeasures.io/090-cli-developer-power/

FlexMeasures Documentation, Release 0.19.1.dev20

Bugfixes
Infrastructure / Support

¢ Plugins can import common FlexMeasures classes (like Asset and Sensor) from a central place, using from
flexmeasures import Asset, Sensor [see PR #354]

Adapt CLI command for entering some initial structure (flexmeasures add structure) to new datamodel
[see PR #349]

* Align documentation requirements with pip-tools [see PR #384]

* Beginning API v3.0 - more REST-like, supporting assets, users and sensor data [see PR #390 and PR #392]

4.3.38 v0.8.0 | January 24, 2022

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Warning: In case you use FlexMeasures for simulations using FLEXMEASURES_MODE = "play", al-
lowing to overwrite data is now set separately using FLEXMEASURES_ALLOW_DATA_OVERWRITE. Add
FLEXMEASURES_ALLOW_DATA_OVERWRITE = True to your config settings to keep the old behaviour.

Note: v0.8.0 is doing much of the work we need to do to move to the new data model (see
note_on_datamodel_transition). We hope to keep the migration steps for users very limited. One thing you’ll notice is
that we are copying over existing data to the new model (which will be kept in sync) with the db upgrade command
(see warning above), which can take a few minutes.

New features

 Bar charts of sensor data for individual sensors, that can be navigated using a calendar [see PR #99 and PR #290]

 Charts with sensor data can be requested in one of the supported [vega-lite themes] (incl. a dark theme) [see PR
#221]

* Mobile friendly (responsive) charts of sensor data, and such charts can be requested with a custom width and
height [see PR #313]

* Schedulers take into account round-trip efficiency if set [see PR #291]
* Schedulers take into account min/max state of charge if set [see PR #325]

* Fallback policies for charging schedules of batteries and Charge Points, in cases where the solver is presented
with an infeasible problem [see PR #267 and PR #270]

Note: Read more on these features on the FlexMeasures blog.

4.3. FlexMeasures Changelog 29

https://www.github.com/FlexMeasures/flexmeasures/pull/354
https://www.github.com/FlexMeasures/flexmeasures/pull/349
https://www.github.com/FlexMeasures/flexmeasures/pull/384
https://www.github.com/FlexMeasures/flexmeasures/pull/390
https://www.github.com/FlexMeasures/flexmeasures/pull/392
https://www.github.com/FlexMeasures/flexmeasures/pull/99
https://www.github.com/FlexMeasures/flexmeasures/pull/290
https://github.com/vega/vega-themes#included-themes
https://www.github.com/FlexMeasures/flexmeasures/pull/221
https://www.github.com/FlexMeasures/flexmeasures/pull/221
https://www.github.com/FlexMeasures/flexmeasures/pull/313
https://www.github.com/FlexMeasures/flexmeasures/pull/291
https://www.github.com/FlexMeasures/flexmeasures/pull/325
https://www.github.com/FlexMeasures/flexmeasures/pull/267
https://www.github.com/FlexMeasures/flexmeasures/pull/270
https://flexmeasures.io/080-better-scheduling-safer-data/

FlexMeasures Documentation, Release 0.19.1.dev20

Deprecations

* The Portfolio and Analytics views are deprecated [see PR #321]

Bugfixes

* Fix recording time of schedules triggered by UDI events [see PR #300]
¢ Set bar width of bar charts based on sensor resolution [see PR #310]

* Fix bug in sensor data charts where data from multiple sources would be stacked, which incorrectly suggested

that the data should be summed, whereas the data represents alternative beliefs [see PR #228]

Infrastructure / Support

Account-based authorization, incl. new decorators for endpoints [see PR #210]

Central authorization policy which lets database models codify who can do what (permission-based) and relieve
API endpoints from this [see PR #234]

Improve data specification for forecasting models using timely-beliefs data [see PR #154]
Properly attribute Mapbox and OpenStreetMap [see PR #292]

Allow plugins to register their custom config settings, so that FlexMeasures can check whether they are set up
correctly [see PR #230 and PR #237]

Add sensor method to obtain just its latest state (excl. forecasts) [see PR #235]
Migrate attributes of assets, markets and weather sensors to our new sensor model [see PR #254 and project 9]

Migrate all time series data to our new sensor data model based on the timely beliefs lib [see PR #286 and project
9]

Support the new asset model (which describes the organisational structure, rather than sensors and data) in Ul and
API - until the transition to our new data model is completed, the new API for assets is at /api/dev/generic_assets
[see PR #251 and PR #290]

Internal search methods return most recent beliefs by default, also for charts, which can make them load a lot
faster [see PR #307 and PR #312]

Support unit conversion for posting sensor data [see PR #283 and PR #293]

Improve the core device scheduler to support dealing with asymmetric efficiency losses of individual devices,
and with asymmetric up and down prices for deviating from previous commitments (such as a different feed-in
tariff) [see PR #291]

Stop automatically triggering forecasting jobs when API calls save nothing new to the database, thereby saving
redundant computation [see PR #303]

30

Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/321
https://www.github.com/FlexMeasures/flexmeasures/pull/300
https://www.github.com/FlexMeasures/flexmeasures/pull/310
https://www.github.com/FlexMeasures/flexmeasures/pull/228
https://www.github.com/FlexMeasures/flexmeasures/pull/210
https://www.github.com/FlexMeasures/flexmeasures/pull/234
https://www.github.com/FlexMeasures/flexmeasures/pull/154
https://www.github.com/FlexMeasures/flexmeasures/pull/292
https://www.github.com/FlexMeasures/flexmeasures/pull/230
https://www.github.com/FlexMeasures/flexmeasures/pull/237
https://www.github.com/FlexMeasures/flexmeasures/pull/235
https://www.github.com/FlexMeasures/flexmeasures/pull/254
https://www.github.com/FlexMeasures/flexmeasures/projects/9
https://github.com/SeitaBV/timely-beliefs
https://www.github.com/FlexMeasures/flexmeasures/pull/286
https://www.github.com/FlexMeasures/flexmeasures/projects/9
https://www.github.com/FlexMeasures/flexmeasures/projects/9
https://www.github.com/FlexMeasures/flexmeasures/pull/251
https://www.github.com/FlexMeasures/flexmeasures/pulls/290
https://www.github.com/FlexMeasures/flexmeasures/pull/307
https://www.github.com/FlexMeasures/flexmeasures/pull/312
https://www.github.com/FlexMeasures/flexmeasures/pull/283
https://www.github.com/FlexMeasures/flexmeasures/pull/293
https://www.github.com/FlexMeasures/flexmeasures/pull/291
https://www.github.com/FlexMeasures/flexmeasures/pull/303

FlexMeasures Documentation, Release 0.19.1.dev20

4.3.39 v0.7.1 | November 8, 2021
Bugfixes

* Fix device messages, which were mixing up older and more recent schedules [see PR #231]

4.3.40 v0.7.0 | October 26, 2021

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Warning: The config setting FLEXMEASURES_PLUGIN_PATHS has been renamed to FLEXMEASURES_PLUGINS.
The old name still works but is deprecated.

New features

¢ Set a logo for the top left corner with the new FLEXMEASURES_MENU_LOGO_PATH setting [see PR #184]

* Add an extra style-sheet which applies to all pages with the new FLEXMEASURES_EXTRA_CSS_PATH set-
ting [see PR #185]

» Data sources can be further distinguished by what model (and version) they ran [see PR #215]

* Enable plugins to automate tests with app context [see PR #220]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

* Fix users resetting their own password [see PR #195]

* Fix scheduling for heterogeneous settings, for instance, involving sensors with different time zones and/or reso-
lutions [see PR #207]

¢ Fix sensors/<id>/chart view [see PR #223]

Infrastructure / Support
» FlexMeasures plugins can be Python packages now, and we provide a cookie-cutter template for this approach
[see PR #182]
¢ Set default timezone for new users using the FLEXMEASURES_TIMEZONE config setting [see PR #190]

* To avoid databases from filling up with irrelevant information, only beliefs data representing changed beliefs are
saved, and unchanged beliefs are dropped [see PR #194]

* Monitored CLI tasks can get better names for identification [see PR #193]
¢ Less custom logfile location, document logging for devs [see PR #196]

» Keep forecasting and scheduling jobs in the queues for only up to one day [see PR #198]

4.3. FlexMeasures Changelog 31

https://www.github.com/FlexMeasures/flexmeasures/pull/231
https://www.github.com/FlexMeasures/flexmeasures/pull/184
https://www.github.com/FlexMeasures/flexmeasures/pull/185
https://www.github.com/FlexMeasures/flexmeasures/pull/215
https://www.github.com/FlexMeasures/flexmeasures/pull/220
https://flexmeasures.io/070-professional-plugins/
https://www.github.com/FlexMeasures/flexmeasures/pull/195
https://www.github.com/FlexMeasures/flexmeasures/pull/207
https://www.github.com/FlexMeasures/flexmeasures/pull/223
https://github.com/FlexMeasures/flexmeasures-plugin-template
https://www.github.com/FlexMeasures/flexmeasures/pull/182
https://www.github.com/FlexMeasures/flexmeasures/pull/190
https://www.github.com/FlexMeasures/flexmeasures/pull/194
https://www.github.com/FlexMeasures/flexmeasures/pull/193
https://www.github.com/FlexMeasures/flexmeasures/pull/196
https://www.github.com/FlexMeasures/flexmeasures/pull/198

FlexMeasures Documentation, Release 0.19.1.dev20

4.3.41 v0.6.1 | October 23, 2021

New features
Bugfixes

¢ Fix (dev) CLI command for adding a GenericAssetType [see PR #173]
* Fix (dev) CLI command for adding a Sensor [see PR #176]
* Fix missing conversion of data source names and ids to DataSource objects [see PR #178]

* Fix GetDeviceMessage to ensure chronological ordering of values [see PR #216]

Infrastructure / Support

4.3.42 v0.6.0 | September 3, 2021

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump). In case you are using experimental developer features and have previously
set up sensors, be sure to check out the upgrade instructions in PR #157. Furthermore, if you want to create custom
user/account relationships while upgrading (otherwise the upgrade script creates accounts based on email domains),
check out the upgrade instructions in PR #159. If you want to use both of these custom upgrade features, do the
upgrade in two steps. First, as described in PR 157 and upgrading up to revision b6d49ed7cceb, then as described
in PR 1509 for the rest.

Warning: The config setting FLEXMEASURES_LISTED_VIEWS has been renamed to
FLEXMEASURES_MENU_LISTED_VIEWS.

Warning: Plugins now need to set their version on their module rather than on their blueprint. See the documen-
tation for writing plugins.

New features
* Multi-tenancy: Supporting multiple customers per FlexMeasures server, by introducing the Account concept,
where accounts have users and assets associated [see PR #159 and PR #163]

¢ In the UI, the root view (“/”"), the platform name and the visible menu items can now be more tightly controlled
(per account roles of the current user) [see also PR #163]

* Analytics view offers grouping of all assets by location [see PR #148]

¢ Add (experimental) endpoint to post sensor data for any sensor. Also supports our ongoing integration with data
internally represented using the timely beliefs lib [see PR #147]

Note: Read more on these features on the FlexMeasures blog.

32 Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/173
https://www.github.com/FlexMeasures/flexmeasures/pull/176
https://www.github.com/FlexMeasures/flexmeasures/pull/178
https://www.github.com/FlexMeasures/flexmeasures/pull/216
https://github.com/FlexMeasures/flexmeasures/pull/157
https://github.com/FlexMeasures/flexmeasures/pull/159
https://flexmeasures.readthedocs.io/en/v0.6.0/dev/plugins.html
https://flexmeasures.readthedocs.io/en/v0.6.0/dev/plugins.html
https://www.github.com/FlexMeasures/flexmeasures/pull/159
https://www.github.com/FlexMeasures/flexmeasures/pull/163
https://www.github.com/FlexMeasures/flexmeasures/pull/163
https://www.github.com/FlexMeasures/flexmeasures/pull/148
https://github.com/SeitaBV/timely-beliefs
https://www.github.com/FlexMeasures/flexmeasures/pull/147
https://flexmeasures.io/v060-multi-tenancy-error-monitoring/

FlexMeasures Documentation, Release 0.19.1.dev20

Bugfixes
Infrastructure / Support

* Add possibility to send errors to Sentry [see PR #143]

* Add CLI task to monitor if tasks ran successfully and recently enough [see PR #146]

* Document how to use a custom favicon in plugins [see PR #152]

¢ Allow plugins to register multiple Flask blueprints [see PR #171]

» Continue experimental integration with timely beliefs lib: link multiple sensors to a single asset [see PR #157]

* The experimental parts of the data model can now be visualised, as well, via make show-data-model (add the
—dev option in Makefile) [also in PR #157]

4.3.43 v0.5.0 | June 7, 2021

Warning: If you retrieve weather forecasts through FlexMeasures: we had to switch to OpenWeatherMap, as Dark
Sky is closing. This requires an update to config variables — the new setting is called OPENWEATHERMAP_API_KEY.

New features

* Allow plugins to overwrite Ul routes and customise the teaser on the login form [see PR #106]
* Allow plugins to customise the copyright notice and credits in the UI footer [see PR #123]

* Display loaded plugins in footer and support plugin versioning [see PR #139]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

* Fix last login date display in user list [see PR #133]

* Choose better forecasting horizons when weather data is posted [see PR #131]

Infrastructure / Support

¢ Add tutorials on how to add and read data from FlexMeasures via its API [see PR #130]
* For weather forecasts, switch from Dark Sky (closed from Aug 1, 2021) to OpenWeatherMap API [see PR #113]

* Entity address improvements: add new id-based finl scheme, better documentation and more validation support
of entity addresses [see PR #81]

¢ Re-use the database between automated tests, if possible. This shaves 2/3rd off of the time it takes for the
FlexMeasures test suite to run [see PR #115]

* Make assets use MW as their default unit and enforce that in CLI, as well (API already did) [see PR #108]
e Let CLI package and plugins use Marshmallow Field definitions [see PR #125]

* add time_utils.get_recent_clock_time_window() function [see PR #135]

4.3. FlexMeasures Changelog 33

https://www.github.com/FlexMeasures/flexmeasures/pull/143
https://www.github.com/FlexMeasures/flexmeasures/pull/146
https://www.github.com/FlexMeasures/flexmeasures/pull/152
https://www.github.com/FlexMeasures/flexmeasures/pull/171
https://github.com/SeitaBV/timely-beliefs
https://github.com/FlexMeasures/flexmeasures/pull/157
https://github.com/FlexMeasures/flexmeasures/pull/157
https://www.github.com/FlexMeasures/flexmeasures/pull/106
https://www.github.com/FlexMeasures/flexmeasures/pull/123
https://www.github.com/FlexMeasures/flexmeasures/pull/139
https://flexmeasures.io/v050-openweathermap-plugin-customisation/
https://www.github.com/FlexMeasures/flexmeasures/pull/133
https://www.github.com/FlexMeasures/flexmeasures/pull/131
https://www.github.com/FlexMeasures/flexmeasures/pull/130
https://www.github.com/FlexMeasures/flexmeasures/pull/113
https://www.github.com/FlexMeasures/flexmeasures/pull/81
https://www.github.com/FlexMeasures/flexmeasures/pull/115
https://www.github.com/FlexMeasures/flexmeasures/pull/108
https://www.github.com/FlexMeasures/flexmeasures/pull/125
https://www.github.com/FlexMeasures/flexmeasures/pull/135

FlexMeasures Documentation, Release 0.19.1.dev20

4.3.44 v0.4.1 | May 7, 2021
Bugfixes

* Fix regression when editing assets in the UI [see PR #122]
* Fixed a regression that stopped asset, market and sensor selection from working [see PR #117]
 Prevent logging out user when clearing the session [see PR #112]

» Prevent user type data source to be created without setting a user [see PR #111]

4.3.45 v0.4.0 | April 29, 2021

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

New features

* Allow for views and CLI functions to come from plugins [see also PR #91]

* Configure the Ul menu with FLEXMEASURES_LISTED_VIEWS [see PR #91]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

¢ Asset edit form displayed wrong error message. Also enabled the asset edit form to display the invalid user input
back to the user [see PR #93]

Infrastructure / Support

» Updated dependencies, including Flask-Security-Too [see PR #82]
* Improved documentation after user feedback [see PR #97]
* Begin experimental integration with timely beliefs lib: Sensor data as TimedBeliefs [see PR #79 and PR #99]

* Add sensors with CLI command currently meant for developers only [see PR #83]

Add data (beliefs about sensor events) with CLI command currently meant for developers only [see PR #85 and
PR #103]

34 Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/122
https://www.github.com/FlexMeasures/flexmeasures/pull/117
https://www.github.com/FlexMeasures/flexmeasures/pull/112
https://github.com/FlexMeasures/flexmeasures/pull/111
https://github.com/FlexMeasures/flexmeasures/pull/91
https://github.com/FlexMeasures/flexmeasures/pull/91
https://flexmeasures.io/v040-plugin-support/
https://www.github.com/FlexMeasures/flexmeasures/pull/93
https://www.github.com/FlexMeasures/flexmeasures/pull/82
https://www.github.com/FlexMeasures/flexmeasures/pull/97
https://github.com/SeitaBV/timely-beliefs
https://www.github.com/FlexMeasures/flexmeasures/pull/79
https://github.com/FlexMeasures/flexmeasures/pull/99
https://github.com/FlexMeasures/flexmeasures/pull/83
https://github.com/FlexMeasures/flexmeasures/pull/85
https://github.com/FlexMeasures/flexmeasures/pull/103

FlexMeasures Documentation, Release 0.19.1.dev20

4.3.46 v0.3.1 | April 9, 2021
Bugfixes

* PostMeterData endpoint was broken in API v2.0 [see PR #95]

4.3.47 v0.3.0 | April 2, 2021

New features

* FlexMeasures can be installed with pip and its CLI commands can be run with flexmeasures [see PR #54]

* Optionally setting recording time when posting data [see PR #41]

¢ Add assets and weather sensors with CLI commands [see PR #74]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

» Show screenshots in documentation and add some missing content [see PR #60]
* Documentation listed 2.0 API endpoints twice [see PR #59]

* Better xrange and title if only schedules are plotted [see PR #67]

e User page did not list number of assets correctly [see PR #64]

* Missing postPrognosis endpoint for >1.0 API blueprints [part of PR #41]

Infrastructure / Support

* Added concept pages to documentation [see PR #65]

* Dump and restore postgres database as CLI commands [see PR #68]
 Improved installation tutorial as part of [PR #54]

* Moved developer docs from Readmes into the main documentation [see PR #73]

* Ensured unique sensor ids for all sensors [see PR #70 and (fix) PR #77]

4.3.48 v0.2.3 | February 27, 2021

New features

¢ Power charts available via the API [see PR #39]
» User management via the API [see PR #25]

» Better visibility of asset icons on maps [see PR #30]

Note: Read more on these features on the FlexMeasures blog.

4.3. FlexMeasures Changelog

35

https://www.github.com/FlexMeasures/flexmeasures/pull/95
https://www.github.com/FlexMeasures/flexmeasures/pull/54
https://www.github.com/FlexMeasures/flexmeasures/pull/41
https://github.com/FlexMeasures/flexmeasures/pull/74
https://flexmeasures.io/v030-pip-install-cli-commands-belief-time-api/
https://www.github.com/FlexMeasures/flexmeasures/pull/60
https://www.github.com/FlexMeasures/flexmeasures/pull/59
https://www.github.com/FlexMeasures/flexmeasures/pull/67
https://www.github.com/FlexMeasures/flexmeasures/pull/64
https://www.github.com/FlexMeasures/flexmeasures/pull/41
https://www.github.com/FlexMeasures/flexmeasures/pull/65
https://github.com/FlexMeasures/flexmeasures/pull/68
https://www.github.com/FlexMeasures/flexmeasures/pull/54
https://github.com/FlexMeasures/flexmeasures/pull/73
https://github.com/FlexMeasures/flexmeasures/pull/70
https://github.com/FlexMeasures/flexmeasures/pull/77
https://www.github.com/FlexMeasures/flexmeasures/pull/39
https://www.github.com/FlexMeasures/flexmeasures/pull/25
https://www.github.com/FlexMeasures/flexmeasures/pull/30
https://flexmeasures.io/v023-user-api-power-chart-api-better-icons/

FlexMeasures Documentation, Release 0.19.1.dev20

Bugfixes

» Fix maps on new asset page (update MapBox 1ib) [see PR #27]
¢ Some asset links were broken [see PR #20]

» Password reset link on account page was broken [see PR #23]

Infrastructure / Support

¢ CI via Github Actions [see PR #1]

* Integration with timely beliefs lib: Sensors [see PR #13]
* Apache 2.0 license [see PR #16]

* Load js & css from CDN [see PR #21]

* Start using marshmallow for input validation, also introducing HTTP status 422 (Unprocessable Entity)
in the API [see PR #25]

* Replace solarpy with pv1lib (due to license conflict) [see PR #16]

 Stop supporting the creation of new users on asset creation (to reduce complexity) [see PR #36]

4.4 Scheduling

Scheduling is the main value-drive of FlexMeasures. We have two major types of schedulers built-in, for storage devices
(usually batteries or hot water storage) and processes (usually in industry).

