
FlexMeasures Documentation
Release 0.17

Seita B.V.

Nov 08, 2023

CONTENTS

1 A quick glance at usage 3

2 Use cases 5

3 A possible road to start using FlexMeasures in your operation 7

4 Where to start reading? 9

5 Developer support 11

Python Module Index 331

HTTP Routing Table 333

Index 335

i

ii

FlexMeasures Documentation, Release 0.17

When we use a lot of renewable energy, flexibility is becoming crucial and valuable, e.g. for demand response.
FlexMeasures is the intelligent & developer-friendly EMS to support real-time energy flexibility apps, rapidly and
scalable.

The problem it helps to solve is:

What are the best times to run flexible assets, like batteries or heat pumps?

In a nutshell, FlexMeasures turns data into optimized schedules for flexible assets. Why? Planning ahead allows flexible
assets to serve the whole system with their flexibility, e.g. by shifting energy consumption to other times. For the asset
owners, this creates CO2 savings but also monetary value (e.g. through self-consumption, dynamic tariffs and grid
incentives).

However, developing apps & services around energy flexibility is expensive work. FlexMeasures is designed to be
developer-friendly, which helps you to go to market quickly, while keeping the costs of software development at bay.
FlexMeasures supports:

• Real-time data integration & intelligence

• Model data well — units, time resolution & uncertainty (of forecasts)

• Faster app-building (API/UI/CLI, plugin & multi-tenancy support)

More on this in Developer support. FlexMeasures proudly is an incubation project at the Linux Energy Foundation.
Also, read more on where FlexMeasures is useful in Use cases.

CONTENTS 1

https://www.lfenergy.org/

FlexMeasures Documentation, Release 0.17

2 CONTENTS

CHAPTER

ONE

A QUICK GLANCE AT USAGE

A tiny, but complete example: Let’s install FlexMeasures from scratch. Then, using only the terminal (FlexMeasures
of course also has APIs for all of this), load hourly prices and optimize a 12h-schedule for a battery that is half full at
the beginning. Finally, look at our new schedule.

$ pip install flexmeasures # FlexMeasures can also be run via Docker
$ docker pull postgres; docker run --name pg-docker -e POSTGRES_PASSWORD=docker -e␣
→˓POSTGRES_DB=flexmeasures-db -d -p 5433:5432 postgres:latest
$ export SQLALCHEMY_DATABASE_URI="postgresql://postgres:docker@127.0.0.1:5433/
→˓flexmeasures-db" && export SECRET_KEY=notsecret
$ flexmeasures db upgrade # create tables
$ flexmeasures add toy-account --kind battery # setup account incl. a user, battery (ID␣
→˓1) and market (ID 2)
$ flexmeasures add beliefs --sensor-id 2 --source toy-user prices-tomorrow.csv --
→˓timezone utc # load prices, also possible per API
$ flexmeasures add schedule for-storage --sensor-id 1 --consumption-price-sensor 2 \

--start ${TOMORROW}T07:00+01:00 --duration PT12H \
--soc-at-start 50% --roundtrip-efficiency 90% # this is also possible per API

$ flexmeasures show beliefs --sensor-id 1 --start ${TOMORROW}T07:00:00+01:00 --duration␣
→˓PT12H # also visible per UI, of course

We discuss this in more depth at Toy example: Scheduling a battery, from scratch.

3

FlexMeasures Documentation, Release 0.17

4 Chapter 1. A quick glance at usage

CHAPTER

TWO

USE CASES

Here are a few relevant areas in which FlexMeasures can help you:

• E-mobility (smart EV (Electric Vehicle) charging, V2G (Vehicle to Grid), V2H (Vehicle to Home))

• Heating (heat pump control)

• Industry (best running times for processes with buffering capacity)

You decide what to optimize for — prices, CO2, peaks.

It becomes even more interesting to use FlexMeasures in integrated scenarios with increased complexity. For example,
in modern domestic/office settings that combine solar panels, electric heating and EV charging, in industry settings
that optimize for self-consumption of local solar panels, or when consumers can engage with multiple markets simul-
taneously.

In these cases, our goal is that FlexMeasures helps you to achieve “value stacking”, which is often required to achieve
a positive business case. Multiple sources of value can combine with multiple types of assets.

As possible users, we see energy service companies (ESCOs) who want to build real-time apps & services around
energy flexibility for their customers, or medium/large industrials who are looking for support in their internal digital
tooling.

However, even small companies and hobby projects might find FlexMeasures useful! We are constantly improving the
ease of use.

FlexMeasures can be used as your EMS, but it can also integrate with existing systems as a smart backend, or as an
add-on to deal with energy flexibility specifically.

The image below shows how FlexMeasures, with the help of plugins fitted for a given use case, turns data into optimized
schedules:

5

FlexMeasures Documentation, Release 0.17

6 Chapter 2. Use cases

CHAPTER

THREE

A POSSIBLE ROAD TO START USING FLEXMEASURES IN YOUR
OPERATION

We make FlexMeasures, so that software developers are as productive with energy optimization as possible. Because
we are developers ourselves, we know that it takes a couple smaller steps to engage with new technology.

Your journey, from dipping your toes in the water towards being a happy FlexMeasures power user, could look like
this:

1. Quickstart — Find an optimized schedule for your flexible asset, like a battery, with standard FlexMeasures
tooling. This is basically what the from-scratch tutorial above does. All you need are 10 minutes and a CSV file
with prices to optimise against.

2. Automate — get the prices from an open API, for instance ENTSO-E (using a plugin like flexmeasures-entsoe),
and run the scheduler regularly in a cron job.

3. Integrate — Load the schedules via FlexMeasures’ API, so you can directly control your assets and/or show them
within your own frontend.

4. Customize — Load other data (e.g. your solar production or weather forecasts via flexmeasures-
openweathermap). Adapt the algorithms, e.g. do your own forecasting or tweak the standard scheduling algo-
rithm so it optimizes what you care about. Or write a plugin for accessing a new kind of market. The opportunities
are endless!

7

https://transparency.entsoe.eu/
https://github.com/SeitaBV/flexmeasures-entsoe
https://github.com/SeitaBV/flexmeasures-openweathermap/
https://github.com/SeitaBV/flexmeasures-openweathermap/

FlexMeasures Documentation, Release 0.17

8 Chapter 3. A possible road to start using FlexMeasures in your operation

CHAPTER

FOUR

WHERE TO START READING?

You (the reader) might be a user connecting with a FlexMeasures server or working on hosting FlexMeasures. Maybe
you are planning to develop a plugin or even core functionality. In Getting started, we have some helpful tips how to
dive into this documentation!

9

FlexMeasures Documentation, Release 0.17

10 Chapter 4. Where to start reading?

CHAPTER

FIVE

DEVELOPER SUPPORT

FlexMeasures is designed to help with three basic needs of developers in the energy flexibility domain:

5.1 I need help with integrating real-time data and continuously com-
puting new data

FlexMeasures is designed to make decisions based on data in an automated way. Data pipelining and dedicated machine
learning tooling is crucial.

• API/CLI functionality to read in time series data

• Extensions for integrating 3rd party data, e.g. from ENTSO-E or OpenWeatherMap

• Forecasting for the upcoming hours

• Schedule optimization for flexible assets

5.2 It’s hard to correctly model data with different sources, resolu-
tions, horizons and even uncertainties

Much developer time is spent correcting data and treating it correctly, so that you know you are computing on the right
knowledge.

FlexMeasures is built on the timely-beliefs framework, so we model this real-world aspect accurately:

• Expected data properties are explicit (e.g. unit, time resolution)

• Incoming data is converted to fitting unit and time resolution automatically

• FlexMeasures also stores who thought that something happened (or that it will happen), and when they thought
so

• Uncertainty can be modelled (useful for forecasting)

11

https://github.com/SeitaBV/flexmeasures-entsoe
https://github.com/SeitaBV/flexmeasures-openweathermap
https://github.com/SeitaBV/timely-beliefs

FlexMeasures Documentation, Release 0.17

5.3 I want to build new features quickly, not spend days solving basic
problems

Building customer-facing apps & services is where developers make impact. We make their work easy.

• FlexMeasures has well-documented API endpoints and CLI commands to interact with its model and data

• You can extend it easily with your own logic by writing plugins

• A backend UI shows you your assets in maps and your data in plots. There is also support for plots to be available
per API, for integration in your own frontend

• Multi-tenancy — model multiple accounts on one server. Data is only seen/editable by authorized users in the
right account

For more on FlexMeasures services, read In-built smart functionality. Or head right over to Getting started.