FlexMeasures computes schedules for energy systems that consist of multiple devices that consume and/or produce
electricity. We model a device as an asset with a power sensor, and compute schedules only for flexible devices, while
taking into account inflexible devices.

* Describing flexibility

* The flex-context

* The flex-models & corresponding schedulers
— Storage

— Shiftable loads (processes)

e Work on other schedulers

4.4.1 Describing flexibility

To compute a schedule, FlexMeasures first needs to assess the flexibility state of the system. This is described by:

¢ the flex-context — information about the system as a whole, in order to assess the value of activating flexi-
bility.

* the flex model — information about the state and possible actions of the flexible device. We will discuss these
per scheduled device type.

36 Chapter 4. Where to start reading?

https://www.github.com/FlexMeasures/flexmeasures/pull/27
https://www.github.com/FlexMeasures/flexmeasures/pull/20
https://www.github.com/FlexMeasures/flexmeasures/pull/23
https://www.github.com/FlexMeasures/flexmeasures/pull/1
https://github.com/SeitaBV/timely-beliefs
https://www.github.com/FlexMeasures/flexmeasures/pull/13
https://www.github.com/FlexMeasures/flexmeasures/pull/16
https://www.github.com/FlexMeasures/flexmeasures/pull/21
https://www.github.com/FlexMeasures/flexmeasures/pull/25
https://www.github.com/FlexMeasures/flexmeasures/pull/16
https://www.github.com/FlexMeasures/flexmeasures/pull/36

FlexMeasures Documentation, Release 0.19.1.dev20

This information goes beyond the usual time series recorded by an asset’s sensors. It’s being sent through the API when
triggering schedule computation. Some parts of it can be persisted on the asset & sensor model as attributes (that’s
design work in progress).

Let’s dive into the details — what can you tell FlexMeasures about your optimization problem?

4.4.2 The flex-context

The flex-context is independent of the type of flexible device that is optimized. With the flexibility context, we aim
to describe the system in which the flexible assets operate:

Field Example value Description

inflexible-d [3,4] Power sensors that are relevant, but not flexible, such as a sensor recording
rooftop solar power connected behind the main meter, whose production falls
under the same contract as the flexible device(s) being scheduled.

consumption- 5 The sensor that defines the price of consuming energy. This sensor can be
recording market prices, but also CO, - whatever fits your optimization prob-
lem.

production-p 6 The sensor that defines the price of producing energy.

site-power-c "45kW" Maximum/minimum achievable power at the grid connection point' (de-
faults to the Asset attribute capacity_in_mw). A constant limit, or see®.

site-consump "45kW" Maximum consumption power at the grid connection point® (defaults to

the Asset attribute consumption_capacity_in_mw). A constant limit,
or see’. If site-power-capacity is defined, the minimum between the
site-power-capacity and site-consumption-capacity will be used.
site-product "OkW" Maximum production power at the grid connection point’ (defaults to
the Asset attribute production_capacity_in_mw). A constant limit, or
see’. If site-power-capacity is defined, the minimum between the
site-power-capacity and site-production-capacity will be used.

Note: If no (symmetric, consumption and production) site capacity is defined (also not as defaults), the scheduler will
not enforce any bound on the site power. The flexible device can still has its own power limit defined in its flex-model.

I site-consumption-capacity and site-production-capacity allow defining asymmetric contracted transport capacities for each direc-
tion (i.e. production and consumption).

4 For some fields, it is possible to supply a sensor instead of one fixed value ({"sensor": 51}), which allows for more dynamic contexts, for
instance power limits that change over time.

3 Example: with a connection capacity (site-power-capacity) of 1 MVA (apparent power) and a consumption capacity
(site-consumption-capacity) of 800 kW (active power), the scheduler will make sure that the grid outflow doesn’t exceed 800 kW.

2 Example: with a connection capacity (site-power-capacity) of 1 MVA (apparent power) and a production capacity
(site-production-capacity) of 400 kW (active power), the scheduler will make sure that the grid inflow doesn’t exceed 400 kW.

4.4. Scheduling 37

FlexMeasures Documentation, Release 0.19.1.dev20

4.4.3 The flex-models & corresponding schedulers

Storage

For storage devices, the FlexMeasures scheduler deals with the state of charge (SoC) for an optimal outcome. You can
do a lot with this — examples for storage devices are:

batteries

EV batteries connected to charge points

hot water storage (“heat batteries”, where the SoC relates to the water temperature)
pumped hydro storage (SoC is the water level)

water basins (here, SoC is supposed to be low, as water is being pumped out)

buffers of energy-intensive chemicals that are needed in other industry processes

The flex-model for storage describes to the scheduler what the flexible asset’s state is, and what constraints or pref-
erences should be taken into account.

38

Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

Field

Example value

Description

soc-at-start
soc-unit
soc-min

SOoC-max

soc-minima

Il3 . 1||

"kWh" or "MWh"
ll2 . 5"

Il7ll

[{"datetime":

The (estimated) state of charge at the beginning of the schedule (defaults to
0).

The unit in which all SoC related flex-model values are to be interpreted.

A constant lower boundary for all values in the schedule (defaults to 0).

A constant upper boundary for all values in the schedule (defaults to max
soc target, if provided)

Set point(s) that form lower boundaries, e.g. to target a full car battery in the

"2024-02-05T08:(morning. Can be single values or a range (defaults to NaN values).

value: 8.2}]
soc-maxima {"value": Set point(s) that form upper boundaries at certain times. Can be single values
51, "start": or a range (defaults to NaN values).
"2024-02-05T12:(
"end":

"2024-02-05T13::
[{"datetime":
"2024-02-05T0O8:(

soc-targets Exact set point(s) that the scheduler needs to realize (defaults to NaN values).

value: 3.2}]
soc-gain . 1kWh Encode SoC gain per time step. A constant gain every time step, or see*.
soc-usage {"sensor": Encode SoC reduction per time step. A constant loss every time step, or

23} seelee 37,4,

roundtrip-ef "90%" Below 100%, this represents roundtrip losses (of charging & discharging),
usually used for batteries. Can be percent or ratio [0, 1] (defaults to 100%).
charging-eff ".9" Apply efficiency losses only at time of charging, not across roundtrip (de-
faults to 100%). A constant percentage at every step, or see’ 2 374,
discharging- "90%" Apply efficiency losses only at time of discharging, not across roundtrip (de-
faults to 100%). A constant percentage at every step, or see’ 2374,
storage-effi "99.9%" This can encode losses over time, so each time step the energy is held longer
leads to higher losses (defaults to 100%). A constant percentage at every
step, or see"2° 374 Also read’ about applying this value per time step across
longer time spans.
prefer-charg True Policy to apply if conditions are stable (defaults to True, which also signals
a preference to discharge later)
power-capaci 50kW Device-level power constraint. How much power can be applied to this asset
(defaults to the Sensor attribute capacity_in_mw). A constant limit, or
SeePagc 37, 4'
consumption- {"sensor": Device-level power constraint on consumption. How much power can be
563} drawn by this asset. A constant limit, or see™ 374,
production-c OkW (only con- Device-level power constraint on production. How much power can be sup-
sumption) plied by this asset. A constant limit, or see”¢ 37 %,

Usually, not the whole flexibility model is needed. FlexMeasures can infer missing values in the flex model, and even
get them (as default) from the sensor’s attributes.

You can add new storage schedules with the CLI command flexmeasures add schedule for-storage.

If you model devices that buffer energy (e.g. thermal energy storage systems connected to heat pumps), we can use
the same flexibility parameters described above for storage devices. However, here are some tips to model a buffer
correctly:

* Describe the thermal energy content in kWh or MWh.

3 The storage efficiency (e.g. 95% or 0.95) to use for the schedule is applied over each time step equal to the sensor resolution. For example, a
storage efficiency of 95 percent per (absolute) day, for scheduling a 1-hour resolution sensor, should be passed as a storage efficiency of 0.951/24 =
0.997865.

4.4. Scheduling 39

FlexMeasures Documentation, Release 0.19.1.dev20

* Set soc-minima to the accumulative usage forecast.
» Set charging-efficiency to the sensor describing the COP values.
* Set storage-efficiency to a value below 100% to model (heat) loss.

What happens if the flex model describes an infeasible problem for the storage scheduler? Excellent question! It is
highly important for a robust operation that these situations still lead to a somewhat good outcome. From our practical
experience, we derived a StorageFallbackScheduler. It simplifies an infeasible situation by just starting to charge,
discharge, or do neither, depending on the first target state of charge and the capabilities of the asset.

Of course, we also log a failure in the scheduling job, so it’s important to take note of these failures. Often, mis-
configured flex models are the reason.

For a hands-on tutorial on using some of the storage flex-model fields, head over to A flex-modeling tutorial for storage:
Vehicle-to-grid use case and the API documentation for triggering schedules.

Finally, are you interested in the linear programming details behind the storage scheduler? Then head over to Storage
device scheduler: Linear model! You can also review the current flex-model for storage in the code, at flexmeasures.
data.schemas.scheduling.storage.StorageFlexModelSchema.

Shiftable loads (processes)
For processes that can be shifted or interrupted, but have to happen at a constant rate (of consumption), FlexMeasures
provides the ShiftableLoad scheduler. Some examples from practice (usually industry) could be:

* A centrifuge’s daily work of combing through sludge water. Depends on amount of sludge present.

* Production processes with a target amount of output until the end of the current shift. The target usually comes
out of production planning.

* Application of coating under hot temperature, with fixed number of times it needs to happen before some dead-

line.

Field Example value Description

power 15kW Nominal power of the load.

duration PT4H Time that the load needs to lasts.

optimization MAX Objective of the scheduler, to maximize (MAX) or minimize (MIN).

time_restric [{"start": Time periods in which the load cannot be scheduled to run.
"2015-01-02T08:(
"duration":
"PT2H"}]

process_type INFLEXIBLE, Is the load inflexible? Or is there flexibility, to interrupt or shift it?
BREAKABLE or
SHIFTABLE

You can review the current flex-model for processes in the code, at flexmeasures.data.schemas.scheduling.
process.ProcessSchedulerFlexModelSchema.

You can add new shiftable-process schedules with the CLI command flexmeasures add schedule for-process.

40 Chapter 4. Where to start reading?

../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger

FlexMeasures Documentation, Release 0.19.1.dev20

4.4.4 Work on other schedulers

We believe the two schedulers (and their flex-models) we describe here are covering a lot of use cases already. Here
are some thoughts on further innovation:

* Writing your own scheduler. You can always write your own scheduler(see Plugin Customizations). You then
might want to add your own flex model, as well. FlexMeasures will let the scheduler decide which flexibility
model is relevant and how it should be validated.

* We also aim to model situations with more than one flexible asset, and that have different types of flexibility
(e.g. EV charging and smart heating in the same site). This is ongoing architecture design work, and therefore
happens in development settings, until we are happy with the outcomes. Thoughts welcome :)

» Aggregating flexibility of a group of assets (e.g. a neighborhood) and optimizing its aggregated usage (e.g. for
grid congestion support) is also an exciting direction for expansion.

4.5 Forecasting

Scheduling is about the future, and you need some knowledge / expectations about the future to do it.

Of course, the nicest forecasts are the one you don’t have to make yourself (it’s not an easy field), so do use price or
usage forecasts from third parties if available. There are even existing plugins for importing weather forecasts or market
data.

If you need to make your own predictions, forecasting algorithms can be used within FlexMeasures, for instance to
assess the expected profile of future consumption/production.

Warning: This feature is currently under development, we note future plans further below. Get in touch for latest
updates or if you want to help.

* Technical specs

* A use case: automating solar production prediction
* Rolling vs fixed-point

* Regressors

* Performance benchmarks

e Future work

4.5.1 Technical specs
In a nutshell, FlexMeasures uses linear regression and falls back to naive forecasting of the last known value if errors
happen.

Note that what might be even more important than the type of algorithm is the features handed to the model — lagged
values (e.g. value of the same time yesterday) and regressors (e.g. wind speed prediction to forecast wind power
production). Most assets have yearly seasonality (e.g. wind, solar) and therefore forecasts would benefit from >= 2
years of history.

Here are more details:

* The application uses an ordinary least squares auto-regressive model with external variables.

4.5. Forecasting 41

https://github.com/SeitaBV/flexmeasures-openweathermap
https://github.com/SeitaBV/flexmeasures-entsoe
https://github.com/SeitaBV/flexmeasures-entsoe

FlexMeasures Documentation, Release 0.19.1.dev20

» Lagged outcome variables are selected based on the periodicity of the asset (e.g. daily and/or weekly).
* Common external variables are weather forecasts of temperature, wind speed and irradiation.

» Timeseries data with frequent zero values are transformed using a customised Box-Cox transformation.
* To avoid over-fitting, cross-validation is used.

* Before fitting, explicit annotations of expert knowledge to the model (like the definition of asset-specific season-
ality and special time events) are possible.

* The model is currently fit each day for each asset and for each horizon.

4.5.2 A use case: automating solar production prediction

We’ll consider an example that FlexMeasures supports — forecasting an asset that represents solar panels. Here is how
you can ask for forecasts to be made in the CLI:

flexmeasures add forecasts --from-date 2024-02-02 --to-date 2024-02-02 --horizon 6 --
—.sensor 12 --as-job

Sensor 12 would represent the power readings of your solar power, and here you ask for forecasts for one day (2 February,
2024), with a forecast of 6 hours.

The --as-job parameter is optional. If given, the computation becomes a job which a worker needs to pick up. There
is some more information at How forecasting jobs are queued.

4.5.3 Rolling vs fixed-point

These forecasts are rolling forecasts — which means they all have the same horizon. This is useful mostly for analytics
and simulations.

We plan to work on fixed-point forecasts, which would forecast all values from one point in time, with a growing
horizon as the forecasted time is further away. This resembles the real-time situation better.

4.5.4 Regressors

If you want to take regressors into account, in addition to merely past measurements (e.g. weather forecasts, see above),
currently FlexMeasures supports only weather correlations.

The attribute sensor.weather_correlations can be used for this, e.g. for the solar example above you might want
to set this to ["irradiance"”, "temperature"]. FlexMeasures will then try to find an asset with asset type
“weather_station” that has a location near the asset your forecasted sensor belogs to. That weather station should
have sensors with the correlations you entered, and if they have data in a suitable range, the regressors can be used in
your forecasting.

In this weather forecast plugin, we enabled you to collect regressor data for ["temperature"”, "wind speed",
"cloud cover", "irradiance"], at a location you select.

42 Chapter 4. Where to start reading?

https://github.com/SeitaBV/flexmeasures-openweathermap

FlexMeasures Documentation, Release 0.19.1.dev20

4.5.5 Performance benchmarks

Above, we focused on technical ways to achieve forecasting within FlexMeasures. As we mentioned, the results differ,
based on what information you give to the model.

However, let’s discuss performance a little more — how can we measure it and what have we seen? The performance
of FlexMeasures’ forecasting algorithms is indicated by the mean absolute error (MAE) and the weighted absolute
percentage error (WAPE). Power profiles on an asset level often include zero values, such that the mean absolute
percentage error (MAPE), a common statistical measure of forecasting accuracy, is undefined. For such profiles, it is
more useful to report the WAPE, which is also known as the volume weighted MAPE. The MAE of a power profile
gives an indication of the size of the uncertainty in consumption and production. This allows the user to compare an
asset’s predictability to its flexibility, i.e. to the size of possible flexibility activations.

Example benchmarks per asset type are listed in the table below for various assets and forecasting horizons. Amongst
other factors, accuracy is influenced by:

¢ The chosen metric (see below)
* Resolution of the forecast
* Horizon of the forecast
* Asset type
* Location / Weather conditions
 Level of aggregation
Accuracies in the table are reported as 1 minus WAPE, which can be interpreted as follows:
* 100% accuracy denotes that all values are correct.
* 50% accuracy denotes that, on average, the values are wrong by half of the reference value.

* 0% accuracy denotes that, on average, the values are wrong by exactly the reference value (i.e. zeros or twice
the reference value).

* negative accuracy denotes that, on average, the values are off-the-chart wrong (by more than the reference value

itself).
Asset Building Charge Points Solar Wind (offshore) Day-ahead market
Average power per asset 204 W 75W 140 W 518 W
1 - WAPE (1 hour ahead) 93.4 % 87.6 % 952 % 81.6 % 88.0 %
1 - WAPE (6 hours ahead) 92.6 % 73.0 % 83.7% 73.8% 81.9 %
1 - WAPE (24 hours ahead) 92.4 % 65.2 % 46.1 % 60.1 % 81.4 %
1 - WAPE (48 hours ahead) 92.1 % 63.7 % 433 % 56.9 % 72.3 %

4.5.6 Future work

We have mentioned that forecasting within FlexMeasures can become more powerful. Here we summarize what is on
the roadmap for forecasting:

* Add fixed-point forecasting (see above)
* Make features easier to configure, especially regressors
* Add more types of forecasting algorithms, like random forest or even LSTM

* Possibly integrate with existing powerful forecasting tooling, for instance OpenStef or Quartz Solar OS.

4.5. Forecasting 43

https://lfenergy.org/projects/openstef
https://github.com/openclimatefix/Open-Source-Quartz-Solar-Forecast

FlexMeasures Documentation, Release 0.19.1.dev20

4.6 Reporting

FlexMeasures feeds upon raw measurement data (e.g. solar generation) and data from third parties (e.g. weather
forecasts).

However, there are use cases for enriching these raw data by combining them:

* Pre-calculations: For example, from a tariff and some tax rules we compute the real financial impact of price
data.

¢ Post-calculations: To be able to show the customer value, we regularly want to compute things like money or
CO, saved.

These calculations can be done with code, but there’ll be many repetitions.

We added an infrastructure that allows us to define computation pipelines and CLI commands for developers to list
available reporters and trigger their computations regularly:

e flexmeasures show reporters
e flexmeasures add report

The reporter classes we are designing are using pandas under the hood and can be sub-classed, allowing us to build
new reporters from stable simpler ones, and even pipelines. Remember: re-use is developer power!

We believe this infrastructure will become very powerful and enable FlexMeasures hosters and plugin developers to
implement exciting new features.

Below are two quick examples, but you can also dive deeper in Toy example IV: Computing reports.

4.6.1 Example: solar feed-in / self-consumption delta

So here is a glimpse into a reporter we made - it is based on the AggregatorReporter (which is for the combination of
any two sensors). This simplified example reporter basically calculates pv - consumption at grid connection point.
This tells us how much solar power we fed back to the grid (positive values) and/or the amount of grid power within
the overall consumption that did not come from local solar panels (negative values).

This is the configuration of how the computation works:

{
"method" : "sum",
"weights" : {
"pv" : 1.0,
"consumption" : -1.0
}
}

This parameterizes the computation (from which sensors does data come from, which range & where does it go):

{

"input": [

{
llnamell : llpvll ,
"sensor": 1,
"source" : 1,

By

{
"name" : "consumption",

(continues on next page)

44 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

(continued from previous page)

"sensor": 1,
"source" : 2,
}
i
"output": [
{
"sensor": 3,
}
1,
"start" : "2023-01-01T00:00:00+00:00",
"end" : "2023-01-03T00:00:00+00:00",

4.6.2 Example: Profits & losses

A report that should cover a use case right off the shelf for almost everyone using FlexMeasures is the
ProfitOrLossReporter — a reporter to compute how profitable your operation has been. Showing the results of
your optimization is a crucial feature, and now easier than ever.

First, reporters can be stored as data sources, so they are easy to be used repeatedly and the data they generate can
reference them. Our data source has ProfitOrLossReporter as model attribute and these configuration information
stored on its attribute defines the reporter further (the least a ProfitOrLossReporter needs to know is a price):

{
"data_generator": {
"config": {
"consumption_price_sensor": 1
1
}
}

And here are more excerpts from the tutorial mentioned above. Here we configure the input and output:

$ echo
{
'input' : [{'sensor' : 4}],
'output' : [{'sensor' : 9}]

}" > profitorloss-parameters.json

The input sensor stores the power/energy flow, and the output sensor will store the report. Recall that we already
provided the price sensor to use in the reporter’s data source.

$ flexmeasures add report\
--source 6 \
--parameters profitorloss-parameters.json \
--start-offset DB, 1D --end-offset DB, 2D

Here, the ProfitOrLossReporter used as source (with Id 6) is the one we configured above. With the offsets, we
control the timing — we indicate that we want the new report to encompass the day of tomorrow (see Pandas offset
strings).