Using FlexMeasures benefits operators as well as asset owners, by allowing for automation, insight, autonomy and
profit sharing. For more on benefits, consult Benefits.

FlexMeasures is compliant with the Universal Smart Energy Framework (USEF). Therefore, this documentation uses
USEF terminology, e.g. for role definitions. In this context, the intended users of FlexMeasures are a Supplier (energy
company) and its Prosumers (asset owners who have energy contracts with that Supplier). The platform operator of
FlexMeasures can be an Aggregator.

5.3.1 Getting started

FlexMeasures is useful from different perspectives. The documentation is quite vast, so we give you some pointers here
what to read first, based on your perspective.

Using FlexMeasures

You are connecting to a running FlexMeasures server, e.g. for sending data, getting schedules or administrate users
and assets.

First, you’ll need an account from the party running the server. Also, you probably want to:

• Look at the UI, e.g. pages for Dashboard and Administration.

• Read the API Introduction.

• Learn how to interact with the API in Posting data.

Hosting FlexMeasures

You want to run your own FlexMeasures instance, to offer services or for trying it out. You’ll want to:

• Have a first playful scheduling session, following Toy example: Scheduling a battery, from scratch.

• Get real with the tutorial on Installation & First steps.

• Discover the power of CLI Commands.

• Understand how to How to deploy FlexMeasures.

12 Chapter 5. Developer support

https://www.usef.energy/

FlexMeasures Documentation, Release 0.17

Plugin developers

You want to extend the functionality of FlexMeasures, e.g. a custom integration or a custom algorithm:

• Read the docs on Writing Plugins.

• See how some existing plugins are made flexmeasures-entsoe or flexmeasures-openweathermap

• Of course, some of the developers resources (see below) might be helpful to you, as well.

Warning: Please read note_on_datamodel_transition.

Core developers

You want to help develop FlexMeasures, e.g. to fix a bug. We provide a getting-started guide to becoming a developer
at Developing for FlexMeasures.

5.3.2 Get in touch

We want you to succeed in using, hosting or extending FlexMeasures. For all your questions and ideas, you can join
the FlexMeasures community in the following ways:

• View the code and/or create a ticket on GitHub

• Join the #flexmeasures Slack channel over at https://lfenergy.slack.com

• Write to us at flexmeasures@lists.lfenergy.org (you can join this mailing list here)

• Follow @flexmeasures on Twitter

We’d love to hear from you!

5.3.3 FlexMeasures Changelog

v0.17.0 | November 8, 2023

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

New features

• Different site-level production and consumption limits can be defined for the storage scheduler via the API
(flex-context) or via asset attributes [see PR #884]

• Scheduling data better distinguishes (e.g. in chart tooltips) when a schedule was the result of a fallback mecha-
nism, by splitting off the fallback mechanism from the main scheduler (as a separate job) [see PR #846]

• New accounts can set a consultancy relationship with another account to give read access to external consultants.
[see PR #877 and PR #892]

5.3. I want to build new features quickly, not spend days solving basic problems 13

https://github.com/SeitaBV/flexmeasures-entsoe
https://github.com/SeitaBV/flexmeasures-openweathermap
https://github.com/FlexMeasures/flexmeasures
https://lfenergy.slack.com
mailto:flexmeasures@lists.lfenergy.org
https://lists.lfenergy.org/g/flexmeasures
https://twitter.com/flexmeasures
https://github.com/FlexMeasures/flexmeasures/pull/884
https://github.com/FlexMeasures/flexmeasures/pull/846
https://github.com/FlexMeasures/flexmeasures/pull/877
https://github.com/FlexMeasures/flexmeasures/pull/892

FlexMeasures Documentation, Release 0.17

Infrastructure / Support

• Introduce a new one-to-many relation between assets, allowing the definition of an asset’s parent (which is also
an asset). This hierarchical relationship enables assets to be related in a structured manner. [see PR #855 and
PR #874]

• Introduce a new format for the output of Scheduler to prepare for multiple outputs [see PR #879].

v0.16.1 | October 2, 2023

Bugfixes

• Fix infeasible problem due to incorrect parsing of soc units of the soc-minima and soc-maxima fields within
the flex-model field [see PR #864]

v0.16.0 | September 27, 2023

Note: Read more on these features on the FlexMeasures blog.

New features

• Introduce new reporter to compute profit/loss due to electricity flows: ProfitOrLossReporter [see PR #808 and
PR #844]

• Charts visible in the UI can be exported to PNG or SVG formats in a more automated fashion, using the new CLI
command flexmeasures show chart [see PR #833]

• Chart data visible in the UI can be exported to CSV format [see PR #849]

• Sensor charts showing instantaneous observations can be interpolated by setting the interpolate sensor at-
tribute to one of the supported Vega-Lite interpolation methods [see PR #851]

• API users can ask for a schedule to take into account an explicit power-capacity (flex-model) and/or
site-power-capacity (flex-context), thereby overriding any existing defaults for their asset [see PR #850]

• API users (and hosts) are warned in case a fallback scheduling policy has been used to create their schedule (as
part of the the /sensors/<id>/schedules/<uuid> (GET) response message) [see PR #859]

Infrastructure / Support

• Allow additional datetime conversions to quantitative time units, specifically, from timezone-naive and/or dayfirst
datetimes, which can be useful when importing data [see PR #831]

• Add a new tutorial to explain the use of the AggregatorReporter to compute the headroom and the ProfitOrLoss-
Reporter to compute the cost of running a process [see PR #825 and PR #856]

• Updated admin dashboard for inspecting asynchronous tasks (scheduling, forecasting, reporting, etc.), and im-
proved performance and security of the server by upgrading Flask and Flask extensions [see PR #838]

• Script to update dependencies across supported Python versions [see PR #843]

• Test all supported Python versions in our CI pipeline (GitHub Actions) [see PR #847]

14 Chapter 5. Developer support

https://github.com/FlexMeasures/flexmeasures/pull/855
https://github.com/FlexMeasures/flexmeasures/pull/874
https://github.com/FlexMeasures/flexmeasures/pull/879
https://github.com/FlexMeasures/flexmeasures/pull/864
https://flexmeasures.io/016-profitloss-reporter/
https://github.com/FlexMeasures/flexmeasures/pull/808
https://github.com/FlexMeasures/flexmeasures/pull/844
https://github.com/FlexMeasures/flexmeasures/pull/833
https://github.com/FlexMeasures/flexmeasures/pull/849
https://vega.github.io/vega-lite/docs/area.html#properties
https://github.com/FlexMeasures/flexmeasures/pull/851
https://github.com/FlexMeasures/flexmeasures/pull/850
https://github.com/FlexMeasures/flexmeasures/pull/859
https://github.com/FlexMeasures/flexmeasures/pull/831
https://github.com/FlexMeasures/flexmeasures/pull/825
https://github.com/FlexMeasures/flexmeasures/pull/856
https://github.com/FlexMeasures/flexmeasures/pull/838
https://github.com/FlexMeasures/flexmeasures/pull/843
https://github.com/FlexMeasures/flexmeasures/pull/847

FlexMeasures Documentation, Release 0.17

• Have our CI pipeline (GitHub Actions) build the Docker image and make a schedule [see PR #800]

• Updated documentation on the consequences of setting the FLEXMEASURES_MODE config setting [see PR
#857]

• Implement cache-busting to avoid the need for users to hard refresh the browser when new JavaScript function-
ality is added to the UI (user interface) in a new FlexMeasures version [see PR #860]

v0.15.2 | October 2, 2023

Bugfixes

• Fix infeasible problem due to incorrect parsing of soc units of the soc-minima and soc-maxima fields within
the flex-model field [see PR #864]

v0.15.1 | August 28, 2023

Bugfixes

• Fix infeasible problem due to floating point error in SoC (state of charge) targets [see PR #832]

• Use the source to filter beliefs in the AggregatorReporter and fix the case of having multiple sources [see PR
#819]

• Disable HiGHS logs on the standard output when LOGGING_LEVEL=INFO [see PR #824 and PR #826]

• Fix showing sensor data on the asset page of public assets, and searching for annotations on public assets [see
PR #830]

• Make the command flexmeasures add schedule for-storage to pass the soc-target timestamp to the flex model as
strings instead of pd.Timestamp [see PR #834]

v0.15.0 | August 9, 2023

Note: Read more on these features on the FlexMeasures blog.