The report sensor will now store all costs which we know will be made tomorrow by the schedule.

4.6. Reporting 45

FlexMeasures Documentation, Release 0.19.1.dev20

4.7 Toy example: Introduction and setup

This page is a starting point of a series of tutorials that will help you get practical experience with FlexMeasures.
Let’s walk through an example from scratch! We'll ...

* install FlexMeasures

* create an account

* load hourly prices

What do you need? Your own computer, with one of two situations: either you have Docker or your computer supports
Python 3.8+, pip and PostgresDB. The former might be easier, see the installation step below. But you choose.

Below are the flexmeasures CLI commands we’ll run, and which we’ll explain step by step. There are some other
crucial steps for installation and setup, so this becomes a complete example from scratch, but this is the meat:

setup an account with a user and an energy market (ID 1)

$ flexmeasures add toy-account

load prices to optimise the schedule against

§ flexmeasures add beliefs --sensor 1 --source toy-user prices-tomorrow.csv --timezone.,
—Europe/Amsterdam

Okay, let’s get started!

Note: You can copy the commands by hovering on the top right corner of code examples. You'll copy only the
commands, not the output!

4.7.1 Install Flexmeasures and the database

Docker
On your PC
If docker is running on your system, you’re good to go. Otherwise, see here.

We start by installing the FlexMeasures platform, and then use Docker to run a postgres database and tell FlexMeasures
to create all tables.

$ docker pull lfenergy/flexmeasures:latest
$ docker pull postgres
$ docker network create flexmeasures_network

After running these commands, we can start the Postgres database and the FlexMeasures app with the following com-
mands:

$ docker run --rm --name flexmeasures-tutorial-db -e POSTGRES_PASSWORD=fm-db-passwd -e.

- POSTGRES_DB=flexmeasures-db -d --network=flexmeasures_network postgres:latest

$ docker run --rm --name flexmeasures-tutorial-fm --env SQLALCHEMY DATABASE_

- URI=postgresql://postgres: fm-db-passwd@flexmeasures-tutorial-db:5432/flexmeasures-db --
—env SECRET_KEY=notsecret --env FLEXMEASURES_ENV=development --env LOGGING_LEVEL=INFO -
—d --network=flexmeasures_network -p 5000:5000 lfenergy/flexmeasures

To establish the FlexMeasures database structure, execute:

46 Chapter 4. Where to start reading?

https://www.docker.com/
https://www.docker.com/
https://docs.docker.com/get-docker/

FlexMeasures Documentation, Release 0.19.1.dev20

[$ docker exec flexmeasures-tutorial-fm bash -c "flexmeasures db upgrade"

Note: A tip on Linux/macOS — You might have the docker command, but need sudo rights to execute it. alias
docker="sudo docker' enables you to still run this tutorial.

Now - what’s very important to remember is this: The rest of this tutorial will happen inside the
flexmeasures-tutorial-fm container! This is how you hop inside the container and run a terminal there:

[$ docker exec -it flexmeasures-tutorial-fm bash

To leave the container session, hold CTRL-D or type “exit”.

To stop the containers, you can type

$ docker stop flexmeasures-tutorial-db
$ docker stop flexmeasures-tutorial-fm

To start the containers again, do this (note that re-running the docker run commands above deletes and re-creates all
data!):

$ docker start flexmeasures-tutorial-db
$ docker start flexmeasures-tutorial-fm

Note: For newer versions of MacOS, port 5000 is in use by default by Control Center. You can turn this off by going
to System Preferences > Sharing and untick the “Airplay Receiver” box. If you don’t want to do this for some reason,
you can change the host port in the docker run command to some other port, for example 5001. To do this, change -p
5000: 5000 in the command to -p 5001:5000. If you do this, remember that you will have to go to localhost: 5001
in your browser when you want to inspect the FlexMeasures UI.

Note: Got docker-compose? You could run this tutorial with 5 containers :) — Go to Seeing it work: Running the toy
tutorial.

This example is from scratch, so we’ll assume you have nothing prepared but a (Unix) computer with Python (3.8+)
and two well-known developer tools, pip and postgres.

We’ll create a database for FlexMeasures:

$ sudo -i -u postgres
$ createdb -U postgres flexmeasures-db

$ createuser --pwprompt -U postgres flexmeasures-user # enter your password, we'll,,
—use "fm-db-passwd"
$ exit

Then, we can install FlexMeasures itself, set some variables and tell FlexMeasures to create all tables:

$ pip install flexmeasures

$ export SQLALCHEMY_DATABASE_URI="postgresql://flexmeasures-user: fm-db-
—passwd@localhost:5432/flexmeasures-db" SECRET_KEY=notsecret LOGGING_LEVEL="INFO".
—DEBUG=0

$ export FLEXMEASURES_ENV="development"

$ flexmeasures db upgrade

4.7. Toy example: Introduction and setup 47

https://pip.pypa.io
https://www.postgresql.org/download/

FlexMeasures Documentation, Release 0.19.1.dev20

Note: When installing with pip, on some platforms problems might come up (e.g. macOS, Windows). One reason
is that FlexMeasures requires some libraries with lots of C code support (e.g. Numpy). One way out is to use Docker,
which uses a prepared Linux image, so it’ll definitely work.

In case you want to re-run the tutorial, then it’s recommended to delete the old database and create a fresh one. Run
the following command to create a clean database with a new user, where it is optional. If you don’t provide the user,
then the default postgres user will be used to create the database.

[$ make clean-db db_name=flexmeasures-db [db_user=flexmeasures]

4.7.2 Add some structural data

The data we need for our example is both structural (e.g. a company account, a user, an asset) and numeric (we want
market prices to optimize against).

Let’s create the structural data first.

FlexMeasures offers a command to create a toy account with a battery:

$ flexmeasures add toy-account --kind battery

Generic asset type 'solar created successfully.

Generic asset type ‘wind created successfully.

Generic asset type one-way_evse created successfully.

Generic asset type " two-way_evse created successfully.

Generic asset type battery created successfully.

Generic asset type "building created successfully.

Generic asset type "process created successfully.

Creating account Toy Account ...

Toy account Toy Account with user toy-user@flexmeasures.io created successfully. You.
—might want to run ' flexmeasures show account --id 1°

Adding transmission zone type

Adding NL transmission zone ...

Created day-ahead prices

The sensor recording day-ahead prices is day-ahead prices (ID: 1).
Created <GenericAsset None: 'toy-battery' (battery)>

Created discharging

Created <GenericAsset None: 'toy-solar' (solar)>

Created production

The sensor recording battery discharging is discharging (ID: 2).
The sensor recording solar forecasts is production (ID: 3).

And with that, we’re done with the structural data for this tutorial!

If you want, you can inspect what you created:

§ flexmeasures show account --id 1

Account Toy Account (ID: 1)

(continues on next page)

48 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

Account has no roles.

(continued from previous page)

All users:
ID Name Email Last Login Last Seen Roles
| toy-user toy-user@flemeasures.io None Nore accomnt adnin
All assets:
ID Name Type Location
2 toy-battery battery (52.374, 4.88969)
3 toy-solar solar (52.374, 4.88969)
$ flexmeasures show asset --id 2
Asset toy-battery (ID: 2)
Type Location Attributes
battery (52.374, 4.88969) capacity_inm: 0.5
min_soc_in_mwh: 0.05
max_soc_in_mwh: 0.45
sensors_to_show: [1, [3, 2]]
All sensors in asset:
ID Name Unit Resolution Timezone Attributes
2 discharging MW 15 mimutes Europe/Amsterdam

Yes, that is quite a large battery :)

Note: Obviously, you can use the flexmeasures

command to create your own, custom account and assets. See CL/

Commands. And to create, edit or read asset data via the API, see Version 3.0.

We can also look at the battery asset in the UI

of FlexMeasures (in Docker, the FlexMeasures web server al-

ready runs, on your PC you can start it with flexmeasures run). Visit http://localhost:5000/ (username is “toy-

user @flexmeasures.io”, password is “toy-password’

).

4.7. Toy example: Introduction and setup

49

http://localhost:5000/
mailto:toy-user@flexmeasures.io
mailto:toy-user@flexmeasures.io

FlexMeasures Documentation, Release 0.19.1.dev20

A LR]
Dashboard % My Account
! FlexMeasures @ & My Acce
e £unaerdorp,
3R ndaal WESTPOORT Pl Nl
Ngay &
e {25
Haarlem Haarlemmerliede =]
fitin} ™ ERDUR
=n Haltwey Ly Schellingwoude
Zwanenburg GEUZENVELD S ean
Piiivietrug i Amcferdame o
\)f‘ % BAARSJES RETERBL
Bogsingheliede % o A
g
e DEPLIP B U
Deemicledy Vijfhuizen Lijpder, WATERGRAAFSHIEE
L
B T
£ [25] & 1
i @/ Badhoevedorp Qlyrhpic Stadiim: . EiH Dietmen
) 200
;
(fmoptn s . Bifsendrecht T 5 Muiden
& — HIEY Leaflet] & Mapbox & Openstrestiap Improve this map
Renewables Solar Batteries
%
+ £ @
My assets 1 1 1

Note: You won’t see the map tiles, as we have not configured the MAPBOX_ACCESS_TOKEN. If you have one, you
can configure it via flexmeasures. cfg (for Docker, see Configuration and customization).

4.7.3 Add some price data

Now to add price data. First, we’ll create the CSV file with prices (EUR/MWHh, see the setup for sensor 1 above) for
tomorrow.

TOMORROW=$(date --date="next day" '+%Y-%m-%d')
echo "Hour,Price
${TOMORROW }T00:00:00,10
${TOMORROW }T01:00:00,11
${TOMORROW }T02:00:00,12
${TOMORROW }T®3:00:00, 15
${TOMORROW }T04:00:00, 18
${TOMORROW }T®5:00:00,17
${TOMORROW }T06:00:00,10.5
${TOMORROW }T0®7:00:00,9
${TOMORROW }T0®8:00:00,9.5
${TOMORROW }T09:00:00,9
${TOMORROW}T10:00:00,8.5
${TOMORROW }T11:00:00,10
${TOMORROW}T12:00:00, 8
${TOMORROW}T13:00:00,5
${TOMORROW }T14:00:00,4
${TOMORROW}T15:00:00,4

B I I e - A o - R A I A R - R A L L A

(continues on next page)

50 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

(continued from previous page)

TOMORROW }T16:00:00,5.5

TOMORROW }T17:00:00,8

TOMORROW }T18:00:00,12

TOMORROW }T19:00:00,13

TOMORROW }T20:00:00, 14

TOMORROW }T21:00:00,12.5

TOMORROW }T22:00:00, 10

TOMORROW}T23:00:00,7" > prices-tomorrow.csv

R e A i R A

This is time series data, in FlexMeasures we call “beliefs”. Beliefs can also be sent to FlexMeasures via API or imported
from open data hubs like ENTSO-E or OpenWeatherMap. However, in this tutorial we’ll show how you can read data
in from a CSV file. Sometimes that’s just what you need :)

$ flexmeasures add beliefs --sensor 1 --source toy-user prices-tomorrow.csv --timezone.,
—Europe/Amsterdam
Successfully created beliefs

In FlexMeasures, all beliefs have a data source. Here, we use the username of the user we created earlier. We could
also pass a user ID, or the name of a new data source we want to use for CLI scripts.

Note: Attention: We created and imported prices where the times have no time zone component! That happens a
lot. FlexMeasures can localize them for you to a given timezone. Here, we localized the data to the timezone of the
price sensor - Europe/Amsterdam - so the start time for the first price is 2022-03-03 00:00:00+01:00 (midnight in
Amsterdam).

Let’s look at the price data we just loaded:

$ flexmeasures show beliefs --sensor 1 --start TOMORROW /TO0:00:00+01:00 --duration.,
—PT24H

Beliefs for Sensor 'day-ahead prices' (ID 1).
Data spans a day and starts at 2022-03-03 00:00:00+01:00.
The time resolution (x-axis) is an hour.

‘ 15EUR/MWh

| 10EUR/MWh

| SEUR/MWh

(continues on next page)

4.7. Toy example: Introduction and setup 51

https://github.com/SeitaBV/flexmeasures-entsoe
https://github.com/SeitaBV/flexmeasures-openweathermap

FlexMeasures Documentation, Release 0.19.1.dev20

(continued from previous page)

5 10 15 20
day-ahead prices

Again, we can also view these prices in the FlexMeasures Ul:

Day-ahead prices (EUR/MWh)
18

Fri2g8 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat29

Source
u toy-user

Note: Technically, these prices for tomorrow may be forecasts (depending on whether you are running through this
tutorial before or after the day-ahead market’s gate closure). You can also use FlexMeasures to compute forecasts
yourself. See Forecasting & scheduling.

4.8 Toy example I: Scheduling a battery, from scratch

Let’s walk through an example from scratch! We’ll optimize a 12h-schedule for a battery that is half full.

Okay, let’s get started!

Note: You can copy the commands by hovering on the top right corner of code examples. You'll copy only the
commands, not the output!

Note: If you haven’t run through 7oy example: Introduction and setup yet, do that first. There, we added power prices
for a 24h window.

52 Chapter 4. Where to start reading?

http://localhost:5000/sensors/1/

FlexMeasures Documentation, Release 0.19.1.dev20

4.8.1 Make a schedule

After going through the setup, we can finally create the schedule, which is the main benefit of FlexMeasures (smart
real-time control).

We’ll ask FlexMeasures for a schedule for our (dis)charging sensor (ID 2). We also need to specify what to optimize
against. Here we pass the Id of our market price sensor (ID 1). To keep it short, we’ll only ask for a 12-hour window
starting at 7am. Finally, the scheduler should know what the state of charge of the battery is when the schedule starts
(50%) and what its roundtrip efficiency is (90%).

§ flexmeasures add schedule for-storage --sensor 2 --consumption-price-sensor 1 \
--start TOMORROW }TO7 :00+01:00 --duration PT12H \
--soc-at-start 50% --roundtrip-efficiency 90%

New schedule is stored.

Great. Let’s see what we made:

$ flexmeasures show beliefs --sensor 2 --start TOMORROW }TO7:00:00+01:00 --duration..
—PT12H

Beliefs for Sensor 'discharging' (ID 2).

Data spans 12 hours and starts at 2022-03-04 07:00:00+01:00.

The time resolution (x-axis) is 15 minutes.

| 0.5MW
| |
|
|
|
0. oMW
|
| |
| |
| -0.5MW
10 20 30 40
discharging

Here, negative values denote output from the grid, so that’s when the battery gets charged.

We can also look at the charging schedule in the FlexMeasures Ul (reachable via the asset page for the battery):

4.8. Toy example I: Scheduling a battery, from scratch 53

http://localhost:5000/sensors/2/

FlexMeasures Documentation, Release 0.19.1.dev20

Discharging (MW)

0.5,
0.4~
0.3
0.2
(AR

0.0
-01
-0.24
-0.3-
-0.4-

-0.5
Fri2g 02:00 04:00 06:00 08:00 10:00 12:00 14:00 & 16:00 18:00 20:00 22:00 Sat 29

Source
W Seita

Recall that we only asked for a 12 hour schedule here. We started our schedule after the high price peak (at 4am) and
it also had to end before the second price peak fully realized (at 8pm). Our scheduler didn’t have many opportunities
to optimize, but it found some. For instance, it does buy at the lowest price (at 2pm) and sells it off at the highest price

within the given 12 hours (at 6pm).
The asset page for the battery shows both prices and the schedule.

Day-ahead prices (EUR/MWh)

:zjﬁ

“hize 0200 04:00 06:00 0800 1000 1200 14:00 16:00 18:00 2000 2200 Sat29
Power (MW)
04f b
02
ood— e O RN DRSSO
_0.2,
-0.4 : : : +
Fi28 0200 04:00 06:00 0800 1000 1200 oo 1600 1800 2000 2200 Sat2e
Sensor Source
® day-ahead prices (ML transmission zone) - forecaster
® production {T?oyfsolnr) scheduler 3

® discharging (toy-battery) ~ other

Note: The flexmeasures add schedule for-storage command also accepts state-of-charge targets, so the
schedule can be more sophisticated. And even more control over schedules is possible through the flex-model in
our API. But that is not the point of this tutorial. See flexmeasures add schedule for-storage --help for
available CLI options, Describing flexibility for all flex-model fields or check out the A flex-modeling tutorial for stor-
age: Vehicle-to-grid for a tangible example of modelling storage constraints.

54 Chapter 4. Where to start reading?

http://localhost:5000/assets/2/

FlexMeasures Documentation, Release 0.19.1.dev20

This tutorial showed the fastest way to a schedule. In Toy example 11: Adding solar production and limited grid con-
nection, we’ll go further into settings with more realistic ingredients: solar panels and a limited grid connection.

4.9 Toy example lI: Adding solar production and limited grid connec-
tion
So far we haven’t taken into account any other devices that consume or produce electricity. The battery was free to use

all available capacity towards the grid.

What if other devices will be using some of that capacity? Our schedules need to reflect that, so we stay within given
limits.

Note: The capacity is given by capacity_in_mw, an attribute we placed on the battery asset earlier (see 7oy example
I: Scheduling a battery, from scratch). We will tell FlexMeasures to take the solar production into account (using
--inflexible-device-sensor) for this capacity limit.

We’ll now add solar production forecast data and then ask for a new schedule, to see the effect of solar on the available
headroom for the battery.

4.9.1 Adding PV production forecasts

First, we’ll create a new CSV file with solar forecasts (MW, see the setup for sensor 3 in part I of this tutorial) for
tomorrow.

TOMORROW=$(date --date="next day" '+%Y-%m-%d')
echo "Hour,Price

${TOMORROW }TO0:00:
${TOMORROW }T01:00:
${TOMORROW }T02:00:
${TOMORROW }T03:00:
${TOMORROW }T04:00:
${TOMORROW }T05:00:
${TOMORROW }T06:00:
${TOMORROW }T07:00:
${TOMORROW }T08:00:
${TOMORROW }T09:00:
${TOMORROW}T10:00:
${TOMORROW}T11:00:
${TOMORROW}T12:00:
${TOMORROW}T13:00:
${TOMORROW }T14:00:
${TOMORROW}T15:00:
${TOMORROW}T16:00:
${TOMORROW }T17:00:
${TOMORROW}T18:00:
${TOMORROW }T19:00:
${TOMORROW }T20:00:
${TOMORROW }T21:00:
${TOMORROW }T22:00:
${TOMORROW }T23:00:

(=4

(=]

(=]

(=]

(=]

(=4

(=4

(=]

(=]

(== I — I — I — T — N — R — I — I — N — i — I — N — R — I — I — I — B — I — N — B — B — A~}
(= R R R — R R — R R R~ R~ I~ R~ R~ R~ R — T — N — R I — R — I~ I —]
N
=

(=]

(=]

(=]

(=]

(=]

(=]

(=]

(=4

(=]

(=]

(=]

(=]

(=4

(=4

I A - B A - - A A - A R o - - L T R A

(=]

.0" > solar-tomorrow.csv

4.9. Toy example lI: Adding solar production and limited grid connection 55

FlexMeasures Documentation, Release 0.19.1.dev20

Then, we read in the created CSV file as beliefs data. This time, different to above, we want to use a new data source
(not the user) — it represents whoever is making these solar production forecasts. We create that data source first, so we
can tell flexmeasures add beliefs to use it. Setting the data source type to “forecaster” helps FlexMeasures to visually
distinguish its data from e.g. schedules and measurements.

Note: The flexmeasures add source command also allows to set a model and version, so sources can be distin-
guished in more detail. But that is not the point of this tutorial. See flexmeasures add source --help.

$ flexmeasures add source --name "toy-forecaster" --type forecaster

Added source <Data source 4 (toy-forecaster)>

$ flexmeasures add beliefs --sensor 3 --source 4 solar-tomorrow.csv --timezone Europe/
—.Amsterdam

Successfully created beliefs

The one-hour CSV data is automatically resampled to the 15-minute resolution of the sensor that is recording solar
production. We can see solar production in the FlexMeasures UI :

Production (MW)
0.22

0.20
018
016
014+
012+
010~

0.08

0.06

0.04

0.02

00 T
Fri 28 02:00 04:00 08:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat 29

Source
m toy-forecaster

Note: The flexmeasures add beliefs command has many options to make sure the read-in data is correctly
interpreted (unit, timezone, delimiter, etc). But that is not the point of this tutorial. See flexmeasures add beliefs
--help.

4.9.2 Trigger an updated schedule

Now, we’ll reschedule the battery while taking into account the solar production. This will have an effect on the
available headroom for the battery, given the capacity_in_mw limit discussed earlier.