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Warning: Upgrading to this version requires installing the LP/MILP solver HiGHS using pip install
highspy.

Warning: If your server is running in play mode (FLEXMEASURES_MODE = "play"), users will be able to see
sensor data from any account [see PR #740].

5.3. I want to build new features quickly, not spend days solving basic problems 15

https://github.com/FlexMeasures/flexmeasures/pull/800
https://github.com/FlexMeasures/flexmeasures/pull/857
https://github.com/FlexMeasures/flexmeasures/pull/857
https://github.com/FlexMeasures/flexmeasures/pull/860
https://github.com/FlexMeasures/flexmeasures/pull/864
https://github.com/FlexMeasures/flexmeasures/pull/832
https://github.com/FlexMeasures/flexmeasures/pull/819
https://github.com/FlexMeasures/flexmeasures/pull/819
https://github.com/FlexMeasures/flexmeasures/pull/824
https://github.com/FlexMeasures/flexmeasures/pull/826
https://github.com/FlexMeasures/flexmeasures/pull/830
https://github.com/FlexMeasures/flexmeasures/pull/834
https://flexmeasures.io/015-process-scheduling-heatmap/
https://www.github.com/FlexMeasures/flexmeasures/pull/740

FlexMeasures Documentation, Release 0.17

New features

• Add ProcessScheduler class to optimize the starting time of processes one of the policies developed (INFLEXI-
BLE, SHIFTABLE and BREAKABLE), accessible via the CLI command flexmeasures add schedule for-process
[see PR #729 and PR #768]

• Users can select a new chart type (daily heatmap) on the sensor page of the UI, showing how sensor values are
distributed over the time of day [see PR #715]

• Added API endpoints /sensors/<id> (GET) for fetching a single sensor, /sensors (POST) for adding a sensor,
/sensors/<id> (PATCH) for updating a sensor and /sensors/<id> (DELETE) for deleting a sensor. [see PR #759]
and [see PR #767] and [see PR #773] and [see PR #784]

• Users are warned in the UI on when the data they are seeing includes one or more Daylight Saving Time (DST)
transitions, and heatmaps (see previous feature) visualize these transitions intuitively [see PR #723]

• Allow deleting multiple sensors with a single call to flexmeasures delete sensor by passing the --id
option multiple times [see PR #734]

• Make it a lot easier to read off the color legend on the asset page, especially when showing many sensors, as
they will now be ordered from top to bottom in the same order as they appear in the chart (as defined in the
sensors_to_show attribute), rather than alphabetically [see PR #742]

• Users on FlexMeasures servers in play mode (FLEXMEASURES_MODE = "play") can use the sensors_to_show
attribute to show any sensor on their asset pages, rather than only sensors registered to assets in their own account
or to public assets [see PR #740]

• Having percentages within the [0, 100] domain is such a common use case that we now always include it in
sensor charts with % units, making it easier to read off individual charts and also to compare across charts [see
PR #739]

• DataSource table now allows storing arbitrary attributes as a JSON (without content validation), similar to the
Sensor and GenericAsset tables [see PR #750]

• Users will be able to see (e.g. in the UI) exactly which reporter created the report (saved as sensor data), and
hosts will be able to identify exactly which configuration was used to create a given report [see PR #751 and PR
#788]

• The CLI flexmeasures add report now allows passing config and parameters in YAML format as files or editable
via the system’s default editor [see PR #752 and PR #788]

• The CLI now allows to set lists and dicts as asset & sensor attributes (formerly only single values) [see PR #762]

Bugfixes

• Add binary constraint to avoid energy leakages during periods with negative prices [see PR #770]

Infrastructure / Support

• Add support for profiling Flask API calls using pyinstrument (if installed). Can be enabled by setting the
environment variable FLEXMEASURES_PROFILE_REQUESTS to True [see PR #722]

• The endpoint [POST] /health/ready returns the status of the Redis connection, if configured [see PR #699]

• Document the device_scheduler linear program [see PR #764]

• Add support for HiGHS solver [see PR #766]

• Add support for installing FlexMeasures under Python 3.11 [see PR #771]

16 Chapter 5. Developer support

https://www.github.com/FlexMeasures/flexmeasures/pull/729
https://www.github.com/FlexMeasures/flexmeasures/pull/768
https://www.github.com/FlexMeasures/flexmeasures/pull/715
https://www.github.com/FlexMeasures/flexmeasures/pull/759
https://www.github.com/FlexMeasures/flexmeasures/pull/767
https://www.github.com/FlexMeasures/flexmeasures/pull/773
https://www.github.com/FlexMeasures/flexmeasures/pull/784
https://www.github.com/FlexMeasures/flexmeasures/pull/723
https://www.github.com/FlexMeasures/flexmeasures/pull/734
https://www.github.com/FlexMeasures/flexmeasures/pull/742
https://www.github.com/FlexMeasures/flexmeasures/pull/740
https://www.github.com/FlexMeasures/flexmeasures/pull/739
https://www.github.com/FlexMeasures/flexmeasures/pull/750
https://www.github.com/FlexMeasures/flexmeasures/pull/751
https://www.github.com/FlexMeasures/flexmeasures/pull/788
https://www.github.com/FlexMeasures/flexmeasures/pull/788
https://www.github.com/FlexMeasures/flexmeasures/pull/752
https://www.github.com/FlexMeasures/flexmeasures/pull/788
https://www.github.com/FlexMeasures/flexmeasures/pull/762
https://www.github.com/FlexMeasures/flexmeasures/pull/770
https://www.github.com/FlexMeasures/flexmeasures/pull/722
api/v3_0.html#get--api-v3_0-health-ready
https://www.github.com/FlexMeasures/flexmeasures/pull/699
https://www.github.com/FlexMeasures/flexmeasures/pull/764
https://highs.dev/
https://www.github.com/FlexMeasures/flexmeasures/pull/766
https://www.github.com/FlexMeasures/flexmeasures/pull/771

FlexMeasures Documentation, Release 0.17

• Start keeping sets of pinned requirements per supported Python version. Also fixes recent Docker build problem.
[see PR #776]

• Removed obsolete code dealing with deprecated data models (e.g. assets, markets and weather sensors), and
sunset the fm0 scheme for entity addresses [see PR #695 and project 11]

v0.14.3 | October 2, 2023

Bugfixes

• Fix infeasible problem due to incorrect parsing of soc units of the soc-minima and soc-maxima fields within
the flex-model field [see PR #864]

v0.14.2 | July 25, 2023

Bugfixes

• The error handling for infeasible constraints in storage.py was given too many arguments. This caused the re-
sponse from the API to be unhelpful when a schedule was requested with infeasible constraints. [see PR #758]

v0.14.1 | June 26, 2023

Bugfixes

• Relax constraint validation of StorageScheduler to accommodate violations caused by floating point precision
[see PR #731]

• Avoid saving any NaN (not a number) values to the database, when calling flexmeasures add report [see
PR #735]

• Fix browser console error when loading asset or sensor page with only a single data point [see PR #732]

• Fix showing multiple sensors with bare 3-letter currency code as their units (e.g. EUR) in one chart [see PR
#738]

• Fix defaults for the --start-offset and --end-offset options to flexmeasures add report, which
weren’t being interpreted in the local timezone of the reporting sensor [see PR #744]

• Relax constraint for overlaying plot traces for sensors with various resolutions, making it possible to show e.g.
two price sensors in one chart, where one of them records hourly prices and the other records quarter-hourly
prices [see PR #743]

• Resolve bug where different page loads would potentially influence the time axis of each other’s charts, by avoid-
ing mutation of shared field definitions [see PR #746]

5.3. I want to build new features quickly, not spend days solving basic problems 17

https://www.github.com/FlexMeasures/flexmeasures/pull/776
https://www.github.com/FlexMeasures/flexmeasures/pull/695
https://www.github.com/FlexMeasures/flexmeasures/projects/11
https://github.com/FlexMeasures/flexmeasures/pull/864
https://github.com/FlexMeasures/flexmeasures/pull/758
https://www.github.com/FlexMeasures/flexmeasures/pull/731
https://www.github.com/FlexMeasures/flexmeasures/pull/735
https://www.github.com/FlexMeasures/flexmeasures/pull/732
https://www.github.com/FlexMeasures/flexmeasures/pull/738
https://www.github.com/FlexMeasures/flexmeasures/pull/738
https://www.github.com/FlexMeasures/flexmeasures/pull/744
https://www.github.com/FlexMeasures/flexmeasures/pull/743
https://www.github.com/FlexMeasures/flexmeasures/pull/746

FlexMeasures Documentation, Release 0.17

v0.14.0 | June 15, 2023

Note: Read more on these features on the FlexMeasures blog.