$ flexmeasures add schedule for-storage --sensor 2 --consumption-price-sensor 1 \
--inflexible-device-sensor 3 \
--start ${TOMORROW T®7:00+02:00 --duration PT12H \
--soc-at-start 50% --roundtrip-efficiency 90%

New schedule is stored.

56 Chapter 4. Where to start reading?

http://localhost:5000/sensors/3/

FlexMeasures Documentation, Release 0.19.1.dev20

We can see the updated scheduling in the FlexMeasures Ul :

Discharging (MW)
0.5 M
0.4-

0.3+
0.2+
01

0.0
-0.14
-0.2
_0.3,
-0.4-

18:00 20:00 22:00 sat 29

0.5
Fri 28 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Source
w Seita

The asset page for the battery now shows the solar data, too:

Day-ahead prices (EUR/MWh)

:zfﬁ

Fri 28 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat 29
Power (MW)
0.4
02 .
e e tigivso e
0.2
-0.4 P e
! r r r : r e - — - - - - "
Fri 28 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat 29
Sensor Source
® day-ahead prices (NL transmission zone) - forecaster
@ production ﬁoy—solm) scheduler
® discharging (toy-battery) — other

Though this schedule is quite similar, we can see that it has changed from the one we computed earlier (when we did
not take solar into account).

First, during the sunny hours of the day, when solar power is being send to the grid, the battery’s output (at around
9am and 11am) is now lower, as the battery shares capacity_in_mw with the solar production. In the evening (around
7pm), when solar power is basically not present anymore, battery discharging to the grid is still at its previous levels.

Second, charging of the battery is also changed a bit (around 10am), as less can be discharged later.

Moreover, we can use reporters to compute the capacity headroom (see 7oy example IV: Computing reports for more
details). The image below shows that the scheduler is respecting the capacity limits.

4.9. Toy example lI: Adding solar production and limited grid connection 57

http://localhost:5000/sensors/2/
http://localhost:5000/assets/1/
https://raw.githubusercontent.com/FlexMeasures/screenshots/main/tut/toy-schedule/asset-view-without-solar.png

FlexMeasures Documentation, Release 0.19.1.dev20

Power (MW)
0.4
0.2 t : :
0.0 emeey ol Beeeeeas : e B R :
-02 ' '
-04 ' o
Thu2l 0400 08:00 12:00 ©16:00 20:00 P
Sensor Source
@ day-ahead prices (NL transmission zone) - forecaster
production Eoy-solqr) -- scheduler
@ discharging (toy-battery) — other
headroom toy-bqttery},

In the case of the scheduler that we ran in the previous tutorial, which did not yet consider the PV, the discharge power
would have exceeded the headroom:

Power (MW)
0.4
0.2 - . .
0-0 ’7777’7: :’7”: |-: I. ””””” : : 7777777777777777777 --I
-02 b 1
-0.4 o o
Thu 21 04:00 08:00 12:00 © 16:00 2000 Fri 22
Sensor Source
@ day-ahead prices (NL transmission zone) - forecaster
production {tloy-solur) -- scheduler
@ discharging (toy-battery) — other
headroom toy-battery{

Note: You can add arbitrary sensors to a chart using the attribute sensors_to_show. See Assets & sensor data for
more.

We hope this part of the tutorial shows how to incorporate a limited grid connection rather easily with FlexMeasures.
There are more ways to model such settings, but this is a straightforward one.

This tutorial showed a quick way to add an inflexible load (like solar power) and a grid connection. In A flex-modeling
tutorial for storage: Vehicle-to-grid, we will temporarily pause giving you tutorials you can follow step-by-step. We
feel it is time to pay more attention to the power of the flex-model, and illustrate its effects.

58 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

4.10 A flex-modeling tutorial for storage: Vehicle-to-grid

The most powerful concept of FlexMeasures is the flex-model. We feel it is time to pay more attention to it and illustrate
its effects.

As a demonstration of how to construct a suitable flex model for a given use case, let us for a moment consider a use
case where FlexMeasures is asked (through API calls) to compute V2G schedules. (For a more general introduction to
flex modeling, see Describing flexibility.)

In this example, the client is interested in the following:

1. Battery protection: Protect the battery from degradation by constraining any cycling between 25% and 85% of
its available storage capacity.

2. Car reservations: Ensure a minimum SoC of 95% based on a reservation calendar for the car.

3. Earning by cycling: Use the car battery to earn money (given some dynamic tariff) so long as the above constraints
are met.

The following chart visualizes how constraints 1 and 2 can be formulated within a flex model, such that the resulting
scheduling problem becomes feasible. A solid line shows a feasible solution, and a dashed line shows an infeasible
solution.

Constraint
Relaxation
SoC (%) Window
100
f‘r ——————————————
;) ! SoC minima
SoC maxima (battery protection) /i (calendar target)
80
60
40
20 SoC minimum (battery protection)
0

Time —*

4.10. A flex-modeling tutorial for storage: Vehicle-to-grid 59

FlexMeasures Documentation, Release 0.19.1.dev20

4.10.1 Battery protection

Let’s consider a car battery with a storage capacity of 60 kWh, to be scheduled in 5-minute intervals. Constraining
the cycling to occur within a static 25-85% SoC range can be modelled through the following soc-min and soc-max
fields of the flex model:

{

"flex-model": {
"soc-min": 15,
"soc-max": 51,
"soc-unit": "kWh"

1

}

A starting SoC below 15 kWh (25%) will lead to immediate charging to get within limits (as shown above). Likewise,
a starting SoC above 51 kWh (85%) would lead to immediate discharging. Setting a SoC target outside of the static
range leads to an infeasible problem and will be rejected by the FlexMeasures API.

The soc-min and soc-max settings are constant constraints. To enable a temporary target SoC of more than 85% (for
car reservations, see the next section), it is necessary to relax the soc-max field to 60 kWh (100%), and to instead use
the soc-maxima field to convey the desired upper limit for regular cycling:

{
"flex-model": {
"soc-min": 15,
"soc-max": 60,
"soc-maxima": [
{
"value": 51,
"start": "2024-02-04T10:35:00+01:00",
"end": "2024-02-05T04:25:00+01:00"
}
g
"soc-unit": "kWh"
3
}

The maxima constraints should be relaxed—or withheld entirely—within some time window before any SoC target (as
shown above). This time window should be at least wide enough to allow the target to be reached in time, and can be
made wider to allow the scheduler to take advantage of favourable market prices along the way.

4.10.2 Car reservations

Given a reservation for 8 AM on February 5th, constraint 2 can be modelled through the following (additional)
soc-minima constraint:

{
"flex-model": {
"soc-minima": [
{
"value": 57,
"datetime": "2024-02-05T08:00:00+01:00"

(continues on next page)

60 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

(continued from previous page)

This constraint also signals that if the car is not plugged out of the Charge Point at 8§ AM, the scheduler is in principle
allowed to start discharging immediately afterwards. To make sure the car remains at 95% SoC for some time, additional
soc-minima constraints should be set accordingly, taking into account the scheduling resolution (here, 5 minutes). For
example, to keep it charged (nearly) fully until 8.15 AM:

{
"flex-model": {
"soc-minima": [
{
"value": 57,
"start": "2024-02-05T08:00:00+01:00",
"end": "2024-02-05T08:15:00+01:00"
}
]
3
}

4.10.3 Earning by cycling

To provide an incentive for cycling the battery in response to market prices, the consumption-price-sensor and
production-price-sensor fields of the flex context may be used, which define the sensor IDs under which the price
data is stored that is relevant to the given site:

{

"flex-context": {
"consumption-price-sensor": 41,
"production-price-sensor": 42

}

3

We hope this demonstration helped to illustrate the flex-model of the storage scheduler. Until now, optimizing storage
(like batteries) has been the sole focus of these tutorial series. In Toy example I11: Computing schedules for processes,
we’ll turn to something different: the optimal timing of processes with fixed energy work and duration.

4.11 Toy example lll: Computing schedules for processes

Until this point we’ve been using a static battery, one of the most flexible energy assets, to reduce electricity bills. A
battery can modulate rather freely, and both charge and discharge.

However, in some settings, we can reduce electricity bills by just smartly timing the necessary work that we know we
have to do. We call this work a “process”. In other words, if the process can be displaced, by breaking it into smaller
consumption periods or shifting its start time, the process run can match the lower price hours better.

For example, we could have a load that consumes energy at a constant rate (e.g. 200kW) for a fixed duration (e.g. 4h),
but there’s some flexibility in the start time. In that case, we could find the optimal start time in order to minimize the
energy cost.

Examples of flexible processes are:

4.11. Toy example lll: Computing schedules for processes 61

FlexMeasures Documentation, Release 0.19.1.dev20

* Water irrigation in agriculture

* Mechanical pulping in the paper industry

* Water pumping in waste water management
* Cooling for the food industry

For consumers under ToU (Time of Use) tariffs, FlexMeasures ProcessScheduler can plan the start time of the process
to minimize the overall cost of energy. Alternatively, it can create a consumption plan to minimize the CO, emissions.

In this tutorial, you’ll learn how to schedule processes using three different policies: INFLEXIBLE, BREAKABLE
and SHIFTABLE.

Moreover, we’ll touch upon the use of time restrictions to avoid scheduling a process in certain times of the day.

4.11.1 Setup

Before moving forward, we’ll add the process asset and three sensors to store the schedules resulting from following
three different policies.

$ flexmeasures add toy-account --kind process

Account '<Account Toy Account (ID:1)>' already exists. Skipping account creation..
—Use " flexmeasures delete account --id 1° if you need to remove it.

User with email toy-user@flexmeasures.io already exists in account Toy Account.

The sensor recording day-ahead prices is day-ahead prices (ID: 1).

Created <GenericAsset None: 'toy-process' (process)>

Created Power (INFLEXIBLE)

Created Power (BREAKABLE)

Created Power (SHIFTABLE)

The sensor recording the power of the INFLEXIBLE load is Power (INFLEXIBLE) (ID: 4).

The sensor recording the power of the BREAKABLE load is Power (BREAKABLE) (ID: 5).

The sensor recording the power of the SHIFTABLE load is Power (SHIFTABLE) (ID: 6).

Trigger an updated schedule

In this example, we are planning to consume at a 200kW constant power for a period of 4h.
This load is to be schedule for tomorrow, except from the period from 3pm to 4pm (imposed using the --forbid flag).

Now we are ready to schedule a process. Let’s start with the INFLEXIBLE policy, the simplest.

flexmeasures add schedule for-process --sensor 4 --consumption-price-sensor 1\
--start TOMORROW }T00:00:00+02:00 --duration PT24H --process-duration PT4H \
--process-power 0.2MW --process-type INFLEXIBLE \

--forbid "{\"start\" : \"${TOMORROW}T15:00:00+02:00\", \"duration\" : \"PT1H\"}"

Under the INFLEXIBLE policy, the process starts as soon as possible, in this case, coinciding with the start of the
planning window.

Following the INFLEXIBLE policy, we’ll schedule the same 4h block using a BREAKABLE policy.

flexmeasures add schedule for-process --sensor 5 --consumption-price-sensor 1\
--start TOMORROW }T00:00:00+02:00 --duration PT24H --process-duration PT4H \
--process-power 0.2MW --process-type BREAKABLE \

--forbid "{\"start\" : \"${TOMORROW}T15:00:00+02:00\", \"duration\" : \"PT1H\"}"

62 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

The BREAKABLE policy splits or breaks the process into blocks that can be scheduled discontinuously. The smallest
possible unit is (currently) determined by the sensor’s resolution.

Finally, we’ll schedule the process using the SHIFTABLE policy.

flexmeasures add schedule for-process --sensor 6 --consumption-price-sensor 1\
--start TOMORROW }T00:00:00+02:00 --duration PT24H --process-duration PT4H \
--process-power 0.2MW --process-type SHIFTABLE \

--forbid "{\"start\" : \"${TOMORROW}T15:00:00+02:00\", \"duration\" : \"PT1H\"}"

Results

The image below shows the resulting schedules following each of the three policies. You will see similar results in your
FlexMeasures UL.

Day-ahead prices (EUR/MWh)
yERAN==gY
5 ,—‘—I—\ o e

0
Thu 03 02:00 04:00 08:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Frio4

Power (Inflexible) (Mw)
0.00

-0.05
-0.10

-0.15

0
Thu 03 02:00 04:00 08:.00 08:00 10:00 12:00 14:00 16:00 18:00 2000 22:00 Friod

Power (Breakable) (MW)
0.00

-0.05
-0.10

-0.15

20 $ T
Thu 03 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Friod

Power (Shiftable) (Mw)
0.00

-0.05

-0.10
-0.15
-0.20
Thu 03 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Fri 04
Sensor Source
@ day-ahead prices (NL transmission zone} forecaster
Power (Inflexible) (toy- process; scheduler
® Power (Breakable) (toy-process) other

Power (Shiftable) (toy-process)

In the first policy, there’s no flexibility and it needs to schedule the process as soon as possible. Meanwhile, in the
BREAKABLE policy, the consumption blocks surrounds the time restriction to consume in the cheapest hours. Among
the three polices, the BREAKABLE policy can achieve the best Finally, in the SHIFTABLE policy, the process is shifted
to capture the best prices, avoiding the time restrictions.

Let’s list the power price the policies achieved for each of the four blocks they scheduled:

4.11. Toy example lll: Computing schedules for processes 63

http://localhost:5000/assets/4/

FlexMeasures Documentation, Release 0.19.1.dev20

Block INFLEXIBLE BREAKABLE SHIFTABLE
1 10.00 5.00 10.00

2 11.00 4.00 8.00

3 12.00 5.50 5.00

4 15.00 7.00 4.00

Average Price (EUR/MWh) 12.00 5.37 6.75

Total Cost (EUR) 9.60 4.29 5.40

Quantitatively, comparing the total cost of running the process under each policy, the BREAKABLE policy achieves
the best results. This is because it can fit much more consumption blocks in the cheapest hours.

This tutorial showed a quick way to optimize the activation of processes. In Toy example IV: Computing reports, we’ll
turn away from scheduling, and towards another important FlexMeasures feature: using reporters to apply transforma-
tions to sensor data.

4.12 Toy example IV: Computing reports

Warning: The reporting functionality is still in an early development stage. Beware that major changes might be
introduced.

So far, we have worked on scheduling batteries and processes. Now, we are moving to one of the other three pillars of
FlexMeasures: reporting.

In essence, reporters apply arbitrary transformations to data coming from some sensors (multiple inputs) and save the
results to other sensors (multiple outputs). In practice, this allows to compute KPIs (such as profit and total daily energy
production), to apply operations to beliefs (e.g. changing the sign of a power sensor for some time period), among other
things.

Note:
Currently, FlexMeasures comes with the following reporters:
* PandasReporter: applies arbitrary Pandas methods to sensor data.

» AggregatorReporter: combines data from multiple sensors into one using any of the methods supported by
the Pandas aggregate function (e.g. sum, average, max, min...).

* ProfitOrLossReporter: computes the profit/loss due to an energy flow under a specific tariff.

Moreover, it’s possible to implement your custom reporters in plugins. Instructions for this to come.

Now, coming back to the tutorial, we are going to use the AggregatorReporter and the ProfitOrLossReporter. In the first
part, we’ll use the AggregatorReporter to compute the (discharge) headroom of the battery in Toy example I1: Adding
solar production and limited grid connection. That way, we can verify the maximum power at which the battery can
discharge at any point of time. In the second part, we’ll use the ProfitOrLossReporter to compute the costs of operating
the process of Tut. Part III in the different policies.

Before getting to the meat of the tutorial, we need to set up up all the entities. Instead of having to do that manually (e.g.
using commands such as flexmeasures add sensor), we have prepared a command that does that automatically.

64 Chapter 4. Where to start reading?

https://pandas.pydata.org

FlexMeasures Documentation, Release 0.19.1.dev20

4.12.1 Setup

Just as in previous sections, we need to run the command flexmeasures add toy-account, but this time with a
different value for kind:

[$ flexmeasures add toy-account --kind reporter J

Under the hood, this command is adding the following entities:
* A yearly sensor that stores the capacity of the grid connection.

¢ A power sensor, headroom, to store the remaining capacity for the battery. This is where we’ll store the
report.

* A ProfitOrLossReporter configured to use the prices that we set up in Tut. Part II.
» Three sensors to register the profits/losses from running the three different processes of Tut. Part III.

Let’s check it out!

Run the command below to show the values for the grid connection capacity:

$ TOMORROW=$(date --date="next day" '+%Y-%m-%d')
$ flexmeasures show beliefs --sensor 7 --start TOMORROW }TO0:00:00+02:00 --duration.,
—PT24H --resolution PT1H

Beliefs for Sensor 'grid connection capacity' (ID 7).
Data spans a day and starts at 2023-08-14 00:00:00+02:00.
The time resolution (x-axis) is an hour.

1.0MW

| ©.5MW

| 0.0MW

-0.5MW

5 10 15 20
grid connection capacity

Moreover, we can check the freshly created source <Source id=6>, which defines the ProfitOrLossReporter with the
required configuration. You’ll notice that the config is under the data_generator field. That’s because reporters belong
to a bigger category of classes that also contains the Schedulers and Forecasters.

$ flexmeasures show data-sources --show-attributes --id 5

(continues on next page)

4.12. Toy example IV: Computing reports 65

FlexMeasures Documentation, Release 0.19.1.dev20

(continued from previous page)

ID Name Type User ID Model Version Attributes

6 FlexlMeasures reporter ProfitOrLossReporter {
—.generator": {
—{

<" consumption_price_sensor": 1

Compute headroom

In this case, the discharge headroom is nothing but the difference between the grid connection capacity and the PV
power. To compute that quantity, we can use the AggregatorReporter using the weights to make the PV to subtract the
grid connection capacity.

In practice, we need to create the config and parameters:

$ echo "

$ {

$ 'weights' : {

$ 'grid connection capacity' : 1.0,

$ 'PV' : -1.0,

$ }

$ }" > headroom-config.json

$ echo "

$ {

$ 'input' : [{'name' : 'grid connection capacity', 'sensor' : 7},
$ {'name' : 'PV', 'sensor' : 3}],
$ 'output' : [{'sensor' : 8}]

$ }" > headroom-parameters.json

Finally, we can create the reporter with the following command:

$ TOMORROW=$(date --date="next day" '+%Y-%m-%d')

$ flexmeasures add report --reporter AggregatorReporter \
--parameters headroom-parameters.json --config headroom-config.json \
--start-offset DB, 1D --end-offset DB,2D \
--resolution PT15M

Now we can visualize the headroom in the following link, which should resemble the following image.

66 Chapter 4. Where to start reading?

http://localhost:5000/sensor/8/

FlexMeasures Documentation, Release 0.19.1.dev20

Headroom (MW)
0.50

0.45

0.40
0.35
0.30
0.25
0.20
0.15
010
0.05

0
Fri1g

02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat19

Source
u FlexMeasures

The graph shows that the capacity of the grid is at full disposal for the battery when there’s no sun (thus no PV gener-
ation), while at noon the battery can only discharge at 280kW max.

Process scheduler profit

For the second part of this tutorial, we are going to use the ProfitOrLossReporter to compute the losses (defined as cost
- revenue) of operating the process from Tut. Part III, under the three different policies: INFLEXIBLE, BREAKABLE
and SHIFTABLE.

In addition, we’ll explore another way to invoke reporters: data generators. Without going too much into detail, data
generators create new data. The thee main types are: Reporters, Schedulers and Forecasters. This will come handy as
the three reports that we are going to create share the same config. The config defines the price sensor to use and sets
the reporter to work in losses mode, which means that it will return costs as positive values and revenue as negative
values.

Still, we need to define the parameters. The three reports share the same structure for the parameters with the following
fields:

* input: sensor that stores the power/energy flow. The number of sensors is limited to 1.

* output: sensor to store the report. We can provide sensors with different resolutions to store the same results at
different time scales.

Note: It’s possible to define the config and parameters in JSON or YAML formats.

After setting up config and parameters, we can invoke the reporter using the command flexmeasures add report.
The command takes the data source id, the files containing the parameters and the timing parameters (start and end).
For this particular case, we make use of the offsets to indicate that we want the report to encompass the day of tomorrow.

4.12. Toy example IV: Computing reports 67

FlexMeasures Documentation, Release 0.19.1.dev20

Inflexible process

Define parameters in a JSON file:

$ echo "

$ {

$ "input' : [{'sensor' : 4}],
$ 'output' : [{'sensor' : 9}]
$ }" > inflexible-parameters. json

Create report:

§ flexmeasures add report --source 6 \
--parameters inflexible-parameters.json \
--start-offset DB, 1D --end-offset DB,2D

Check the results here. The image should be similar to the one below.