New features

• Allow setting a storage efficiency using the new storage-efficiency field when calling /sen-
sors/<id>/schedules/trigger (POST) through the API (within the flex-model field), or when calling
flexmeasures add schedule for-storage through the CLI [see PR #679]

• Allow setting multiple SoC maxima and minima constraints for the StorageScheduler, using the new
soc-minima and soc-maxima fields when calling /sensors/<id>/schedules/trigger (POST) through the API
(within the flex-model field) [see PR #680]

• New CLI command flexmeasures add report to calculate a custom report from sensor data and save the
results to the database, with the option to export them to a CSV or Excel file [see PR #659]

• New CLI commands flexmeasures show reporters and flexmeasures show schedulers to list avail-
able reporters and schedulers, respectively, including any defined in registered plugins [see PR #686 and PR
#708]

• Allow creating public assets through the CLI, which are available to all users [see PR #727]

Bugfixes

• Fix charts not always loading over https in secured scenarios [see PR #716]

Infrastructure / Support

• Introduction of the classes Reporter, PandasReporter and AggregatorReporter to help customize your own re-
porter functions (experimental) [see PR #641 and PR #712]

• The setting FLEXMEASURES_PLUGINS can be set as environment variable now (as a comma-separated list)
[see PR #660]

• Packaging was modernized to stop calling setup.py directly [see PR #671]

• Remove API versions 1.0, 1.1, 1.2, 1.3 and 2.0, while making sure that sunset endpoints keep returning HTTP
status 410 (Gone) responses [see PR #667 and PR #717]

• Support Pandas 2 [see PR #673]

• Add code documentation from package structure and docstrings to official docs [see PR #698]

Warning: The setting FLEXMEASURES_PLUGIN_PATHS has been deprecated since v0.7. It has now been
sunset. Please replace it with FLEXMEASURES_PLUGINS.

18 Chapter 5. Developer support

https://flexmeasures.io/014-reporting-power/
https://www.github.com/FlexMeasures/flexmeasures/pull/679
https://www.github.com/FlexMeasures/flexmeasures/pull/680
https://www.github.com/FlexMeasures/flexmeasures/pull/659
https://www.github.com/FlexMeasures/flexmeasures/pull/686
https://github.com/FlexMeasures/flexmeasures/pull/708
https://github.com/FlexMeasures/flexmeasures/pull/708
https://github.com/FlexMeasures/flexmeasures/pull/727
https://www.github.com/FlexMeasures/flexmeasures/pull/716
https://www.github.com/FlexMeasures/flexmeasures/pull/641
https://www.github.com/FlexMeasures/flexmeasures/pull/712
https://www.github.com/FlexMeasures/flexmeasures/pull/660
https://www.github.com/FlexMeasures/flexmeasures/pull/671
https://www.github.com/FlexMeasures/flexmeasures/pull/667
https://www.github.com/FlexMeasures/flexmeasures/pull/717
https://www.github.com/FlexMeasures/flexmeasures/pull/673
https://www.github.com/FlexMeasures/flexmeasures/pull/698

FlexMeasures Documentation, Release 0.17

v0.13.3 | June 10, 2023

Bugfixes

• Fix forwarding arguments in deprecated util function [see PR #719]

v0.13.2 | June 9, 2023

Bugfixes

• Fix failing to save results of scheduling and reporting on subsequent calls for the same time period [see PR #709]

v0.13.1 | May 12, 2023

Bugfixes

• @deprecated not returning the output of the decorated function [see PR #678]

v0.13.0 | May 1, 2023

Warning: Sunset notice for API versions 1.0, 1.1, 1.2, 1.3 and 2.0: after upgrading to flexmeasures==0.
13, users of these API versions may receive HTTP status 410 (Gone) responses. See the documentation for
deprecation and sunset. The relevant endpoints have been deprecated since flexmeasures==0.12.

Warning: The API endpoint ([POST] /sensors/(id)/schedules/trigger) to make new schedules sunsets the depre-
cated (since v0.12) storage flexibility parameters (they move to the flex-model parameter group), as well as the
parameters describing other sensors (they move to flex-context).

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Note: Read more on these features on the FlexMeasures blog.

5.3. I want to build new features quickly, not spend days solving basic problems 19

https://github.com/FlexMeasures/flexmeasures/pull/719
https://github.com/FlexMeasures/flexmeasures/pull/709
https://www.github.com/FlexMeasures/flexmeasures/pull/678
https://flexmeasures.readthedocs.io/en/latest/api/introduction.html#deprecation-and-sunset
https://flexmeasures.readthedocs.io/en/latest/api/introduction.html#deprecation-and-sunset
api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
https://flexmeasures.io/013-overlay-charts/

FlexMeasures Documentation, Release 0.17

New features

• Keyboard control over replay [see PR #562]

• Overlay charts (e.g. power profiles) on the asset page using the sensors_to_show attribute, and distinguish plots
by source (different trace), sensor (different color) and source type (different stroke dash) [see PR #534]

• The FLEXMEASURES_MAX_PLANNING_HORIZON config setting can also be set as an integer number of planning
steps rather than just as a fixed duration, which makes it possible to schedule further ahead in coarser time steps
[see PR #583]

• Different text styles for CLI output for errors, warnings or success messages. [see PR #609]

• Added API endpoints and webpages /accounts and /accounts/<id> to list accounts and show an overview of the
assets, users and account roles of an account [see PR #605]

• Avoid redundantly recomputing jobs that are triggered without a relevant state change. FLEXMEA-
SURES_JOB_CACHE_TTL config setting defines the time in which the jobs with the same arguments are not
being recomputed. [see PR #616]

Bugfixes

• Fix copy button on tutorials and other documentation, so that only commands are copied and no output or com-
ments [see PR #636]

• GET /api/v3_0/assets/public should ask for token authentication and not forward to login page [see PR #649]

Infrastructure / Support

• Support blackout tests for sunset API versions [see PR #651]

• Sunset API versions 1.0, 1.1, 1.2, 1.3 and 2.0 [see PR #650]

• Sunset several API fields for /sensors/<id>/schedules/trigger (POST) that have moved into the flex-model or
flex-context fields [see PR #580]

• Fix broken make show-data-model command [see PR #638]

• Bash script for a clean database to run toy-tutorial by using make clean-db db_name=database_name command
[see PR #640]

v0.12.3 | February 28, 2023

Bugfixes

• Fix premature deserialization of flex-context field for /sensors/<id>/schedules/trigger (POST) [see PR #593]

20 Chapter 5. Developer support

https://www.github.com/FlexMeasures/flexmeasures/pull/562
https://www.github.com/FlexMeasures/flexmeasures/pull/534
https://www.github.com/FlexMeasures/flexmeasures/pull/583
https://www.github.com/FlexMeasures/flexmeasures/pull/609
https://github.com/FlexMeasures/flexmeasures/pull/605
https://www.github.com/FlexMeasures/flexmeasures/pull/616
https://www.github.com/FlexMeasures/flexmeasures/pull/636
https://www.github.com/FlexMeasures/flexmeasures/pull/649
https://www.github.com/FlexMeasures/flexmeasures/pull/651
https://www.github.com/FlexMeasures/flexmeasures/pull/650
https://www.github.com/FlexMeasures/flexmeasures/pull/580
https://www.github.com/FlexMeasures/flexmeasures/pull/638
https://github.com/FlexMeasures/flexmeasures/pull/640
https://www.github.com/FlexMeasures/flexmeasures/pull/593

FlexMeasures Documentation, Release 0.17

v0.12.2 | February 4, 2023

Bugfixes

• Fix CLI command flexmeasures schedule for-storage without --as-job flag [see PR #589]

v0.12.1 | January 12, 2023

Bugfixes

• Fix validation of (deprecated) API parameter roundtrip-efficiency [see PR #582]

v0.12.0 | January 4, 2023

Warning: After upgrading to flexmeasures==0.12, users of API versions 1.0, 1.1, 1.2, 1.3 and 2.0 will receive
"Deprecation" and "Sunset" response headers, and warnings are logged for FlexMeasures hosts whenever users
call API endpoints in these deprecated API versions. The relevant endpoints are planned to become unresponsive
in flexmeasures==0.13.