Costs (Inflexible) (EUR)
0.8

0.7

0.6

05

04

0.3

0.2

0.1

Fri25 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat 26

Source
m FlexMeasures

Breakable process

Define parameters in a JSON file:

$ echo "

$ {

$ "input' : [{'sensor' : 5}],
$ 'output' : [{'sensor' : 10}]
$ }" > breakable-parameters.json

Create report:

§ flexmeasures add report --source 6 \
--parameters breakable-parameters.json \
--start-offset DB,1D --end-offset DB, 2D

68 Chapter 4. Where to start reading?

http://localhost:5000/sensor/9/

FlexMeasures Documentation, Release 0.19.1.dev20

Check the results here. The image should be similar to the one below.
Costs (Breakable) (EUR)
035
030
025
0.20-
015
0.10-

0.05 |

0.00

Fri25 0200 0400 06:00 0800 10:00 12:00 14:00 16:00 1800 2000 22:00 Sat26
Source
m FlexMeasures

Shiftable process

Define parameters in a JSON file:

$ echo "

$ {

$ "input' : [{'sensor' : 6}],
$ 'output' : [{'sensor' : 11}]
$ }" > shiftable-parameters.json

Create report:

§ flexmeasures add report --source 6 \
--parameters shiftable-parameters.json \
--start-offset DB,1D --end-offset DB, 2D

Check the results here. The image should be similar to the one below.

4.12. Toy example IV: Computing reports 69

http://localhost:5000/sensor/10/
http://localhost:5000/sensor/11/

FlexMeasures Documentation, Release 0.19.1.dev20

Costs (Shiftable) (EUR)
0.50

0.45
0.40
0.35
0.30

0.254
0.20
0.15
0.104

0.05

0 T T T T . : } | } |
Fri25 02:00 04.00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Sat26

Source
FlexMeasures

Now, we can compare the results of the reports to the ones we computed manually in his table). Keep in mind that the
report is showing the profit of each 15min period and adding them all shows that it matches with our previous results.

4.13 Posting data

The platform FlexMeasures strives on the data you feed it. Let’s demonstrate how you can get data into FlexMeasures
using the API. This is where FlexMeasures gets connected to your system as a smart backend and helps you build smart
energy services.

We will show how to use the API endpoints for POSTing data. You can call these at regular intervals (through scheduled
scripts in your system, for example), so that FlexMeasures always has recent data to work with. Of course, these
endpoints can also be used to load historic data into FlexMeasures, so that the forecasting models have access to
enough data history.

Note: For the purposes of forecasting and scheduling, it is often advisable to use a less fine-grained resolution than most
metering services keep. For example, while such services might measure every ten seconds, FlexMeasures will usually
do its job no less effective if you feed it data with a resolution of five minutes. This will also make the data integration
much easier. Keep in mind that many data sources like weather forecasting or markets can have data resolutions of an
hour, anyway.

Table of contents

* Prerequisites
* Posting sensor data

* Observations vs forecasts: The time of knowledge

* Posting flexibility states

70 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

4.13.1 Prerequisites

» FlexMeasures needs some structural meta data for data to be understood. For example, for adding weather data
we need to define a weather sensor, and what kind of weather sensors there are. You also need a user account.
If you host FlexMeasures yourself, you need to add this info first. Head over to Getting started, where these
steps are covered, study our CLI Commands or look into plugins which do this like flexmeasures-entsoe or
flexmeasures-openweathermap.

* You should be familiar with where to find your API endpoints (see Main endpoint and API versions) and how to
authenticate against the API (see Authentication).

Note: For deeper explanations of the data and the meta fields we’ll send here, You can always read the API Introduction,
to the FlexMeasures API, e.g. Signs of power values, Frequency and resolution, Setting the recording time and Units.

Note: To address assets and sensors, these tutorials assume entity addresses valid in the namespace fml. See AP/
Introduction for more explanations.

4.13.2 Posting sensor data

Sensor data (both observations and forecasts) can be posted to POST /sensors/data. This endpoint represents the basic
method of getting time series data into FlexMeasures via API. It is agnostic to the type of sensor and can be used to
POST data for both physical and economical events that have happened in the past or will happen in the future. Some
examples:

* readings from electricity and gas meters

* readings from temperature and pressure sensors
* state of charge of a battery

* estimated availability of parking spots

* price forecasts

The exact URL will depend on your domain name, and will look approximately like this:

[[POST] https://company.flexmeasures.io/api/<version>/sensors/data J

This example “PostSensorDataRequest” message posts prices for hourly intervals between midnight and midnight the
next day for the Korean Power Exchange (KPX) day-ahead auction, registered under sensor 16. The prior indicates
that the prices were published at 3pm on December 31st 2014 (i.e. the clearing time of the KPX day-ahead market,
which is at 3 PM on the previous day — see below for a deeper explanation).

{

"type": "PostSensorDataRequest",
"sensor": "eal.2021-01.io.flexmeasures.company:fml.16",
"values": [

52.37,

51.14,

49.09,

48.35,

48.47,

49.98,

(continues on next page)

4.13. Posting data 71

https://github.com/SeitaBV/flexmeasures-entsoe
https://github.com/SeitaBV/flexmeasures-openweathermap
../api/v3_0.html#post--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.19.1.dev20

(continued from previous page)

58.7,

67.76,

69.21,

70.26,

70.46,

70,

70.7,

70.41,

70,

64.53,

65.92,

69.72,

70.51,

75.49,

70.35,

70.01,

66.98,

58.61
1,
"start": "2015-01-01T00:00:00+09:00",
"duration": "PT24H",
"prior": "2014-12-31T15:00:00+09:00",
"unit": "KRW/kWh"

Note how the resolution of the data comes out at 60 minutes when you divide the duration by the number of data points.
If this resolution does not match the sensor’s resolution, FlexMeasures will try to upsample the data to make the match
or, if that is not possible, complain. Likewise, if the data unit does not match the sensor’s unit, FlexMeasures will
attempt to convert the data or, if that is not possible, complain.

Being explicit when posting power data

For power data, USEF specifies separate message types for observations and forecasts. Correspondingly, we allow the
following message types to be used with the POST /sensors/data endpoint:

{

"type": "PostMeterDataRequest"
}
{

"type": "PostPrognosisRequest"
}

For these message types, FlexMeasures validates whether the data unit is suitable for communicating power data.
Additionally, we validate whether meter data lies in the past, and prognoses lie in the future.

72 Chapter 4. Where to start reading?

../api/v3_0.html#post--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.19.1.dev20

Single value, single sensor

A single average power value for a 15-minute time interval for a single sensor, posted 5 minutes after realisation.

{

"type": "PostSensorDataRequest",
"sensor": "eal.2021-01.io.flexmeasures.company:fml.1",
"value": 220,

"start": "2015-01-01T00:00:00+00:00",
"duration": "PTOHISM",

"horizon": "-PT5M",

"unit": "MW"

Multiple values, single sensor

Multiple values (indicating a univariate timeseries) for 15-minute time intervals for a single sensor, posted 5 minutes
after each realisation.

{
"type": "PostSensorDataRequest",
"sensor": "eal.2021-01.io.flexmeasures.company:fml.1",
"values": [
220,
210,
200
1,
"start": "2015-01-01T00:00:00+00:00",
"duration": "PTOH45M",
"horizon": "-PT5M",
"unit": "MW"
}

4.13.3 Observations vs forecasts: The time of knowledge

To correctly tell FlexMeasures when a meter reading or forecast was known is crucial, as it determines which data is
being used to compute schedules or to make other forecasts.

Usually, the time of posting is assumed to be the time when the data was known. But you can also explicitly tell
FlexMeasures what these times are. This either works with one fixed time (for the whole set of data being sent) or with
a horizon (which applies to each data point separately).

E.g. to post a forecast rather than an observation after the fact, simply set the prior to the moment at which the
forecasts were made, e.g. at “2015-01-01T16:30:00+09:00”. Assuming your data starts at 5.00pm, this denotes that
the data are forecasts, made half an hour before realisation.

Alternatively, to indicate that each individual observation was made directly after the end of its 15-minute interval (i.e.
at 3.15pm, 3.30pm and so on), set a horizon to “PTOH” instead of a prior.

Finally, delays in reading out sensor data can be simulated by setting the horizon field to a negative value. For example,
a horizon of “-PT1H” would denote that each temperature reading was observed one hour after the fact (i.e. at4.15pm,
4.30pm and so on).

See Setting the recording time for more information regarding the prior and horizon fields.

4.13. Posting data 73

FlexMeasures Documentation, Release 0.19.1.dev20

A good example for the use of the prior field are markets, which have clearing times. For example, at the KPX day-
ahead auction this is every day at 3pm. This point in time (i.e. when contracts are signed) determines the difference
between an ex-post observation and an ex-ante forecast.

Another example for the prior field is running simulations with FlexMeasures. It gives you control over the timing so
that you could run a month in the past as if it happened right now.

4.13.4 Posting flexibility states

There is one more crucial kind of data that FlexMeasures needs to know about: What are the current states of flexible
devices? For example, a battery has a certain state of charge, which is relevant to describe the flexibility that the battery
currently has. In our terminology, this is called the “flex model” and you can read more at Describing flexibility.

Owners of such devices can post the flex model along with triggering the creation of a new schedule, to [POST]
/schedules/trigger. The URL might look like this:

[https ://company . flexmeasures.io/api/<version>/sensors/10/schedules/trigger J

The following example triggers a schedule for a power sensor (with ID 10) of a battery asset, asking to take into account
the battery’s current state of charge. From this, FlexMeasures derives the energy flexibility this battery has in the next
48 hours and computes an optimal charging schedule. The endpoint also allows to limit the flexibility range and also
to set target values.

{
"start": "2015-06-02T10:00:00+00:00",
"flex-model": {
"soc-at-start": 12.1,
"soc-unit": "kWh"
3
}

Note: Atthe moment, FlexMeasures only supports flexibility models suitable for batteries and car chargers here (asset

9% ¢

types “battery”, “one-way_evse” or “two-way_evse”). This will be expanded to other flexible assets as needed.

Note: Flexibility states are persisted on sensor attributes. To record a more complete history of the state of charge, set
up a separate sensor and post data to it using [POST] /sensors/data (see Posting sensor data).

In How scheduling jobs are queued, we’ll cover what happens when FlexMeasures is triggered to create a new schedule,
and how those schedules can be retrieved via the API, so they can be used to steer assets.

4.14 Forecasting & scheduling

Once FlexMeasures contains data (see Posting data), you can enjoy its forecasting and scheduling services. Let’s
take a look at how FlexMeasures users can access information from these services, and how you (if you are hosting
FlexMeasures yourself) can set up the data science queues for this.

Table of contents

* Maintaining the queues

74 Chapter 4. Where to start reading?

../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
../api/v3_0.html#post--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.19.1.dev20

* How forecasting jobs are queued
* How scheduling jobs are queued

* Getting power forecasts (prognoses)

* Getting schedules (control signals)

If you want to learn more about the actual algorithms used in the background, head over to Scheduling and Forecasting.

Note: FlexMeasures comes with in-built scheduling algorithms. You can use your own algorithm, as well, see plugin-
customization.

4.14.1 Maintaining the queues

Note: If you are not hosting FlexMeasures yourself, skip right ahead to How forecasting jobs are queued or Getting
power forecasts (prognoses).

Here we assume you have access to a Redis server and configured it (see Redis).

Start to run one worker for each kind of job (in a separate terminal):

$ flexmeasures jobs run-worker --queue forecasting
§ flexmeasures jobs run-worker --queue scheduling

You can also clear the job queues:

$ flexmeasures jobs clear-queue --queue forecasting
$ flexmeasures jobs clear-queue --queue scheduling

When the main FlexMeasures process runs (e.g. by flexmeasures run), the queues of forecasting and schedul-
ing jobs can be visited at http://localhost:5000/tasks/forecasting and http://localhost:5000/tasks/
schedules, respectively (by admins).

When forecasts and schedules have been generated, they should be visible at http://localhost:5000/assets/
<id>.

Note: You can run workers who process jobs on different computers than the main server process. This can be a great
architectural choice. Just keep in mind to use the same databases (postgres/redis) and to stick to the same FlexMeasures
version on both.

4.14. Forecasting & scheduling 75

FlexMeasures Documentation, Release 0.19.1.dev20

4.14.2 How forecasting jobs are queued

A forecasting job is an order to create forecasts based on measurements. A job can be about forecasting one point in
time or about forecasting a range of points.

In FlexMeasures, the usual way of creating forecasting jobs would be right in the moment when new power, weather
or price data arrives through the API (see Posting data). So technically, you don’t have to do anything to keep fresh
forecasts.

The decision which horizons to forecast is currently also taken by FlexMeasures. For power data, FlexMeasures makes
this decision depending on the asset resolution. For instance, a resolution of 15 minutes leads to forecast horizons of 1,
6, 24 and 48 hours. For price data, FlexMeasures chooses to forecast prices forward 24 and 48 hours These are decent
defaults, and fixing them has the advantage that schedulers (see below) will know what to expect. However, horizons
will probably become more configurable in the near future of FlexMeasures.

You can also add forecasting jobs directly via the CLI. We explain this practice in the next section.

Historical forecasts
There might be reasons to add forecasts of past time ranges. For instance, for visualization of past system behavior and
to check how well the forecasting models have been doing on a longer stretch of data.

If you host FlexMeasures yourself, we provide a CLI task for adding forecasts for whole historic periods. This is an
example call:

Here we request 6-hour forecasts to be made for two sensors, for a period of two days:

$ flexmeasures add forecasts --sensor 2 --sensor 3 \
--from-date 2015-02-01 --to-date 2015-08-31 \
--horizon 6 --as-job

This is half a year of data, so it will take a while.

It can be good advice to dispatch this work in smaller chunks. Alternatively, note the --as-job parameter. If you use
it, the forecasting jobs will be queued and picked up by worker processes (see above). You could run several workers
(e.g. one per CPU) to get this work load done faster.

Run flexmeasures add forecasts --help for more information.

4.14.3 How scheduling jobs are queued

In FlexMeasures, a scheduling job is an order to plan optimised actions for flexible devices. It usually involves a linear
program that combines a state of energy flexibility with forecasted data to draw up a consumption or production plan
ahead of time.

There are two ways to queue a scheduling job:

First, we can add a scheduling job to the queue via the API. We already learned about the [POST] /schedules/trigger
endpoint in Posting flexibility states, where we saw how to post a flexibility state (in this case, the state of charge of a
battery at a certain point in time).

Here, we extend that (storage) example with an additional target value, representing a desired future state of charge.

{
"start": "2015-06-02T10:00:00+00:00",
"flex-model": {
"soc-at-start": 12.1,

(continues on next page)

76 Chapter 4. Where to start reading?

../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger

FlexMeasures Documentation, Release 0.19.1.dev20

(continued from previous page)
"soc-unit": "kWh"
"soc-targets": [
{
"value": 25,
"datetime": "2015-06-02T16:00:00+00:00"

We now have described the state of charge at 10am to be 12. 1. In addition, we requested that it should be 25 at 4pm.
For instance, this could mean that a car should be charged at 90% at that time.

If FlexMeasures receives this message, a scheduling job will be made and put into the queue. In turn, the scheduling
job creates a proposed schedule. We’ll look a bit deeper into those further down in Getting schedules (control signals).

Note: Even without a target state of charge, FlexMeasures will create a scheduling job. The flexible device can then
be used with more freedom to reach the system objective (e.g. buy power when it is cheap, store it, and sell back when
it’s expensive).

A second way to add scheduling jobs is via the CLI, so this is available for people who host FlexMeasures themselves:

§ flexmeasures add schedule for-storage --sensor 1 --consumption-price-sensor 2 \
--start 2022-07-05T07:00+01:00 --duration PT12H \
--soc-at-start 50% --roundtrip-efficiency 90% --as-job

Here, the --as-job parameter makes the difference for queueing — without it, the schedule is computed right away.

Run flexmeasures add schedule for-storage --help for more information.

4.14.4 Getting power forecasts (prognoses)

Prognoses (the USEF term used for power forecasts) are used by FlexMeasures to determine the best control signals to
valorise on balancing opportunities.

You can access forecasts via the FlexMeasures API at [GET] /sensors/data. Getting them might be useful if you want to
use prognoses in your own system, or to check their accuracy against meter data, i.e. the realised power measurements.
The FlexMeasures Ul also lists forecast accuracy, and visualises prognoses and meter data next to each other.

A prognosis can be requested at a URL looking like this:

[https ://company . flexmeasures.io/api/<version>/sensors/data

This example requests a prognosis for 24 hours, with a rolling horizon of 6 hours before realisation.

{
"type": "GetPrognosisRequest",
"sensor": "eal.2021-01.io.flexmeasures.company:fml.1",
"start": "2015-01-01T00:00:00+00:00",
"duration": "PT24H",
"horizon": "PT6H",
"resolution": "PT15M",
"unit": "MW"
3

4.14. Forecasting & scheduling 77

../api/v3_0.html#get--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.19.1.dev20

4.14.5 Getting schedules (control signals)

We saw above how FlexMeasures can create optimised schedules with control signals for flexible devices (see Posting
[flexibility states). You can access the schedules via the [GET] /schedules/<uuid> endpoint. The URL then looks like
this:

[https ://company. flexmeasures.io/api/<version>/sensors/<id>/schedules/<uuid>]

Here, the schedule’s Universally Unique Identifier (UUID) should be filled in that is returned in the [POST] /sched-
ules/trigger response. Schedules can be queried by their UUID for up to 1 week after they were triggered (ask your
host if you need to keep them around longer). Afterwards, the exact schedule can still be retrieved through the [GET]
/sensors/data, using precise filter values for start, prior and source.

The following example response indicates that FlexMeasures planned ahead 45 minutes for the requested battery power
sensor. The list of consecutive power values represents the target consumption of the battery (negative values for
production). Each value represents the average power over a 15 minute time interval.

{
"values": [
2.15,
5P
2
i
"start": "2015-06-02T10:00:00+00:00",
"duration": "PT45M",
"unit": "MW"

How to interpret these control signals?

One way of reaching the target consumption in this example is to let the battery start to consume with 2.15 MW at
10am, increase its consumption to 3 MW at 10.15am and decrease its consumption to 2 MW at 10.30am.

However, because the targets values represent averages over 15-minute time intervals, the battery still has some degrees
of freedom. For example, the battery might start to consume with 2.1 MW at 10.00am and increase its consumption
to 2.25 at 10.10am, increase its consumption to 5 MW at 10.15am and decrease its consumption to 2 MW at 10.20am.
That should result in the same average values for each quarter-hour.

4.15 Building custom Uls

FlexMeasures provides its own Ul (see Dashboard), but it is a back office platform first. Most energy service companies
already have their own user-facing system. We therefore made it possible to incorporate information from FlexMeasures
in custom Uls.

This tutorial will show how the FlexMeasures API can be used from JavaScript to extract information and display it in
a browser (using HTML). We’ll extract information about users, assets and even whole plots!

Table of contents

e Get an authentication token

* Load user information

* Load asset information

78 Chapter 4. Where to start reading?

../api/v3_0.html#get--api-v3_0-sensors-(id)-schedules-(uuid)
../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
../api/v3_0.html#get--api-v3_0-sensors-data
../api/v3_0.html#get--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.19.1.dev20

» Embedding charts I

Note: We’ll use standard JavaScript for this tutorial, in particular the fetch functionality, which many browsers support
out-of-the-box these days. You might want to use more high-level frameworks like jQuery, Angular, React or VueJS
for your frontend, of course.

4.15.1 Get an authentication token

FlexMeasures provides the [POST] /api/requestAuthToken endpoint, as discussed in Authentication. Here is a
JavaScript function to call it:

var flexmeasures_domain = "http://localhost:5000";
function getAuthToken(){
return fetch(flexmeasures_domain + '/api/requestAuthToken',
{
method: "POST",
mode: "cors",
headers:
{
"Content-Type": "application/json",
e
body: JSON.stringify({"email": email, "password": password})
}
)
.then(function(response) { return response.json(); 1})
.then(console.log("Got auth token from FlexMeasures server ..."));
}

It only expects you to set email and password somewhere (you could also pass them to the function, your call). In
addition, we expect here that flexmeasures_domain is set to the FlexMeasures server you interact with, for example
“https://company.flexmeasures.io”.

We’ll see how to make use of the getAuthToken function right away, keep on reading.

4.15.2 Load user information
Let’s say we are interested in a particular user’s meta data. For instance, which email address do they have and which
timezone are they operating in?

Given we have set a variable called userId, here is some code to find out and display that information in a simple
HTML table:

<hl>User info</h1>
<p>

Email address:
</p>
<p>

Time zone:
</p>

4.15. Building custom Uls 79

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
../api/v2_0.html#post--api-v2_0-requestAuthToken
https://company.flexmeasures.io

FlexMeasures Documentation, Release 0.19.1.dev20

function loadUserInfo(userId, authToken) {
fetch(flexmeasures_domain + '/api/v2_0/user/' + userld,

{
method: "GET",
mode: "cors",
headers:
{
"Content-Type": "application/json",
"Authorization": authToken
e
}
)
.then(console.log("Got user data from FlexMeasures server ..."))

.then(function(response) { return response.json(); })
.then(function(userInfo) {
document.querySelector('#user_email').innerHTML = userInfo.email;
document.querySelector('#user_timezone').innerHTML = userInfo.timezone;

b
3
document.onreadystatechange = (O => {
if (document.readyState === 'complete') {
getAuthToken()

.then(function(response) {
var authToken = response.auth_token;
loadUserInfo(userId, authToken);

b

}

The result looks like this in your browser:

User info

Email address: demo(@seita.nl

Time zone: Europe/Amsterdam

From FlexMeasures, we are using the [GET] /user endpoint, which loads information about one user. Browse its
documentation to learn about other information you could get.

80 Chapter 4. Where to start reading?

../api/v3_0.html#get--api-v3_0-user-(id)

FlexMeasures Documentation, Release 0.19.1.dev20

4.15.3 Load asset information

Similarly, we can load asset information. Say we have a variable accountId and we want to show which assets
FlexMeasures administrates for that account.

For the example below, we’ve used the ID of the account from our toy tutorial, see foy futorial.

<style>
#assetTable th, #assetTable td {
border-right: 1px solid gray;
padding-left: 5px;
padding-right: 5px;
}
</style>

<table id="assetTable">
<thead>
<tr>
<th>Asset name</th>
<th>ID</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody></tbody>
</table>

function loadAssets(accountId, authToken) {
var params = new URLSearchParams();
params.append(account_id", accountId);
fetch(flexmeasures_domain + '/api/v3_0/assets?' + params.toString(),

{
method: "GET",
mode: "cors",
headers:
{
"Content-Type": "application/json",
"Authorization": authToken
e
}
)
.then(console.log("Got asset data from FlexMeasures server ..."))

.then(function(response) { return response.json(); })
.then(function(rows) {
rows.forEach(row => {
const tbody = document.querySelector('#assetTable tbody');
const tr = document.createElement('tr');
tr.innerHTML = " <td>${row.name/</td><td>f{row.id/</td><td>${row.latitude </td>
—<td>${row.longitude j</td>";
tbody.appendChild(tr);
5D5
b

(continues on next page)

4.15. Building custom Uls 81

FlexMeasures Documentation, Release 0.19.1.dev20

(continued from previous page)

document.onreadystatechange = (0 => {
if (document.readyState === 'complete') {
getAuthToken()
.then(function(response) {
var authToken = response.auth_token;
loadAssets(accountId, authToken);

D)

The result looks like this in your browser:

Asset name | Id | Latitude | Longitude |
toy-solar | 11|52.374 |4.88969 |
toy-building | 12| 52.374 | 4.88969 |
toy-battery |13|52.374 |4.88969 |

From FlexMeasures, we are using the [GET] /assets endpoint, which loads a list of assets. Note how, unlike the user
endpoint above, we are passing a query parameter to the API (account_id). We are only displaying a subset of the
information which is available about assets. Browse the endpoint documentation to learn other information you could
get.

For a listing of public assets, replace /api/v3_0/assets with /api/v3_0/assets/public.

4.15.4 Embedding charts

Creating charts from data can consume lots of development time. FlexMeasures can help here by delivering ready-made
charts. In this tutorial, we’ll embed a chart with electricity prices.

First, we define a div tag for the chart and a basic layout (full width). We also load the visualization libraries we need
(more about that below), and set up a custom formatter we use in FlexMeasures charts.

<script src="https://d3js.org/d3.v6.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/vega@5.22.1"></script>
<script src="https://cdn.jsdelivr.net/npm/vega-lite@5.2.0"></script>
<script src="https://cdn.jsdelivr.net/npm/vega-embed@6.20.8"></script>
<script>
vega.expressionFunction('quantityWithUnitFormat', function(datum, params) {
return d3.format(params[0]) (datum) + " " + params[1];
B;
</script>

<div id="sensor-chart" style="width: 100%;"></div>

Now we define a JavaScript function to ask the FlexMeasures API for a chart and then embed it:

function embedChart(params, authToken, sensorId, divId){
fetch(
flexmeasures_domain + '/api/dev/sensor/' + sensorld + '/chart?include_data=true&

"' 4+ params.toString(),
(continues on next page)

82 Chapter 4. Where to start reading?

../api/v3_0.html#get--api-v3_0-assets

FlexMeasures Documentation, Release 0.19.1.dev20

(continued from previous page)

{
method: "GET",
mode: "cors",
headers:
{
"Content-Type": "application/json",
"Authorization": authToken
}
}

)
.then(function(response) {return response.json();})
.then(function(data) {vegaEmbed(divId, data)})

This function allows us to request a chart (actually, a JSON specification of a chart that can be interpreted by vega-lite),
and then embed it within a div tag of our choice.

From FlexMeasures, we are using the GET /api/dev/sensor/(id)/chart/ endpoint. Browse the endpoint documentation
to learn more about it.

Note: Endpoints in the developer API are still under development and are subject to change in new releases.

Here are some common parameter choices for our JavaScript function:

var params = new URLSearchParams();

params.append("width", 400); // an integer number of pixels; without it, the chart will.,
—be scaled to the full width of the container (note that we set the div width to 100%)
params.append("height", 400); // an integer number of pixels; without it, a FlexMeasures.,
—default is used

params.append("event_starts_after", '2022-10-01T00:00+01'); // only fetch events from.,
—midnight October 1st

params.append("event_ends_before", '2022-10-08T00:00+01'); // only fetch events until,,
—midnight October 8th

params.append("beliefs_before", '2022-10-03T00:00+01'); // only fetch beliefs prior to.
—October 3rd (time travel)

As FlexMeasures uses the Vega-Lite Grammar of Interactive Graphics internally, we also need to import this library to
render the chart (see the script tags above). It’s crucial to note that FlexMeasures is not transferring images across
HTTP here, just information needed to render them.

Note: It’s best to match the visualization library versions you use in your frontend to those used by FlexMea-
sures. These are set by the FLEXMEASURES_JS_VERSIONS config (see Configuration) with defaults kept in
flexmeasures/utils/config_defaults.

Now let’s call this function when the HTML page is opened, to embed our chart:

document.onreadystatechange = (0 => {
if (document.readyState === 'complete') {
getAuthToken()
.then(function(response) {
var authToken = response.auth_token;
(continues on next page)

4.15. Building custom Uls 83

../api/dev.html#get--api-dev-sensor-(id)-chart-
https://vega.github.io/vega-lite/

FlexMeasures Documentation, Release 0.19.1.dev20

(continued from previous page)

var params = new URLSearchParams();
params.append("event_starts_after", '2022-01-01T00:00+01');
embedChart (params, authToken, 1, '#sensor-chart');

b

The parameters we pass in describe what we want to see: all data for sensor 3 since 2022. If you followed our 7oy
tutorial on a fresh FlexMeasures installation, sensor 1 contains market prices (authenticate with the toy-user to gain
access).

The result looks like this in your browser:

Day-ahead prices (EUR/MWh)
18

0
December 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 Fri 02

Source
™ toy-user

4.16 Energy flexibility

FlexMeasures was created so that the value of energy flexibility can be realized. This will make energy cheaper to use,
and can also reduce CO, emissions. Here, we define a few terms around this idea, which come up in other parts of this
documentation.

o Flexibility opportunities and activation
— Opportunities
— Activation
* An example: the balancing market
* Types of flexibility
— Curtailment
— Shifting
* Profits of flexibility activation
— Computing value

— Accounting / Sharing value

* A word on terminology

84 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

4.16.1 Flexibility opportunities and activation

Opportunities

In an energy system with flexible energy assets present (e.g. batteries, heating/cooling), there are opportunities to profit
from the availability and activation of their flexibility.

Energy flexibility can come from the ability to store energy (“storage”), to delay (or advance) planned consumption or
production (“shifting”), the ability to lower production (“curtailment”), or the ability to increase or decrease consump-
tion (“demand response”) — see Types of flexibility for a deeper discussion.

Under a given incentive, this flexibility represents an opportunity to profit by scheduling consumption or production dif-
ferently than originally planned. Within FlexMeasures, flexibility is represented as the difference between a suggested
schedule and a given baseline. By default, a baseline is determined by our own forecasts.

Opportunities are expressed with respect to given economical and ecological incentives. For example, a suggested
schedule may represent an opportunity to save X EUR and Y tonnes of CO,.

Activation

The activation of flexibility usually happens in a context of incentives. Often, that context is a market. We recommend
the USEF white paper on the flexibility value chain for an excellent introduction of who can benefit from energy
flexibility and how it can be delivered. The high-level takeaways are these:

* the value of flexibility flows back to Prosumers along a chain of roles involved in the activation of their flexibility:
the Flexibility Value Chain.

* a portfolio of flexible assets (and even individual assets) may provide services in multiple contexts in the same
period: value stacking.

« Explicit demand-side flexibility services involve Aggregators, while implicit demand-side flexibility services
involve Energy Service Companies (ESCos).

e Many remuneration components for flexibility services requires the determination of a baseline according to
some baseline methodology.

* Both availability and activation of flexibility have value.

The overall value (from availability and activation of flexibility), and how this value is shared amongst stakeholders in
the various roles in the Flexibility Value Chain, can be accounted for by the platform operator. We talk more about this
in Profits of flexibility activation.

4.16.2 An example: the balancing market

An example of a market on which flexibility can be activated is the balancing market, which is meant to bring the
grid frequency back to a target level within a matter of minutes. Consider the aforementioned differences between
suggested schedules and a given baseline. In the context of the balancing market, differences indicating an increase in
production or a decrease in consumption on activation both result in an increasing grid frequency (back towards the
target frequency).

The balancing market pays for such services, and they are often referred to as “up-regulation”. It works the other way
around, too: differences indicating a decrease in production or an increase in consumption both result in a decreasing
grid frequency (“down-regulation™).

4.16. Energy flexibility 85

https://www.usef.energy/app/uploads/2018/11/USEF-White-paper-Flexibility-Value-Chain-2018-version-1.0_Oct18.pdf

FlexMeasures Documentation, Release 0.19.1.dev20

4.16.3 Types of flexibility

The FlexMeasures platform distinguishes between different types of flexibility. We explain them here in more detail,
together with examples.

Curtailment

Curtailment happens when an asset temporarily lowers or stops its production or consumption. A defining feature of
curtailment is that total production or consumption decreases when this this flexibility is activated.

* A typical example of curtailing production is when a wind turbine adjusts the pitch angle of its blades to decrease
the generator torque.

* An example of curtailing consumption is load shedding of energy intensive industries.

Curtailment offers may specify some freedom in terms of how much energy can be curtailed. In these cases, the user
can select the energy volume (in MWh) to be ordered, within constraints set by the relevant Prosumer. The net effect
of a curtailment action is also measured in terms of an energy volume (see the flexibility metrics in the portfolio page).

Note that the volume ordered is not necessarily equal to the volume curtailed: the ordered volume relates only to the
selected time window, while the curtailed volume may include volumes outside of the selected time window. For
example, an asset that runs an all-or-nothing consumption process of 2 hours can be ordered to curtail consumption
for 1 hour, but will in effect stop the entire process. In this case, the curtailed volume will be higher than the ordered
volume, and the platform will take into account the total expected curtailment in its calculations.

Shifting

Shifting happens when an asset delays or advances its energy production or consumption. A defining feature of shifting
is that total production or consumption remains the same when this flexibility is activated.

* An example of delaying consumption is when a charging station postpones the charging process of an electric
vehicle.

* An example of advancing consumption is when a cooling unit starts to cool before the upper temperature bound
was reached (pre-cooling).

Shifting offers may specify some freedom in terms of how much energy can be shifted. In these cases, the user can
select the energy volume (in MWh) to be ordered, within constraints set by the relevant Prosumer. This energy volume
represents how much energy is shifting into or out of the selected time window. The net effect of a shifting action
is measured in terms of an energy-time volume (see the flexibility metrics in the portfolio page). This volume is a
multiplication of the energy volume being shifted and the duration of that shift.

4.16.4 Profits of flexibility activation

The realized value from activating flexibility has to be computed and accounted for. Both of these activities depend on
the context in which FlexMeasures is being used, and we expect that it will often have to be implemented in a custom
manner (much as the actual scheduling optimization).

Todo: Making it possible to configure custom scheduling and value accounting is on the roadmap for FlexMeasures.

86 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

Computing value

The computation of the value is what drives the scheduling optimization. This value is usually monetary, and in that
case there should be some form of market configured. This can be a constant or time-of-use tariff, or a real market.
However, there are other possibilities, for instance if the optimization goal is to minimize CO, emissions. Then, the
realized value is avoided CO,, which nowadays has an assumed value, e.g. in the EU ETS carbon market.

Accounting / Sharing value

The realization of payments is outside of the scope of FlexMeasures, but it can provide the accounting to enable them
(as was said above, this is usually a part of the optimization problem formulation).

However, next to fueling algorithmic optimization, the way that the value of energy flexibility is shared among the
stakeholders will also be an important driver for project participation. Accounting plays an important role here.

There are different roles in a modern smart energy system (e.g. “Prosumer”, “DSO”, Aggregator”, “ESCo”), and they
all enjoy the benefits of flexibility in different ways (see for example this resource for more details).

In our opinion, the only way to successful implementation of energy flexibility is if profits are shared between these
stakeholders. This assumes contractual relationships. Use cases which FlexMeasures can support well are the following
relationships:

* between Aggregator and Prosumer, where the Aggregator sells the balancing power to a third party and shares
the profits with the Prosumer according to some contracted method for profit sharing. In this case the stated
costs and revenues for the Prosumer may be after deducting the Aggregator fee (which typically include price
components per flex activation and price components per unit of time, but may include arbitrarily complex price
components).

* between ESCo and Prosumer, where the ESCo advises the Prosumer to optimize against e.g. dynamic prices.
Likewise, stated numbers may be after deducting the ESCo fee.

FlexMeasures can take these intricacies into account if a custom optimization algorithm is plugged in to model them.

Alternatively, we can assume that all profit from activating flexibility goes to the Prosumer, or simply report the profits
before sharing (and before deducting any service fees).

4.16.5 A word on terminology
FlexMeasures is compliant with the Universal Smart Energy Framework (USEF). Therefore, this documentation uses
USEF terminology, e.g. for role definitions. In this context, the intended users of FlexMeasures are a Supplier (energy

company) and its Prosumers (asset owners who have energy contracts with that Supplier). The platform operator of
FlexMeasures can be an Aggregator.

4.17 The FlexMeasures data model

The data model being used in FlexMeasures is visualized here (click for larger version):

4.17. The FlexMeasures data model 87

https://ember-climate.org/data/carbon-price-viewer/
https://www.usef.energy/role-specific-benefits/
https://www.usef.energy/

FlexMeasures Documentation, Release 0.19.1.dev20

DataSource

Fid - Integer
LatestTaskRun +name : String
+type - String
+user_id : Integer
+attributes - JSON
+attributes_hash : LargeBinary|
+model : Sfring

+version : String

“+name - Strin
+datetime : DateTime
+status - Boolean

"+data_sourcey +souvge

User

Fid - Integer

+email : String
+usemame - String
+password : String
+last login_at : DateTime
+last seen_at : DateTime
susegs |+login_count : Integer
+active - Boolean
+fs_uniquifier - String
+timezone : String
+account_id - Integer

+us
+account, +flexmeasures_roles

Account Role
+id - Integer +id - Integer
“+name : String 'sultgney_account 0..1 +name : String
+consultancy_account_id - Integer fancy_client_accounts * +description - String
nts *

+owner §.
+generic_assets
GenericAsset

+id : Integer
+name - String
+latitude : Float

AccountRole

+id © Integer
+longitude : Float fant_psset 0.1 +name : gtnng
+attributes : JSON fc_asset +description - String

+parent_asset id - Integer
+generic_asset type id : Integer|
+account Jd - Integer

assets *

+generic_assats

+sensars

Sensor
+generic_asset_typ! Fid : Integer
+name - String
GenericAssetType Funit - String
+id - Integer +timezone - String
+name : String +event resolution : Interval
+description - String +knowledge_horizon_fnc - String
+knowledge horizon par : JSON
+attributes :JSON
+generic_asset_id : Integer

+serisgr!
+belie +beliefs *

TimedBelief

Fevent start - DateTime
+belief horizon : Interval
+cumulative_probability - Float
+event_valug : Float
“+sensor_id © Integer
+source_id - Integer

Let’s dive into some of the more crucial model types:

4.17.1 Assets

Assets can represent physical objects (e.g. a car battery or an industrial machine) or “virtual” objects (e.g. a market).
In essence, an asset is anything on which you collect data.

Assets can also have a parent-child relationship with other assets. So, you could model a building that contains assets
like solar panels, a heat pump and EV chargers.

4.17.2 Sensors

A sensor depicts how data is collected in detail. Each sensor links to an asset.

For instance, an asset might have both a energy meter and a temperature reading. You’d link two sensors to that asset
and each sensor would have a unique unit (e.g. kWh and °C).

You can also tell FlexMeasures in what timezone your data is expected to be set, and what the resolution should be.
Then, FlexMeasures can try to convert incoming data to these specifications (e.g. if Fahrenheit readings come in, it
converts them to Celsius).

A bit more intricate control is to describe when beliefs (see below) are known. You might get prices from a supplier,
but the time you imported them is not the time they were known. A market might have a publication date you want to
adhere to. More information in the timely-beliefs documentation.

88 Chapter 4. Where to start reading?

https://raw.githubusercontent.com/FlexMeasures/screenshots/main/architecture/FlexMeasures-NewDataModel.png
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#beliefs-in-economics

FlexMeasures Documentation, Release 0.19.1.dev20

4.17.3 Data sources

We keep track of where data comes from, for better reporting (this is also an aspect of the timely-beliefs package). A
data source can be a FlexMeasures user, but also simply a named source from outside, e.g. a third-party API, where
weather forecasts are collected from.

4.17.4 Beliefs

When we discussed sensors, we hinted at the care we took to model the event data well. We call each data point a
“belief”, as we not only store measurements — we also store forecasts, schedules and the like, many of which do not
have a 100% truth value.

For instance, a horizon of 0 means the data point was known right after it happened. A positive horizon means the data
point is a forecast.

The timely-beliefs package helps us to model many aspects about data points, e.g. who claims to know that value, when
they said so and how certain they were.

Each belief links to a sensor and a data source. Here are two examples:

» The power sensor of a battery, where we store the schedules, can have two sources: (1) the schedule itself (a data
source of type “scheduler”, representing how FlexMeasures created this data) and (2) the realized schedule, i.e.
the measurements of how the battery responded (or not) to the schedule. The latter might have a data source of
type “user” (who sent the measurements to FlexMeasures).

* A thermal demand sensor containing forecasts (data source of type “forecast”, e.g. heating usage forecast sent to
FlexMeasures or made by FlexMeasures) and measurements (sent into FlexMeasures, data source type “user’).

4.17.5 Accounts & Users

FlexMeasures is a multi-tenant system. Each account should model an organization with multiple users.

Accounts “own” assets, and data of these assets are protected against anyone from a different account (unless a user
has the admin role).

Accounts can “consult” other accounts. This depicts the real situation that some organizations are the consultants or
advisors to many others. They have certain rights, e.g. to read the data of their clients. That is useful for serving them.
If you are hosting FlexMeasures, and the organizations you serve with it use this feature, you are effectively running a
B2B2B setup :)

4.18 Security aspects

4.18.1 Data

There are two types of data on FlexMeasures servers - files (e.g. source code, images) and data in a database (e.g. user
data and time series for energy consumption/generation or weather).

« Files are stored on EBS volumes on Amazon Web Services. These are shared with other customers of Amazon,
but protected from them by Linux’s chroot system — each user can see only the files in their own section of the
disk.

 Database data is stored in PostgresDB instances which are not shared with other Amazon customers. They are
password-protected.

4.18. Security aspects 89

https://github.com/SeitaBV/timely-beliefs

FlexMeasures Documentation, Release 0.19.1.dev20

* Finally, The application communicates all data with HTTPS, the Hypertext Transfer Protocol encrypted by Trans-
port Layer Security. This is used even if the application is accessed via http://.

4.18.2 Authentication

Authentication is the system by which users tell the FlexMeasures platform that they are who they claim they are. This
involves a username/password combination (“credentials’) or an access token.