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Note: Read more on these features on the FlexMeasures blog.

New features

• Hit the replay button to visually replay what happened, available on the sensor and asset pages [see PR #463 and
PR #560]

• Ability to provide your own custom scheduling function [see PR #505]

• Visually distinguish forecasts/schedules (dashed lines) from measurements (solid lines), and expand the tooltip
with timing info regarding the forecast/schedule horizon or measurement lag [see PR #503]

• The asset page also allows to show sensor data from other assets that belong to the same account [see PR #500]

• The CLI command flexmeasures monitor latest-login supports to check if (bot) users who are expected
to contact FlexMeasures regularly (e.g. to send data) fail to do so [see PR #541]

• The CLI command flexmeasures show beliefs supports showing beliefs data in a custom resolution and/or
timezone, and also saving the shown beliefs data to a CSV file [see PR #519]

• Improved import of time series data from CSV file: 1) drop duplicate records with warning, 2) allow configuring
which column contains explicit recording times for each data point (use case: import forecasts) [see PR #501],
3) localize timezone naive data, 4) support reading in datetime and timedelta values, 5) remove rows with NaN
values, and 6) filter by values in specific columns [see PR #521]

• Filter data by source in the API endpoint /sensors/data (GET) [see PR #543]

5.3. I want to build new features quickly, not spend days solving basic problems 21

https://www.github.com/FlexMeasures/flexmeasures/pull/589
https://www.github.com/FlexMeasures/flexmeasures/pull/582
https://flexmeasures.io/012-replay-custom-scheduling/
https://www.github.com/FlexMeasures/flexmeasures/pull/463
https://www.github.com/FlexMeasures/flexmeasures/pull/560
https://www.github.com/FlexMeasures/flexmeasures/pull/505
https://www.github.com/FlexMeasures/flexmeasures/pull/503
https://www.github.com/FlexMeasures/flexmeasures/pull/500
https://www.github.com/FlexMeasures/flexmeasures/pull/541
https://www.github.com/FlexMeasures/flexmeasures/pull/519
https://www.github.com/FlexMeasures/flexmeasures/pull/501
https://www.github.com/FlexMeasures/flexmeasures/pull/521
https://www.github.com/FlexMeasures/flexmeasures/pull/543

FlexMeasures Documentation, Release 0.17

• Allow posting null values to /sensors/data (POST) to correctly space time series that include missing values
(the missing values are not stored) [see PR #549]

• Allow setting a custom planning horizon when calling /sensors/<id>/schedules/trigger (POST), using the new
duration field [see PR #568]

• New resampling functionality for instantaneous sensor data: 1) flexmeasures show beliefs can now handle
showing (and saving) instantaneous sensor data and non-instantaneous sensor data together, and 2) the API
endpoint /sensors/data (GET) now allows fetching instantaneous sensor data in a custom frequency, by using
the “resolution” field [see PR #542]

Bugfixes

• The CLI command flexmeasures show beliefs now supports plotting time series data that includes NaN
values, and provides better support for plotting multiple sensors that do not share the same unit [see PR #516
and PR #539]

• Fixed JSON wrapping of return message for /sensors/data (GET) [see PR #543]

• Consistent CLI/UI support for asset lat/lng positions up to 7 decimal places (previously the UI rounded to 4
decimal places, whereas the CLI allowed more than 4) [see PR #522]

• Stop trimming the planning window in response to price availability, which is a problem when SoC targets occur
outside of the available price window, by making a simplistic assumption about future prices [see PR #538]

• Faster loading of initial charts and calendar date selection [see PR #533]

Infrastructure / Support

• Reduce size of Docker image (from 2GB to 1.4GB) [see PR #512]

• Allow extra requirements to be freshly installed when running docker-compose up [see PR #528]

• Remove bokeh dependency and obsolete UI views [see PR #476]

• Fix flexmeasures db-ops dump and flexmeasures db-ops restore not working in docker containers
[see PR #530] and incorrectly reporting a success when pg_dump and pg_restore are not installed [see PR #526]

• Plugins can save BeliefsSeries, too, instead of just BeliefsDataFrames [see PR #523]

• Improve documentation and code w.r.t. storage flexibility modelling — prepare for handling other schedulers &
merge battery and car charging schedulers [see PR #511, PR #537 and PR #566]

• Revised strategy for removing unchanged beliefs when saving data: retain the oldest measurement (ex-post be-
lief), too [see PR #518]

• Scheduling test for maximizing self-consumption, and improved time series db queries for fixed tariffs (and other
long-term constants) [see PR #532]

• Clean up table formatting for flexmeasures show CLI commands [see PR #540]

• Add "Deprecation" and "Sunset" response headers for API users of deprecated API versions, and log warn-
ings for FlexMeasures hosts when users still use them [see PR #554 and PR #565]

• Explain how to avoid potential SMTPRecipientsRefused errors when using FlexMeasures in combination with
a mail server [see PR #558]

• Set a limit to the allowed planning window for API users, using the FLEXMEASURES_MAX_PLANNING_HORIZON
setting [see PR #568]

22 Chapter 5. Developer support

https://www.github.com/FlexMeasures/flexmeasures/pull/549
https://www.github.com/FlexMeasures/flexmeasures/pull/568
https://www.github.com/FlexMeasures/flexmeasures/pull/542
https://www.github.com/FlexMeasures/flexmeasures/pull/516
https://www.github.com/FlexMeasures/flexmeasures/pull/539
https://www.github.com/FlexMeasures/flexmeasures/pull/543
https://www.github.com/FlexMeasures/flexmeasures/pull/522
https://www.github.com/FlexMeasures/flexmeasures/pull/538
https://www.github.com/FlexMeasures/flexmeasures/pull/533
https://www.github.com/FlexMeasures/flexmeasures/pull/512
https://www.github.com/FlexMeasures/flexmeasures/pull/528
https://www.github.com/FlexMeasures/flexmeasures/pull/476
https://www.github.com/FlexMeasures/flexmeasures/pull/530
https://www.github.com/FlexMeasures/flexmeasures/pull/526
https://www.github.com/FlexMeasures/flexmeasures/pull/523
https://www.github.com/FlexMeasures/flexmeasures/pull/511
https://www.github.com/FlexMeasures/flexmeasures/pull/537
https://www.github.com/FlexMeasures/flexmeasures/pull/566
https://www.github.com/FlexMeasures/flexmeasures/pull/518
https://www.github.com/FlexMeasures/flexmeasures/pull/532
https://www.github.com/FlexMeasures/flexmeasures/pull/540
https://www.github.com/FlexMeasures/flexmeasures/pull/554
https://www.github.com/FlexMeasures/flexmeasures/pull/565
https://www.github.com/FlexMeasures/flexmeasures/pull/558
https://www.github.com/FlexMeasures/flexmeasures/pull/568

FlexMeasures Documentation, Release 0.17

Warning: The API endpoint ([POST] /sensors/(id)/schedules/trigger) to make new schedules will (in v0.13) sun-
set the storage flexibility parameters (they move to the flex-model parameter group), as well as the parameters
describing other sensors (they move to flex-context).

Warning: The CLI command flexmeasures monitor tasks has been deprecated (it’s being renamed to
flexmeasures monitor last-run). The old name will be sunset in version 0.13.