* No user passwords are stored in clear text on any server - the FlexMeasures platform only stores the hashed
passwords (encrypted with the berypt hashing algorithm). If an attacker steals these password hashes, they
cannot compute the passwords from them in a practical amount of time.

* Access tokens are used so that the sending of usernames and passwords is limited (even if they are encrypted
via https, see above) when dealing with the part of the FlexMeasures platform which sees the most traffic: the
API functionality. Tokens thus have use cases for some scenarios, where developers want to treat authentica-
tion information with a little less care than credentials should be treated with, e.g. sharing among computers.
However, they also expire fast, which is a common industry practice (by making them short-lived and requiring
refresh, FlexMeasures limits the time an attacker can abuse a stolen token). At the moment, the access tokens on
FlexMeasures platform expire after six hours. Access tokens are encrypted and validated with the sha256_crypt
algorithm, and the functionality to expire tokens is realised by storing the seconds since January 1, 2011 in the
token. The maximum age of access tokens in FlexMeasures can be altered by setting the env variable SECU-
RITY_TOKEN_MAX_AGE to the number of seconds after which tokens should expire.

Note: Authentication (and authorization, see below) affects the FlexMeasures API and UI. The CLI (command line
interface) can only be used if the user is already on the server and can execute flexmeasures commands, thus we can
safely assume they are admins.

4.18.3 Authorization

Authorization is the system by which the FlexMeasures platform decides whether an authenticated user can access data.
Data about users and assets. Or metering data, forecasts and schedules.

For instance, a user is authorized to update his or her personal data, like the surname. Other users should not be
authorized to do that. We can also authorize users to do something because they belong to a certain account. An
example for this is to read the meter data of the account’s assets. Any regular user should only be able to read data that
their account should be able to see.

Note: Each user belongs to exactly one account.

In a nutshell, the way FlexMeasures implements authorization works as follows: The data models codify under which
conditions a user can have certain permissions to work with their data (in code, look for the __acl__ function, where
the access control list is defined). Permissions allow distinct ways of access like reading, writing or deleting. The API
endpoints are where we know what needs to happen to what data, so there we make sure that the user has the necessary
permissions.

We already discussed certain conditions under which a user has access to data — being a certain user or belonging to
a specific account. Furthermore, authorization conditions can also be implemented via roles:

e Account roles are often used for authorization. We support several roles which are mentioned in the USEF
framework but more roles are possible (e.g. defined by custom-made services, see below). For example, a user
might be authorized to write sensor data if they belong to an account with the “MDC” account role (“MDC”
being short for meter data company).

90 Chapter 4. Where to start reading?

https://passlib.readthedocs.io/en/stable/lib/passlib.hash.bcrypt.html
https://passlib.readthedocs.io/en/stable/lib/passlib.hash.sha256_crypt.html
https://passlib.readthedocs.io/en/stable/lib/passlib.hash.sha256_crypt.html
https://pythonhosted.org/itsdangerous/#itsdangerous.TimestampSigner
https://pythonhosted.org/itsdangerous/#itsdangerous.TimestampSigner

FlexMeasures Documentation, Release 0.19.1.dev20

* User roles give a user personal authorizations. For instance, we have a few admins who can perform all
actions, and admin-readers who can read everything. Other roles have only an effect within the user’s account,
e.g. there could be an “HR” role which allows to edit user data like surnames within the account.

* A special case are consultant accounts — accounts which can read data on other accounts (usually their clients,
handy for servicing them). For this, accounts have an attribute called consultancy_account_id. Users in
the consultant account with role consultant can read data in their client accounts. We plan to introduce some
editing/creation capabilities in the future. You can also add a consultant account when creating a client account,
for instance on the CLI: flexmeasures add account --name "Account2" --consultancy 1.

* Roles cannot be edited via the UI at the moment. They are decided when a user or account is created in the CLI
(for adding roles later, we use the database for now). Editing roles in UI and CLI is future work.

Note: Custom energy flexibility services developed on top of FlexMeasures also need to implement authorization.
More on this in Custom authorization. Here is an example for a custom authorization concept: services can use account
roles to achieve their custom authorization. E.g. if several services run on one FlexMeasures server, each service could
define a “MyService-subscriber” account role, to make sure that only users of such accounts can use the endpoints.

4.19 Storage device scheduler: Linear model

4.19.1 Introduction
This generic storage device scheduler is able to handle an EMS with multiple devices, with various types of constraints
on the EMS level and on the device level, and with multiple market commitments on the EMS level.

A typical example is a house with many devices. The commitments are assumed to be with regard to the flow of energy
to the device (positive for consumption, negative for production). In practice, this generic scheduler is used in the
StorageScheduler to schedule a storage device.

The solver minimizes the costs of deviating from the commitments.

4.19.2 Notation

Indexes

Symbol Variable in the Code Description

@ c Commitments, for example, day-ahead or intra-day market commitments.
d Devices, for example, a battery or a load.
i j 0-indexed time dimension.

Note: The time index j has two interpretations: a time period or an instantaneous moment at the end of time period
7. For example, j in flow constraints correspond to time periods, whereas j used in a stock constraint refers to the end
of time period j.

4.19. Storage device scheduler: Linear model 91

FlexMeasures Documentation, Release 0.19.1.dev20

Parameters
Symbol Variable in the Code Description
Pricey,(c, j) up_price Price of incurring an upwards deviations in commitment c during

Pricegown(c,j) down_price

nup(d»]) de-

time period j.

Price of incurring a downwards deviations in commitment ¢ dur-
ing time period j.

Upwards conversion efficiency.

vice_derivative_up_efficiency

Ndown <d7 .7) de-

Downwards conversion efficiency.

vice_derivative_down_efficie

Stockmin(d,j) device_min

Minimum quantity for the stock of device d at the end of time

period j.

Stockmaz(d,j) device_max Maximum quantity for the stock of device d at the end of time
period j.

e(d, 5) efficiencies Stock energy losses.

Praz(d,j) device_derivative_max Maximum flow of device d during time period j.

Prin(d, 7) device_derivative_min Minimum flow of device d during time period j.

Pems(4) ems_derivative_min Minimum flow of the EMS during time period j.

Pems () ems_derivative_max Maximum flow of the EMS during time period j.

Commitment(c, commitment_quantity Commitment ¢ (at EMS level) over time step j.

M M Large constant number, upper bound of Power,,(d,j) and
| Power gown(d, j)|-

D(d, j) stock_delta Explicit energy gain or loss of device d during time period j.

Variables

Symbol Variable in the Code

Description

Ayp(e,j) commit-
ment_upwards_deviation

Agown(c,j) commit-
ment_downwards_deviation

AStock(d,j n/a

P,,(d,j) device_power_up

Piown(d,7) device_power_down

Upwards deviation from the power commitment c of the EMS during
time period j.

Downwards deviation from the power commitment ¢ of the EMS dur-
ing time period j.

Change of stock of device d at the end of time period j.

Upwards power of device d during time period j.

Downwards power of device d during time period j.

Pems(g) ems_power Aggregated power of all the devices during time period j.
o(d, j) device_power_sign Upwards power activation if o(d, j) = 1, downwards power activation
otherwise.
92 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

4.19.3 Cost function

The cost function quantifies the total cost of upwards and downwards deviations from the different commitments.

mln[z Aup(cvj) . Priceup(cvj) + Adown(ca j) . Pricedown (Ca j)] (4])

g

4.19.4 State dynamics

To simplify the description of the model, the auxiliary variable AStock(d, j) is introduced in the documentation. It
represents the change of Stock(d, j), taking into account conversion efficiencies but not considering the storage losses.

Piown(d,j . . .
AStock(d, j) = Paoun(d,3) | Pup(d, j) - nup(d, §) + D(d, 5) “4.2)
ndown(da])
Stockmin(d, j) < Stock(d, j) — Stock(d, —1) < Stockmaz(d, 5) (4.3)
Perfect efficiency
Stock(d, j) = Stock(d,j — 1) + AStock(d, j) 4.4)

Left efficiency

First apply the stock change, then apply the losses (i.e. the stock changes on the left side of the time interval in which
the losses apply)

Stock(d, j) = (Stock(d,j — 1) + AStock(d, 7)) - e(d, j) 4.5)

Right efficiency

First apply the losses, then apply the stock change (i.e. the stock changes on the right side of the time interval in which
the losses apply)

Stock(d, j) = Stock(d,j — 1) - e(d, j) + AStock(d, j) (4.6)

Linear efficiency

Assume the change happens at a constant rate, leading to a linear stock change, and exponential decay, within the
current interval

€(d7.]) -1

Stock(d, j) = Stock(d,j — 1) - e(d, j) + AStock(d, j) - log((d.7)

%))

4.19. Storage device scheduler: Linear model 93

FlexMeasures Documentation, Release 0.19.1.dev20

4.19.5 Constraints

Device bounds

szn(dvj) S Pup(daj) + Pdown(dvj) S Pmax(dvj) (48)
mZTL(szn(d,]), O) < Pdown(daj) <0 4.9
0 < P,y(d,j) <mazx(Ppas(d,j),0) (4.10)

Upwards/Downwards activation selection

Avoid simultaneous upwards and downwards activation during the same time period.

~Puaown(d,j) < M - (1 - 0o(d,)) (4.12)
Grid constraints
Pems(d,j) :Pup(daj)+Pdown(d;j) (4.13)
PErs(d) < > Pem(d, 5) < Pama(d) (4.14)
d

Power coupling constraints

Z Pi(d, j) = Z Commitment(c, j) + Aup(c, §) + Adown(c, J) (4.15)
d c

4.20 Dashboard

The dashboard shows where the user’s assets are located and how many different asset types are connected to the
platform. The view serves to quickly identify the status of assets, such as whether there are upcoming opportunities to
valorise on flexibility activations. In particular, the page contains:

* Interactive map of assets

* Summary of asset types

* Grouping by accounts

94 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

aLFENERGY

*3 FlexMeasures

~
-

Status of my assets:

Ker:emerland 2begrndam & % P
ational Park. £ T, toy-battery @m Zunderdorp
| Bloemendaal Spaarnwoude 2
o) 05
Sos
Overveen LA,] Sos Edit this NooRDEREIEEEN
aarlem goz 707
2 o e Zoi asset 3
Halfweg e ° Schellingwoude
Zwanenburg COMMER =117 7 IR Durgerdam IJmeer PAMPUS B
Nieuwebrug erdam
o S ONENPERE
o NIEUWS
Aerdenhout WEST
Bogeingheliede WES Y %
oS & By HOMERUEKWARTIER
Rikémuseurn %,
Heemstede
Vijfhuizen Lijpden A R AluerE
i s WATERGRAAFSMEER 5D POORT o
g & g ZUiD.1 RIVIERENBUUR
£ 3 B ah Sy Diemen | 5,
Omepbar |/ E Badhoevedory 701DAS sz
1£5F § e o Leaflet | © Mapbox © O his map
Renewables Solar Batteries Buildings Temperatures Wind_speeds Radiations Weather stations
\ #
+ & @ @
My assets: 1 1 1 1 4 2 2 1

FlexMeasures technology is created by Seita Energy Flexibility, in cooperation with A1 Engineering © 2022. About FlexMeasures. Credits. This app is running since 11 minutes ago on version 0.9.2.

1 8%
o

4.20.1 Interactive map of assets

The map shows all of the user’s assets with icons for each asset type. Hovering over an asset allows users to see its
name and ownership, and clicking on an asset allows the user to navigate to its page to see more details, for instance
forecasts.

4.20.2 Summary of asset types

The summary below the map lists all asset types that the user has hooked up to the platform and how many of each
there are. Clicking on the asset type name leads to the asset’s page, where its data is shown.

4.20.3 Grouping by accounts

Note: This is a feature for user with role admin or admin-reader.

By default, the map is layered by asset type. However, on the bottom right admins can also switch to grouping by
accounts. Then, map layers will contain the assets owned by accounts, and you can easily see who you’re serving with
what.

4.21 Assets & sensor data

4.21.1 Asset page

The asset page allows to see data from the asset’s sensors, and also to edit attributes of the asset, like its location. Other
attributes are stored as a JSON string, which can be edited here as well. This is meant for meta information that may be
used to customize views or functionality, e.g. by plugins. This includes the possibility to specify which sensors the asset
page should show. For instance, here we include a price sensor from a public asset, by setting {"sensor_to_show" :
[3, 21} (sensor 3 on top, followed by sensor 2 below).

4.21. Assets & sensor data 95

FlexMeasures Documentation, Release 0.19.1.dev20

TILFENERGY

FlexMeasures @)

8%
g

Create Delete this
new asset asset Day ahead prices (EUR/MWh)
15
10
5
o
Wed 06 04:00 08:00 12:00 16:00 20:00 Thu 07 04:00 08:00 12:00 16:00 20:00 Fri08

Discharging (MW)

-02
Today ‘ Last 7 days ‘ This month 0s

Wed 06 04:00 08:00 12:00 16:00 20:00 Thu 07 04:00 08:00 12:00 16:00 20:00 Fri 08

source
® seita
P toy-user

Edit toy-battery
Name
Latitude show 10 v records Filter records:

523740 Name Unit Resolution Entity address Data
Longitude discharging MW 15 minutes eal.2022-08 localhostfml106

48897
Showing 1 to] out of 1 records

Asset Type

battery

Asset id

Location

Purmerend o .o

Monnickendam
‘Zaandam

® o
Amsterdam

Diemen

prddorp Amstelveen

Lo/ Aalsimeer

Uithoorn
s bferbox © Openstreciiap Improve his
map

FlexMeasures technology is created by Seita Energy Flexibility, in cooperation with Al Engineering © 2022. About FlexMeasures. Credits. This app is running since 2 minutes ago on version 0.11.0.dev23. Loaded plugins: flexmeasures-zinfo (v0.7).

[8%)
74

Note: It is possible to overlay data for multiple sensors, by setting the sensors_to_show attribute to a nested list. For
example, {"sensor_to_show": [3, [2, 4]]} would show the data for sensor 4 laid over the data for sensor 2.

Note: While it is possible to show an arbitrary number of sensors this way, we recommend showing only the most
crucial ones for faster loading, less page scrolling, and generally, a quick grasp of what the asset is up to.

96 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

Note: Asset attributes can be edited through the CLI as well, with the CLI command flexmeasures edit
attribute.

4.21.2 Sensor page

Each sensor also has its own page:

COLFEMERGY

’ "::-.:’} FIBXM gasures & Daoshboard = & Users ETasks ~ & Accounts
o

Positive Design > Ards place > Nissan Leaf battery state of charge

Nissan Leaf battery state of charge (%)
100 Source

| ‘i .Ard

90

bl

P I L = Y |
o o o o o o o

Mon 03 Wed 05 Fri 07 Jul 09

Next to line plots, data can sometimes be more usefully displayed as heatmaps. Heatmaps are great ways to spot the
hotspots of activity. Usually heatmaps are actually geographical maps. In our context, the most interesting background
is time — so we’d like to see activity hotspots on a map of time intervals.

We chose the “time map” of weekdays. From our experience, this is where you see the most interesting activity hotspots
at a glance. For instance, that mornings often experience peaks. Or that Tuesday afternoons have low energy use, for
some reason.

Here is what it looks like for one week of temperature data:

4.21. Assets & sensor data 97

FlexMeasures Documentation, Release 0.19.1.dev20

May 14, 2023
May 13, 2023 .
May 12, 2023
May 11, 2023 .
May 10, 2023
May 09, 2023

May 08, 2023

Temperature (°C)

0000 0200 0400 0800 0800 1000 1200 1400 1600 1800 2000 2200 00:00

It’s easy to see which days had milder temperatures.

And here are 4 days of (dis)-charging patterns in Seita’s V2GLiberty project:

Jul T, 2022

Jul 10, 2022

Jul 09, 2022

" ns‘ e l _ I |

00:00 0200 0400 0600 08:00 10:00 1200 1400 16:00

Nissan Leaf batte..

.0.004

0.002
0.000
-0.002

I -0.004

C18:00 2000 2200 00:00

Charging (blue) mostly happens in sunshine hours, discharging during high-price hours (morning & evening)

So on a technical level, the daily heatmap is essentially a heatmap of the sensor’s values, with dates on the y-axis and
time of day on the x-axis. For individual devices, it gives an insight into the device’s running times. A new button lets

users switch between charts.

4.22 Account overview

This is the account overview page:

98

Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

Y E TILFEMERGY

¥ FlexMeasures

Account

Roles

Users

Show |5 v |records

& Dashboard

Filter records:

Username Email Roles
victor victor@seito.nl admin
Felix2 felix2@seita.nl admin
Guus guus@seitanl admin
Felix felix@seitan! admin
seita- seita- odmin-
adrmin- adminreader@seita.n reqder
reader

Showing | to & out of 7 records

Assets

Show |10~ |records

Filter records:

Name Location Asset

D

2
ClInclude inactive
Timezone Last 1
Login H
Europe/Madrid Sep b
27 .
Europe/Amsterdam Sep !
26
Europe/Amsterdam Mary I
31
2023

Europe/Amsterdam Sep (

AsiafSeoul

Previous

Account

26 {

MNow I
22

Sensors

4.22. Account overview

99

FlexMeasures Documentation, Release 0.19.1.dev20

4.23 Administration

The administrator can see assets and users here.

4.23.1 Assets

Listing all assets:

TILFENERGY

FlexMeasures
Asset overview
Show| 10 v | records Filter records:
Name Location Asset id Account Sensors
& toy-solar LAT: 52.3740 LONG: 4.8897 1 Docker Toy Account 0
m toy-building LAT: 52.3740 LONG: 4.8897 2 Docker Toy Account 0
@ toy-battery LAT: 52.3740 LONG: 4.8897 3 Docker Toy Account 1

Showing 1to 3 out of 3 records

Flexmeasures technology is created by Seita Energy Flexibility, in cooperation with Al Engineering © 2022. About FlexMeasures. Credits. This app is running since 18 minutes ago on version 011.0.dev2l

A
o

4.23.2 Users

Listing all users:

aLFENERGY

2% r Dashboar
> FlexMeasures & Dashboard

All active users

O include inactive

show| 10 v|records Filter records:
Username Email Roles Account Timezone Last Login Active
nicolas am@nicolashoening.de admin Seita Europe/Amsterdam an hour ago True
Ki_yeol shin nu.ac.kr admin AL Asia/seoul Oct 06 2020 True
Summer summer@seita.n Some company ute Jan 13 True
toy-user toy-user@flexmeasures.io account-admin Toy Account Europe/Amsterdam Mar 30 True
mohammudullah mohammudullah@seita.nl admin-reader Toy Account Europe/Amsterdam Apr 23 True

Showing 11 to 15 out of 15 records

FlexMeasures technology is created by Seita Energy Flexibility, in cooperation with gineering © 2022. About Fle; es. Cre his app is running since 10 minutes ago on v

AN
o

Viewing one user:

100 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

*3 FlexMeasures @ Dashboard 1= Assets I

Overview for logged-in user: nicolas

Log out Send password reset instructions List active users

Email address iam@nicolashoening.de

Account Seita

Assets in account 68

Time Zone Europe/Amsterdam
Last login was 2022-05-08 05:00 AM
Roles admin

Fresh access token WylwOWFmZTk0ODBKZDCOYWYyOTYWNDC1MDA3NGEZYTMZOC)d.Ynb73w.KUEXSYcnlpsjsz9LRXRNQQACBKE

FlexMeasures technology is created by Seita Energy Flexibility, in cooperation with A1 Engineering © 2022. About FlexMeasures. Credits. This app is running since 9 minutes ago on version 0.9.2.

8%)
o

4.24 API Introduction

This document details the Application Programming Interface (API) of the FlexMeasures web service. The API sup-
ports user automation for flexibility valorisation in the energy sector, both in a live setting and for the purpose of

simulating scenarios. The web service adheres to the concepts and terminology used in the Universal Smart Energy
Framework (USEF).

All requests and responses to and from the web service should be valid JSON messages. For deeper explanations on
how to construct messages, see Notation.

4.24.1 Main endpoint and API versions

All versions of the API are released on:

[https ://<flexmeasures-root-url>/api]

So if you are running FlexMeasures on your computer, it would be:

[https://localhost:5®®®/api]

Let’s assume we are running a server for a client at:

[https://company.flexmeasures.io/api J

where company is a client of ours. All their accounts’ data lives on that server.

We assume in this document that the FlexMeasures instance you want to connect to is hosted at https://company.
flexmeasures.io.