Warning: The CLI command flexmeasures add schedule has been renamed to flexmeasures add
schedule for-storage. The old name will be sunset in version 0.13.

v0.11.3 | November 2, 2022

Bugfixes

• Fix scheduling with imperfect efficiencies, which resulted in exceeding the device’s lower SoC limit. [see PR
#520]

• Fix scheduler for Charge Points when taking into account inflexible devices [see PR #517]

• Prevent rounding asset lat/long positions to 4 decimal places when editing an asset in the UI [see PR #522]

v0.11.2 | September 6, 2022

Bugfixes

• Fix regression for sensors recording non-instantaneous values [see PR #498]

• Fix broken auth check for creating assets with CLI [see PR #497]

v0.11.1 | September 5, 2022

Bugfixes

• Do not fail asset page if none of the sensors has any data [see PR #493]

• Do not fail asset page if one of the shown sensors records instantaneous values [see PR #491]

v0.11.0 | August 28, 2022

New features

• The asset page now shows the most relevant sensor data for the asset [see PR #449]

• Individual sensor charts show available annotations [see PR #428]

• New API options to further customize the optimization context for scheduling, including the ability to use dif-
ferent prices for consumption and production (feed-in) [see PR #451]

5.3. I want to build new features quickly, not spend days solving basic problems 23

api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
https://www.github.com/FlexMeasures/flexmeasures/pull/520
https://www.github.com/FlexMeasures/flexmeasures/pull/520
https://www.github.com/FlexMeasures/flexmeasures/pull/517
https://www.github.com/FlexMeasures/flexmeasures/pull/522
https://www.github.com/FlexMeasures/flexmeasures/pull/498
https://www.github.com/FlexMeasures/flexmeasures/pull/497
https://www.github.com/FlexMeasures/flexmeasures/pull/493
https://www.github.com/FlexMeasures/flexmeasures/pull/491
https://www.github.com/FlexMeasures/flexmeasures/pull/449
https://www.github.com/FlexMeasures/flexmeasures/pull/428
https://www.github.com/FlexMeasures/flexmeasures/pull/451

FlexMeasures Documentation, Release 0.17

• Admins can group assets by account on dashboard & assets page [see PR #461]

• Collapsible side-panel (hover/swipe) used for date selection on sensor charts, and various styling improvements
[see PR #447 and PR #448]

• Add CLI command flexmeasures jobs show-queues [see PR #455]

• Switched from 12-hour AM/PM to 24-hour clock notation for time series chart axis labels [see PR #446]

• Get data in a given resolution [see PR #458]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

• Do not fail asset page if entity addresses cannot be built [see PR #457]

• Asynchronous reloading of a chart’s dataset relies on that chart already having been embedded [see PR #472]

• Time scale axes in sensor data charts now match the requested date range, rather than stopping at the edge of the
available data [see PR #449]

• The docker-based tutorial now works with UI on all platforms (port 5000 did not expose on MacOS) [see PR
#465]

• Fix interpretation of scheduling results in toy tutorial [see PR #466 and PR #475]

• Avoid formatting datetime.timedelta durations as nominal ISO durations [see PR #459]

• Account admins cannot add assets to other accounts any more; and they are shown a button for asset creation in
UI [see PR #488]

Infrastructure / Support

• Docker compose stack now with Redis worker queue [see PR #455]

• Allow access tokens to be passed as env vars as well [see PR #443]

• Queue workers can get initialised without a custom name and name collisions are handled [see PR #455]

• New API endpoint to get public assets [see PR #461]

• Allow editing an asset’s JSON attributes through the UI [see PR #474]

• Allow a custom message when monitoring latest run of tasks [see PR #489]

v0.10.1 | August 12, 2022

Bugfixes

• Fix some UI styling regressions in e.g. color contrast and hover effects [see PR #441]

24 Chapter 5. Developer support

https://www.github.com/FlexMeasures/flexmeasures/pull/461
https://www.github.com/FlexMeasures/flexmeasures/pull/447
https://www.github.com/FlexMeasures/flexmeasures/pull/448
https://www.github.com/FlexMeasures/flexmeasures/pull/455
https://www.github.com/FlexMeasures/flexmeasures/pull/446
https://www.github.com/FlexMeasures/flexmeasures/pull/458
https://flexmeasures.io/011-better-data-views/
https://www.github.com/FlexMeasures/flexmeasures/pull/457
https://www.github.com/FlexMeasures/flexmeasures/pull/472
https://www.github.com/FlexMeasures/flexmeasures/pull/449
https://www.github.com/FlexMeasures/flexmeasures/pull/465
https://www.github.com/FlexMeasures/flexmeasures/pull/465
https://www.github.com/FlexMeasures/flexmeasures/pull/466
https://www.github.com/FlexMeasures/flexmeasures/pull/475
https://www.github.com/FlexMeasures/flexmeasures/pull/459
https://www.github.com/FlexMeasures/flexmeasures/pull/488
https://www.github.com/FlexMeasures/flexmeasures/pull/455
https://www.github.com/FlexMeasures/flexmeasures/pull/443
https://www.github.com/FlexMeasures/flexmeasures/pull/455
https://www.github.com/FlexMeasures/flexmeasures/pull/461
https://www.github.com/FlexMeasures/flexmeasures/pull/474
https://www.github.com/FlexMeasures/flexmeasures/pull/489
https://www.github.com/FlexMeasures/flexmeasures/pull/441

FlexMeasures Documentation, Release 0.17

v0.10.0 | May 8, 2022

New features

• New design for FlexMeasures’ UI back office [see PR #425]

• Improve legibility of chart axes [see PR #413]

• API provides health readiness check at /api/v3_0/health/ready [see PR #416]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

• Fix small problems in support for the admin-reader role & role-based authorization [see PR #422]

Infrastructure / Support

• Dockerfile to run FlexMeasures in container; also docker-compose file [see PR #416]

• Unit conversion prefers shorter units in general [see PR #415]

• Shorter CI builds in Github Actions by caching Python environment [see PR #361]

• Allow to filter data by source using a tuple instead of a list [see PR #421]

v0.9.4 | April 28, 2022

Bugfixes

• Support checking validity of custom units (i.e. non-SI, non-currency units) [see PR #424]

v0.9.3 | April 15, 2022

Bugfixes

• Let registered plugins use CLI authorization [see PR #411]

v0.9.2 | April 10, 2022

Bugfixes

• Prefer unit conversions to short stock units [see PR #412]

• Fix filter for selecting one deterministic belief per event, which was duplicating index levels [see PR #414]

5.3. I want to build new features quickly, not spend days solving basic problems 25

https://www.github.com/FlexMeasures/flexmeasures/pull/425
https://www.github.com/FlexMeasures/flexmeasures/pull/413
https://www.github.com/FlexMeasures/flexmeasures/pull/416
https://flexmeasures.io/010-docker-styling/
https://www.github.com/FlexMeasures/flexmeasures/pull/422
https://www.github.com/FlexMeasures/flexmeasures/pull/416
https://www.github.com/FlexMeasures/flexmeasures/pull/415
https://www.github.com/FlexMeasures/flexmeasures/pull/361
https://www.github.com/FlexMeasures/flexmeasures/pull/421
https://www.github.com/FlexMeasures/flexmeasures/pull/424
https://www.github.com/FlexMeasures/flexmeasures/pull/411
https://www.github.com/FlexMeasures/flexmeasures/pull/412
https://www.github.com/FlexMeasures/flexmeasures/pull/414

FlexMeasures Documentation, Release 0.17

v0.9.1 | March 31, 2022

Bugfixes

• Fix auth bug not masking locations of inaccessible assets on map [see PR #409]

• Fix CLI auth check [see PR #407]

• Fix resampling of sensor data for scheduling [see PR #406]

v0.9.0 | March 25, 2022

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

New features

• Three new CLI commands for cleaning up your database: delete 1) unchanged beliefs, 2) NaN values or 3) a
sensor and all of its time series data [see PR #328]

• Add CLI option to pass a data unit when reading in time series data from CSV, so data can automatically be
converted to the sensor unit [see PR #341]

• Add CLI option to specify custom strings that should be interpreted as NaN values when reading in time series
data from CSV [see PR #357]

• Add CLI commands flexmeasures add sensor, flexmeasures add asset-type, flexmeasures add
beliefs (which were experimental features before) [see PR #337]

• Add CLI commands for showing organisational structure [see PR #339]

• Add CLI command for showing time series data [see PR #379]

• Add CLI command for attaching annotations to assets: flexmeasures add holidays adds public holidays
[see PR #343]

• Add CLI command for resampling existing sensor data to new resolution [see PR #360]

• Add CLI command to delete an asset, with its sensors and data. [see PR #395]

• Add CLI command to edit/add an attribute on an asset or sensor. [see PR #380]

• Add CLI command to add a toy account for tutorials and trying things [see PR #368]

• Add CLI command to create a charging schedule [see PR #372]

• Support for percent (%) and permille (‰) sensor units [see PR #359]

Note: Read more on these features on the FlexMeasures blog.

26 Chapter 5. Developer support

https://www.github.com/FlexMeasures/flexmeasures/pull/409
https://www.github.com/FlexMeasures/flexmeasures/pull/407
https://www.github.com/FlexMeasures/flexmeasures/pull/406
https://www.github.com/FlexMeasures/flexmeasures/pull/328
https://www.github.com/FlexMeasures/flexmeasures/pull/341
https://www.github.com/FlexMeasures/flexmeasures/pull/357
https://www.github.com/FlexMeasures/flexmeasures/pull/337
https://www.github.com/FlexMeasures/flexmeasures/pull/339
https://www.github.com/FlexMeasures/flexmeasures/pull/379
https://www.github.com/FlexMeasures/flexmeasures/pull/343
https://www.github.com/FlexMeasures/flexmeasures/pull/360
https://www.github.com/FlexMeasures/flexmeasures/pull/395
https://www.github.com/FlexMeasures/flexmeasures/pull/380
https://www.github.com/FlexMeasures/flexmeasures/pull/368
https://www.github.com/FlexMeasures/flexmeasures/pull/372
https://www.github.com/FlexMeasures/flexmeasures/pull/359
https://flexmeasures.io/090-cli-developer-power/

FlexMeasures Documentation, Release 0.17

Bugfixes

Infrastructure / Support

• Plugins can import common FlexMeasures classes (like Asset and Sensor) from a central place, using from
flexmeasures import Asset, Sensor [see PR #354]

• Adapt CLI command for entering some initial structure (flexmeasures add structure) to new datamodel
[see PR #349]

• Align documentation requirements with pip-tools [see PR #384]

• Beginning API v3.0 - more REST-like, supporting assets, users and sensor data [see PR #390 and PR #392]

v0.8.0 | January 24, 2022

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Warning: In case you use FlexMeasures for simulations using FLEXMEASURES_MODE = "play", al-
lowing to overwrite data is now set separately using FLEXMEASURES_ALLOW_DATA_OVERWRITE. Add
FLEXMEASURES_ALLOW_DATA_OVERWRITE = True to your config settings to keep the old behaviour.

Note: v0.8.0 is doing much of the work we need to do to move to the new data model (see
note_on_datamodel_transition). We hope to keep the migration steps for users very limited. One thing you’ll notice is
that we are copying over existing data to the new model (which will be kept in sync) with the db upgrade command
(see warning above), which can take a few minutes.

New features

• Bar charts of sensor data for individual sensors, that can be navigated using a calendar [see PR #99 and PR #290]

• Charts with sensor data can be requested in one of the supported [vega-lite themes] (incl. a dark theme) [see PR
#221]

• Mobile friendly (responsive) charts of sensor data, and such charts can be requested with a custom width and
height [see PR #313]

• Schedulers take into account round-trip efficiency if set [see PR #291]

• Schedulers take into account min/max state of charge if set [see PR #325]

• Fallback policies for charging schedules of batteries and Charge Points, in cases where the solver is presented
with an infeasible problem [see PR #267 and PR #270]

Note: Read more on these features on the FlexMeasures blog.

5.3. I want to build new features quickly, not spend days solving basic problems 27

https://www.github.com/FlexMeasures/flexmeasures/pull/354
https://www.github.com/FlexMeasures/flexmeasures/pull/349
https://www.github.com/FlexMeasures/flexmeasures/pull/384
https://www.github.com/FlexMeasures/flexmeasures/pull/390
https://www.github.com/FlexMeasures/flexmeasures/pull/392
https://www.github.com/FlexMeasures/flexmeasures/pull/99
https://www.github.com/FlexMeasures/flexmeasures/pull/290
https://github.com/vega/vega-themes#included-themes
https://www.github.com/FlexMeasures/flexmeasures/pull/221
https://www.github.com/FlexMeasures/flexmeasures/pull/221
https://www.github.com/FlexMeasures/flexmeasures/pull/313
https://www.github.com/FlexMeasures/flexmeasures/pull/291
https://www.github.com/FlexMeasures/flexmeasures/pull/325
https://www.github.com/FlexMeasures/flexmeasures/pull/267
https://www.github.com/FlexMeasures/flexmeasures/pull/270
https://flexmeasures.io/080-better-scheduling-safer-data/

FlexMeasures Documentation, Release 0.17

Deprecations

• The Portfolio and Analytics views are deprecated [see PR #321]

Bugfixes

• Fix recording time of schedules triggered by UDI events [see PR #300]

• Set bar width of bar charts based on sensor resolution [see PR #310]

• Fix bug in sensor data charts where data from multiple sources would be stacked, which incorrectly suggested
that the data should be summed, whereas the data represents alternative beliefs [see PR #228]

Infrastructure / Support

• Account-based authorization, incl. new decorators for endpoints [see PR #210]

• Central authorization policy which lets database models codify who can do what (permission-based) and relieve
API endpoints from this [see PR #234]

• Improve data specification for forecasting models using timely-beliefs data [see PR #154]

• Properly attribute Mapbox and OpenStreetMap [see PR #292]

• Allow plugins to register their custom config settings, so that FlexMeasures can check whether they are set up
correctly [see PR #230 and PR #237]

• Add sensor method to obtain just its latest state (excl. forecasts) [see PR #235]

• Migrate attributes of assets, markets and weather sensors to our new sensor model [see PR #254 and project 9]

• Migrate all time series data to our new sensor data model based on the timely beliefs lib [see PR #286 and project
9]

• Support the new asset model (which describes the organisational structure, rather than sensors and data) in UI and
API. Until the transition to our new data model is completed, the new API for assets is at /api/dev/generic_assets.
[see PR #251 and PR #290]

• Internal search methods return most recent beliefs by default, also for charts, which can make them load a lot
faster [see PR #307 and PR #312]

• Support unit conversion for posting sensor data [see PR #283 and PR #293]

• Improve the core device scheduler to support dealing with asymmetric efficiency losses of individual devices,
and with asymmetric up and down prices for deviating from previous commitments (such as a different feed-in
tariff) [see PR #291]

• Stop automatically triggering forecasting jobs when API calls save nothing new to the database, thereby saving
redundant computation [see PR #303]

28 Chapter 5. Developer support

https://www.github.com/FlexMeasures/flexmeasures/pull/321
https://www.github.com/FlexMeasures/flexmeasures/pull/300
https://www.github.com/FlexMeasures/flexmeasures/pull/310
https://www.github.com/FlexMeasures/flexmeasures/pull/228
https://www.github.com/FlexMeasures/flexmeasures/pull/210
https://www.github.com/FlexMeasures/flexmeasures/pull/234
https://www.github.com/FlexMeasures/flexmeasures/pull/154
https://www.github.com/FlexMeasures/flexmeasures/pull/292
https://www.github.com/FlexMeasures/flexmeasures/pull/230
https://www.github.com/FlexMeasures/flexmeasures/pull/237
https://www.github.com/FlexMeasures/flexmeasures/pull/235
https://www.github.com/FlexMeasures/flexmeasures/pull/254
https://www.github.com/FlexMeasures/flexmeasures/projects/9
https://github.com/SeitaBV/timely-beliefs
https://www.github.com/FlexMeasures/flexmeasures/pull/286
https://www.github.com/FlexMeasures/flexmeasures/projects/9
https://www.github.com/FlexMeasures/flexmeasures/projects/9
https://www.github.com/FlexMeasures/flexmeasures/pull/251
https://www.github.com/FlexMeasures/flexmeasures/pulls/290
https://www.github.com/FlexMeasures/flexmeasures/pull/307
https://www.github.com/FlexMeasures/flexmeasures/pull/312
https://www.github.com/FlexMeasures/flexmeasures/pull/283
https://www.github.com/FlexMeasures/flexmeasures/pull/293
https://www.github.com/FlexMeasures/flexmeasures/pull/291
https://www.github.com/FlexMeasures/flexmeasures/pull/303

FlexMeasures Documentation, Release 0.17

v0.7.1 | November 8, 2021

Bugfixes

• Fix device messages, which were mixing up older and more recent schedules [see PR #231]

v0.7.0 | October 26, 2021

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

Warning: The config setting FLEXMEASURES_PLUGIN_PATHS has been renamed to FLEXMEASURES_PLUGINS.
The old name still works but is deprecated.