Let’s see what the /api endpoint returns:

4.24. API Introduction 101

https://company.flexmeasures.io
https://company.flexmeasures.io

FlexMeasures Documentation, Release 0.19.1.dev20

>>> import requests
>>> res = requests.get("https://company.flexmeasures.io/api")
>>> res.json()
{'flexmeasures_version': '0.9.0',

'message': 'For these API versions endpoints are available. An authentication token can..
—be requested at: /api/requestAuthToken. For a list of services, see https://
—flexmeasures.readthedocs.io',

'status': 200,

'versions': ['v3_0"']

¥

So this tells us which API versions exist. For instance, we know that the latest API version is available at:

[https ://company . flexmeasures.io/api/v3_0

Also, we can see that a list of endpoints is available on https://flexmeasures.readthedocs.io for each of these versions.

Note: Sunset API versions are still documented there, simply select an older version.

4.24.2 Authentication

Service usage is only possible with a user access token specified in the request header, for example:

{

"Authorization": "<token>"

}

A fresh “<token>" can be generated on the user’s profile after logging in:

[https ://company. flexmeasures.io/logged-in-user

or through a POST request to the following endpoint:

[https ://company . flexmeasures.io/api/requestAuthToken

using the following JSON message for the POST request data:

{
"email": "<user email>",
"password": "<user password>"

which gives a response like this if the credentials are correct:

{
"auth_token": "<authentication token>",
"user_id": "<ID of the user>"

Note: Each access token has a limited lifetime, see Authentication.

102 Chapter 4. Where to start reading?

https://flexmeasures.readthedocs.io

FlexMeasures Documentation, Release 0.19.1.dev20

4.24.3 Deprecation and sunset

When an API feature becomes obsolete, we deprecate it. Deprecation of major features doesn’t happen a lot, but when
it does, it happens in multiple stages, during which we support clients and hosts in adapting. For more information
on our multi-stage deprecation approach and available options for FlexMeasures hosts, see Deprecation and sunset for
hosts.

Clients

Professional API users should monitor API responses for the "Deprecation" and "Sunset" response headers [see
draft-ietf-httpapi-deprecation-header-02 and RFC 8594, respectively], so system administrators can be warned when
using API endpoints that are flagged for deprecation and/or are likely to become unresponsive in the future.

The deprecation header field shows an IMF-fixdate indicating when the API endpoint was deprecated. The sunset
header field shows an IMF-fixdate indicating when the API endpoint is likely to become unresponsive.

More information about a deprecation, sunset, and possibly recommended replacements, can be found under the
"Link" response header. Relevant relations are:

e "deprecation"

¢ "successor-version"
e "latest-version"

e "alternate"

e "sunset"

Here is a client-side code example in Python (this merely prints out the deprecation header, sunset header and relevant
links, and should be revised to make use of the client’s monitoring tools):

def check_deprecation_and_sunset(self, url, response):
"""Print deprecation and sunset headers, along with info links.

Reference
https://flexmeasures.readthedocs.io/en/latest/api/introduction.html#deprecation-and-
-, sunset
Go through the response headers in their given order
for header, content in response.headers:

if header == "Deprecation":

print(f"Your request to {url} returned a deprecation warning. Deprecation:

—{content }")

elif header == "Sunset":
print(f"Your request to {url} returned a sunset warning. Sunset: {content}")
elif header == "Link" and ('rel="deprecation";' in content or 'rel="sunset";' in,
—.content):

print(f"Further info is available: {content}")

4.24. API Introduction 103

https://datatracker.ietf.org/doc/draft-ietf-httpapi-deprecation-header/
https://www.rfc-editor.org/rfc/rfc8594
https://www.rfc-editor.org/rfc/rfc7231#section-7.1.1.1
https://www.rfc-editor.org/rfc/rfc7231#section-7.1.1.1

FlexMeasures Documentation, Release 0.19.1.dev20

Hosts

FlexMeasures versions go through the following stages for deprecating major features (such as API versions):
e Stage I: Deprecation: status 200 (OK) with relevant headers, plus a toggle to 410 (Gone) for blackout tests
 Stage 2: Preliminary sunset: status 410 (Gone), plus a toggle to 200 (OK) for sunset rollbacks
e Stage 3: Definitive sunset: status 410 (Gone)

Let’s go over these stages in more detail.

Stage 1: Deprecation

When upgrading to a FlexMeasures version that deprecates an API version (e.g. flexmeasures==0. 12 deprecates API
version 2), clients will receive "Deprecation” and "Sunset" response headers [see draft-ietf-httpapi-deprecation-
header-02 and RFC 8594, respectively].

Hosts should not expect every client to monitor response headers and proactively upgrade to newer API versions. Please
make sure that your users have upgraded before you upgrade to a FlexMeasures version that sunsets an API version.
You can do this by checking your server logs for warnings about users who are still calling deprecated endpoints.

In addition, we recommend running blackout tests during the deprecation notice phase. You (and your users) can
learn which systems need attention and how to deal with them. Be sure to announce these beforehand. Here is an
example of how to run a blackout test: If a sunset happens in version 0.13, and you are hosting a version which
includes the deprecation notice (e.g. 0.12), FlexMeasures will simulate the sunset if you set the config setting
FLEXMEASURES_API_SUNSET_ACTIVE = True (see Sunset Configuration). During such a blackout test, clients will
receive HITP status 410 (Gone) responses when calling corresponding endpoints.

What is a blackout test

A blackout test is a planned, timeboxed event when a host will turn off a certain API or some of the API capabilities. The
test is meant to help developers understand the impact the retirement will have on the applications and users. Source:
Platform of Trust

Stage 2: Preliminary sunset

When upgrading to a FlexMeasures version that sunsets an API version (e.g. flexmeasures==0.13 sunsets API
version 2), clients will receive HTITP status 410 (Gone) responses when calling corresponding endpoints.

In case you have users that haven’t upgraded yet, and would still like to upgrade FlexMeasures (to the version that offi-
cially sunsets the API version), you can. For a little while after sunset (usually one more minor version), we will con-
tinue to support a “sunset rollback”. To enable this, just set the config setting FLEXMEASURES_API_SUNSET_ACTIVE
= False and consider announcing some more blackout tests to your users, during which you can set this setting to
True to reactivate the sunset.

104 Chapter 4. Where to start reading?

https://datatracker.ietf.org/doc/draft-ietf-httpapi-deprecation-header/
https://datatracker.ietf.org/doc/draft-ietf-httpapi-deprecation-header/
https://www.rfc-editor.org/rfc/rfc8594
https://design.oftrust.net/api-migration-policies/blackout-testing
https://design.oftrust.net/api-migration-policies/blackout-testing

FlexMeasures Documentation, Release 0.19.1.dev20

Stage 3: Definitive sunset

After upgrading to one of the next FlexMeasures versions (e.g. flexmeasures==0.14), clients that call sunset end-
points will receive HTTP status 410 (Gone) responses.

4.25 Notation

This page helps you to construct messages to the FlexMeasures API. Please consult the endpoint documentation first.
Here we dive into topics useful across endpoints.

4.25.1 Singular vs plural keys

Throughout this document, keys are written in singular if a single value is listed, and written in plural if multiple values
are listed, for example:

{
"keyToValue": "this is a single value",
"keyToValues": ["this is a value", "and this is a second value"]

}

The API, however, does not distinguish between singular and plural key notation.

4.25.2 Sensors and entity addresses

In many API endpoints, sensors are identified by their ID, e.g. /sensors/45. However, all sensors can also be
identified with an entity address following the EA1 addressing scheme prescribed by USEF[1], which is mostly taken
from IETF RFC 3720 [2].

This is the complete structure of an EA1 address:

{

"sensor": "eal.{date code}.{reversed domain name}:{locally unique string}"

}

Here is a full example for an entity address of a sensor in FlexMeasures:

{

"sensor": "eal.2021-02.io.flexmeasures.company:fml.73"

}

where FlexMeasures runs at company.flexmeasures.io (which the current domain owner started using in February 2021),
and the locally unique string uses the fim/ scheme (see below) to identify sensor ID 73.

Assets are listed at:

[https ://company . flexmeasures.io/assets

The full entity addresses of all of the asset’s sensors can be obtained on the asset’s page, e.g. for asset 81:

[https ://company. flexmeasures.io/assets/81

4.25. Notation 105

FlexMeasures Documentation, Release 0.19.1.dev20

Entity address structure

Some deeper explanations about an entity address:
* “eal” is a constant, indicating this is a type 1 USEF entity address

* The date code “must be a date during which the naming authority owned the domain name used in this format,
and should be the first month in which the domain name was owned by this naming authority at 00:01 GMT of
the first day of the month.

* The reversed domain name is taken from the naming authority (person or organization) creating this entity address

* The locally unique string can be used for local purposes, and FlexMeasures uses it to identify the resource. Fields
in the locally unique string are separated by colons, see for other examples IETF RFC 3721, page 6 [3]. While [2]
says it’s possible to use dashes, dots or colons as separators, we might use dashes and dots in latitude/longitude
coordinates of sensors, so we settle on colons.

[1] https://www.usef.energy/app/uploads/2020/01/USEF-Flex- Trading-Protocol-Specifications- 1.01.pdf
[2] https://tools.ietf.org/html/rfc3720
[3] https://tools.ietf.org/html/rfc3721

Types of sensor identification used in FlexMeasures

FlexMeasures expects the locally unique string string to contain information in a certain structure. We distinguish type
fm@ and type fm1 FlexMeasures entity addresses.

The fm1 scheme is the latest version. It uses the fact that all FlexMeasures sensors have unique IDs.

eal.2021-01.i0.flexmeasures:fml.42
eal.2021-01.io0.flexmeasures:fml.<sensor_id>

The fm® scheme is the original scheme. It identified different types of sensors (such as grid connections, weather
sensors and markets) in different ways. The fm0@ scheme has been sunset since API version 3.

4.25.3 Timeseries
Timestamps and durations are consistent with the ISO 8601 standard. The frequency of the data is implicit (from
duration and number of values), while the resolution of the data is explicit, see Frequency and resolution.

All timestamps in requests to the API must be timezone-aware. For instance, in the below example, the timezone
indication “Z” indicates a zero offset from UTC.

We use the following shorthand for sending sequential, equidistant values within a time interval:

{
"values": [
10,
5y
8
Iy
"start": "2016-05-01T13:00:00Z",
"duration": "PT45M"

}

Technically, this is equal to:

106 Chapter 4. Where to start reading?

https://www.usef.energy/app/uploads/2020/01/USEF-Flex-Trading-Protocol-Specifications-1.01.pdf
https://tools.ietf.org/html/rfc3720
https://tools.ietf.org/html/rfc3721

FlexMeasures Documentation, Release 0.19.1.dev20

{
"timeseries": [
{
"value": 10,
"start": "2016-05-01T13:00:00Z",
"duration": "PT15M"
o
{
"value": 5,
"start": "2016-05-01T13:15:00Z",
"duration": "PT15M"
o
{
"value": 8,
"start": "2016-05-01T13:30:00Z",
"duration": "PT15M"
}
]
}

This intuitive convention allows us to reduce communication by sending univariate timeseries as arrays.

In all current versions of the FlexMeasures API, only equidistant timeseries data is expected to be communicated.
Therefore:

* only the array notation should be used (first notation from above),

 “start” should be a timestamp on the hour or a multiple of the sensor resolution thereafter (e.g. “16:10” works if
the resolution is 5 minutes), and

* “duration” should also be a multiple of the sensor resolution.

4.25.4 Tracking the recording time of beliefs

For all its time series data, FlexMeasures keeps track of the time they were recorded. Data can be defined and filtered
accordingly, which allows you to get a snapshot of what was known at a certain point in time.

Note: FlexMeasures uses the timely-beliefs data model for modelling such facts about time series data, and accordingly
we use the term “belief” in this documentation. In that model, the recording time is referred to as “belief time”.

Querying by recording time

Some GET endpoints have two optional timing fields to allow such filtering.

The prior field (a timestamp) can be used to select beliefs recorded before some moment in time. It can be used to
“time-travel” to see the state of information at some moment in the past.

In addition, the horizon field (a duration) can be used to select beliefs recorded before some moment in time, relative
to each event. For example, to filter out meter readings communicated within a day (denoted by a negative horizon) or
forecasts created at least a day beforehand (denoted by a positive horizon).

The two timing fields follow the ISO 8601 standard and are interpreted as follows:

e prior: recorded prior to <timestamp>.

4.25. Notation 107

https://github.com/SeitaBV/timely-beliefs/#the-data-model

FlexMeasures Documentation, Release 0.19.1.dev20

* horizon: recorded at least <duration> before the fact (indicated by a positive horizon), or at most <duration>
after the fact (indicated by a negative horizon).

For example (note that you can use both fields together):

{
"horizon": "PT6H",
"prior": "2020-08-01T17:00:00Z"

These fields denote that the data should have been recorded at least 6 hours before the fact (i.e. forecasts) and prior to
5 PM on August 1st 2020 (UTC).

Note: In addition to these two timing filters, beliefs can be filtered by their source (see Sources).

Setting the recording time

Some POST endpoints have two optional fields to allow setting the time at which beliefs are recorded in an explicit
manner. This is useful to keep an accurate history of what was known at what time, especially for prognoses. If not
used, FlexMeasures will infer the belief time from the arrival time of the message.

The “prior” field (a timestamp) can be used to set a single time at which the entire time series (e.g. a prognosed series)
was recorded. Alternatively, the “horizon” field (a duration) can be used to set the recording times relative to each
(prognosed) event. In case both fields are set, the earliest possible recording time is determined and recorded for each
(prognosed) event.

The two timing fields follow the ISO 8601 standard and are interpreted as follows:

{
"values": [
10,
5,
8
1,
"start": "2016-05-01T13:00:00Z",
"duration": "PT45M",
"prior": "2016-05-01T07:45:00Z",

This message implies that the entire prognosis was recorded at 7:45 AM UTC, i.e. 6 hours before the end of the entire
time interval.

{
"values": [
10,
Dy
8
i
"start": "2016-05-01T13:00:00Z",
"duration": "PT45M",
"horizon": "PT6H"

108 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

This message implies that all prognosed values were recorded 6 hours in advance. That is, the value for 1:00-1:15 PM
was made at 7:15 AM, the value for 1:15-1:30 PM was made at 7:30 AM, and the value for 1:30-1:45 PM was made at
7:45 AM.

Negative horizons may also be stated (breaking with the ISO 8601 standard) to indicate a belief about something that
has already happened (i.e. after the fact, or simply ex post). For example, the following message implies that all
prognosed values were made 10 minutes after the fact:

{
"values": [
10,
5y
8
i
"start": "2016-05-01T13:00:00Z",
"duration": "PT45M",
"horizon": "-PT10M"

Note that, for a horizon indicating a belief 10 minutes after the start of each 15-minute interval, the “horizon” would
have been “PT5M”. This denotes that the prognosed interval has 5 minutes left to be concluded.

4.25.5 Frequency and resolution
FlexMeasures handles two types of time series, which can be distinguished by defining the following timing properties
for events recorded by sensors:

* Frequency: how far apart events occur (a constant duration between event starts)

* Resolution: how long an event lasts (a constant duration between the start and end of an event)

Note: FlexMeasures runs on Pandas, and follows Pandas terminology accordingly. The term frequency as used by
Pandas is the reciprocal of the SI quantity for frequency.

1. The first type of time series describes non-instantaneous events such as average hourly wind speed. For this case,
it is commonly assumed that frequency == resolution. That is, events follow each other sequentially and
without delay.

2. The second type of time series describes instantaneous events (zero resolution) such as temperature at a given
time. For this case, we have frequency != resolution.

Specifying a frequency and resolution is redundant for POST requests that contain both “values” and a “duration” —
FlexMeasures computes the frequency by dividing the duration by the number of values, and, for sensors that record
non-instantaneous events, assumes the resolution of the data is equal to the frequency.

When POSTing data, FlexMeasures checks this inferred resolution against the required resolution of the sensors that
are posted to. If these can’t be matched (through upsampling), an error will occur.

GET requests (such as /sensors/data) return data with a frequency either equal to the resolution that the sensor is con-
figured for (for non-instantaneous sensors), or a default frequency befitting (in our opinion) the requested time interval.
A “resolution” may be specified explicitly to obtain the data in downsampled form, which can be very beneficial for
download speed. For non-instantaneous sensors, the specified resolution needs to be a multiple of the sensor’s res-
olution, e.g. hourly or daily values if the sensor’s resolution is 15 minutes. For instantaneous sensors, the specified
resolution is interpreted as a request for data in a specific frequency. The resolution of the underlying data will remain
zero (and the returned message will say so).

4.25. Notation 109

https://en.wikipedia.org/wiki/SI_derived_unit

FlexMeasures Documentation, Release 0.19.1.dev20

4.25.6 Sources

Requests for data may filter by source. FlexMeasures keeps track of the data source (the data’s author, for example,
a user, forecaster or scheduler belonging to a given organisation) of time series data. For example, to obtain data
originating from data source 42, include the following:

{

"source": 42,

¥

Data source IDs can be found by hovering over data in charts.

4.25.7 Units

The FlexMeasures API is quite flexible with sent units. A valid unit for timeseries data is any unit that is convertible
to the configured sensor unit registered in FlexMeasures. So, for example, you can send timeseries data with “W” unit
to a “kW” sensor. And if you wish to do so, you can even send a timeseries with “kWh” unit to a “kW” sensor. In this
case, FlexMeasures will convert the data using the resolution of the timeseries.

4.25.8 Signs of power values

USEF recommends to use positive power values to indicate consumption and negative values to indicate production,
i.e. to take the perspective of the Prosumer. If an asset has been configured as a pure producer or pure consumer, the
web service will help avoid mistakes by checking the sign of posted power values.

110 Chapter 4. Where to start reading?

FlexMeasures Documentation, Release 0.19.1.dev20

4.26 Version 3.0

4.26.1 Summary

Resource Operation Description
Asset GET /api/v3_0/assets Download asset list
POST /api/v3_0/assets Create a new asset
DELETE /api/v3_0/assets/(id) Delete an asset
GET /api/v3_0/assets/(id) Get an asset
PATCH /api/v3_0/assets/(id) Update an asset
GET /api/v3_0/assets/public Return all public assets.
Chart GET /api/v3_0/assets/(id)/chart/ Download a chart with time series
GET /api/v3_0/assets/(id)/chart_data/ Download time series for use in charts
Data GET /api/v3_0/sensors/data Download sensor data
POST /api/v3_0/sensors/data Upload sensor data
Health GET /api/v3_0/health/ready Get readiness status
Public GET /api/ List available API versions
POST /api/requestAuthToken Obtain an authentication token
GET /api/v3_0 Obtain a service listing for this version
Schedule GET /api/v3_0/sensors/(id)/schedules/(uuid) Download schedule from the platform
POST /api/v3_0/sensors/(id)/schedules/trigger Trigger scheduling job
Sensor GET /api/v3_0/sensors Download sensor list
POST /api/v3_0/sensors Create a new Sensor
DELETE /api/v3_0/sensors/(id) Delete a sensor
GET /api/v3_0/sensors/(id) Get a sensor
PATCH /api/v3_0/sensors/(id) Update a sensor
User GET /api/v3_0/users Download user list

GET /api/v3_0/users/(id)
PATCH /api/v3_0/users/(id)
PATCH /api/v3_0/users/(id)/password-reset

Get a user
Patch data for an existing user
Password reset

4.26.2 API Details

GET /api/

Public endpoint to list API versions.

POST /api/requestAuthToken

API endpoint to get a fresh authentication access token. Be aware that this fresh token has a limited lifetime
(which depends on the current system setting SECURITY_TOKEN_MAX_AGE).

Pass the email parameter to identify the user. Pass the password parameter to authenticate the user (if not already
authenticated in current session)

GET /api/v3_0

API endpoint to get a service listing for this version.

Response Headers

» Content-Type — application/json

Status Codes
¢ 200 OK — PROCESSED

4.26. Version 3.0

111

https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

FlexMeasures Documentation, Release 0.19.1.dev20

GET /api/v3_0/assets

List all assets owned by a certain account.

This endpoint returns all accessible assets for the account of the user. The account_id query parameter can be

used to list assets from a different account.
Example response

An example of one asset being returned:

[

"id": 1,

"name": "Test battery",
"latitude": 10,
"longitude": 100,
"account_id": 2,
"generic_asset_type_id": 1

Request Headers

 Authorization — The authentication token

» Content-Type — application/json
Response Headers

» Content-Type — application/json
Status Codes

* 200 OK — PROCESSED
400 Bad Request — INVALID_REQUEST
401 Unauthorized — UNAUTHORIZED
403 Forbidden — INVALID_SENDER
422 Unprocessable Entity — UNPROCESSABLE_ENTITY

POST /api/v3_0/assets
Create new asset.

This endpoint creates a new asset.

Example request

{
"name": "Test battery",
"generic_asset_type_id": 2,
"account_id": 2,
"latitude": 40,
"longitude": 170.3,

}

The newly posted asset is returned in the response.

Request Headers

112 Chapter 4

. Where to start reading?

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#sectio