New features

• Set a logo for the top left corner with the new FLEXMEASURES_MENU_LOGO_PATH setting [see PR #184]

• Add an extra style-sheet which applies to all pages with the new FLEXMEASURES_EXTRA_CSS_PATH set-
ting [see PR #185]

• Data sources can be further distinguished by what model (and version) they ran [see PR #215]

• Enable plugins to automate tests with app context [see PR #220]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

• Fix users resetting their own password [see PR #195]

• Fix scheduling for heterogeneous settings, for instance, involving sensors with different time zones and/or reso-
lutions [see PR #207]

• Fix sensors/<id>/chart view [see PR #223]

Infrastructure / Support

• FlexMeasures plugins can be Python packages now. We provide a cookie-cutter template for this approach. [see
PR #182]

• Set default timezone for new users using the FLEXMEASURES_TIMEZONE config setting [see PR #190]

• To avoid databases from filling up with irrelevant information, only beliefs data representing changed beliefs are
saved, and unchanged beliefs are dropped [see PR #194]

• Monitored CLI tasks can get better names for identification [see PR #193]

• Less custom logfile location, document logging for devs [see PR #196]

5.3. I want to build new features quickly, not spend days solving basic problems 29

https://www.github.com/FlexMeasures/flexmeasures/pull/231
https://www.github.com/FlexMeasures/flexmeasures/pull/184
https://www.github.com/FlexMeasures/flexmeasures/pull/185
https://www.github.com/FlexMeasures/flexmeasures/pull/215
https://www.github.com/FlexMeasures/flexmeasures/pull/220
https://flexmeasures.io/070-professional-plugins/
https://www.github.com/FlexMeasures/flexmeasures/pull/195
https://www.github.com/FlexMeasures/flexmeasures/pull/207
https://www.github.com/FlexMeasures/flexmeasures/pull/223
https://github.com/FlexMeasures/flexmeasures-plugin-template
https://www.github.com/FlexMeasures/flexmeasures/pull/182
https://www.github.com/FlexMeasures/flexmeasures/pull/190
https://www.github.com/FlexMeasures/flexmeasures/pull/194
https://www.github.com/FlexMeasures/flexmeasures/pull/193
https://www.github.com/FlexMeasures/flexmeasures/pull/196

FlexMeasures Documentation, Release 0.17

• Keep forecasting and scheduling jobs in the queues for only up to one day [see PR #198]

v0.6.1 | October 23, 2021

New features

Bugfixes

• Fix (dev) CLI command for adding a GenericAssetType [see PR #173]

• Fix (dev) CLI command for adding a Sensor [see PR #176]

• Fix missing conversion of data source names and ids to DataSource objects [see PR #178]

• Fix GetDeviceMessage to ensure chronological ordering of values [see PR #216]

Infrastructure / Support

v0.6.0 | September 3, 2021

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump). In case you are using experimental developer features and have previously
set up sensors, be sure to check out the upgrade instructions in PR #157. Furthermore, if you want to create custom
user/account relationships while upgrading (otherwise the upgrade script creates accounts based on email domains),
check out the upgrade instructions in PR #159. If you want to use both of these custom upgrade features, do the
upgrade in two steps. First, as described in PR 157 and upgrading up to revision b6d49ed7cceb, then as described
in PR 159 for the rest.

Warning: The config setting FLEXMEASURES_LISTED_VIEWS has been renamed to
FLEXMEASURES_MENU_LISTED_VIEWS.

Warning: Plugins now need to set their version on their module rather than on their blueprint. See the documen-
tation for writing plugins.

New features

• Multi-tenancy: Supporting multiple customers per FlexMeasures server, by introducing the Account concept.
Accounts have users and assets associated. [see PR #159 and PR #163]

• In the UI, the root view (“/”), the platform name and the visible menu items can now be more tightly controlled
(per account roles of the current user) [see also PR #163]

• Analytics view offers grouping of all assets by location [see PR #148]

• Add (experimental) endpoint to post sensor data for any sensor. Also supports our ongoing integration with data
internally represented using the timely beliefs lib [see PR #147]

Note: Read more on these features on the FlexMeasures blog.

30 Chapter 5. Developer support

https://www.github.com/FlexMeasures/flexmeasures/pull/198
https://www.github.com/FlexMeasures/flexmeasures/pull/173
https://www.github.com/FlexMeasures/flexmeasures/pull/176
https://www.github.com/FlexMeasures/flexmeasures/pull/178
https://www.github.com/FlexMeasures/flexmeasures/pull/216
https://github.com/FlexMeasures/flexmeasures/pull/157
https://github.com/FlexMeasures/flexmeasures/pull/159
https://flexmeasures.readthedocs.io/en/v0.6.0/dev/plugins.html
https://flexmeasures.readthedocs.io/en/v0.6.0/dev/plugins.html
https://www.github.com/FlexMeasures/flexmeasures/pull/159
https://www.github.com/FlexMeasures/flexmeasures/pull/163
https://www.github.com/FlexMeasures/flexmeasures/pull/163
https://www.github.com/FlexMeasures/flexmeasures/pull/148
https://github.com/SeitaBV/timely-beliefs
https://www.github.com/FlexMeasures/flexmeasures/pull/147
https://flexmeasures.io/v060-multi-tenancy-error-monitoring/

FlexMeasures Documentation, Release 0.17

Bugfixes

Infrastructure / Support

• Add possibility to send errors to Sentry [see PR #143]

• Add CLI task to monitor if tasks ran successfully and recently enough [see PR #146]

• Document how to use a custom favicon in plugins [see PR #152]

• Allow plugins to register multiple Flask blueprints [see PR #171]

• Continue experimental integration with timely beliefs lib: link multiple sensors to a single asset [see PR #157]

• The experimental parts of the data model can now be visualised, as well, via make show-data-model (add the
–dev option in Makefile) [also in PR #157]

v0.5.0 | June 7, 2021

Warning: If you retrieve weather forecasts through FlexMeasures: we had to switch to OpenWeatherMap, as Dark
Sky is closing. This requires an update to config variables — the new setting is called OPENWEATHERMAP_API_KEY.

New features

• Allow plugins to overwrite UI routes and customise the teaser on the login form [see PR #106]

• Allow plugins to customise the copyright notice and credits in the UI footer [see PR #123]

• Display loaded plugins in footer and support plugin versioning [see PR #139]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

• Fix last login date display in user list [see PR #133]

• Choose better forecasting horizons when weather data is posted [see PR #131]

Infrastructure / Support

• Add tutorials on how to add and read data from FlexMeasures via its API [see PR #130]

• For weather forecasts, switch from Dark Sky (closed from Aug 1, 2021) to OpenWeatherMap API [see PR #113]

• Entity address improvements: add new id-based fm1 scheme, better documentation and more validation support
of entity addresses [see PR #81]

• Re-use the database between automated tests, if possible. This shaves 2/3rd off of the time it takes for the
FlexMeasures test suite to run [see PR #115]

• Make assets use MW as their default unit and enforce that in CLI, as well (API already did) [see PR #108]

• Let CLI package and plugins use Marshmallow Field definitions [see PR #125]

5.3. I want to build new features quickly, not spend days solving basic problems 31

https://www.github.com/FlexMeasures/flexmeasures/pull/143
https://www.github.com/FlexMeasures/flexmeasures/pull/146
https://www.github.com/FlexMeasures/flexmeasures/pull/152
https://www.github.com/FlexMeasures/flexmeasures/pull/171
https://github.com/SeitaBV/timely-beliefs
https://github.com/FlexMeasures/flexmeasures/pull/157
https://github.com/FlexMeasures/flexmeasures/pull/157
https://www.github.com/FlexMeasures/flexmeasures/pull/106
https://www.github.com/FlexMeasures/flexmeasures/pull/123
https://www.github.com/FlexMeasures/flexmeasures/pull/139
https://flexmeasures.io/v050-openweathermap-plugin-customisation/
https://www.github.com/FlexMeasures/flexmeasures/pull/133
https://www.github.com/FlexMeasures/flexmeasures/pull/131
https://www.github.com/FlexMeasures/flexmeasures/pull/130
https://www.github.com/FlexMeasures/flexmeasures/pull/113
https://www.github.com/FlexMeasures/flexmeasures/pull/81
https://www.github.com/FlexMeasures/flexmeasures/pull/115
https://www.github.com/FlexMeasures/flexmeasures/pull/108
https://www.github.com/FlexMeasures/flexmeasures/pull/125

FlexMeasures Documentation, Release 0.17

• add time_utils.get_recent_clock_time_window() function [see PR #135]

v0.4.1 | May 7, 2021

Bugfixes

• Fix regression when editing assets in the UI [see PR #122]

• Fixed a regression that stopped asset, market and sensor selection from working [see PR #117]

• Prevent logging out user when clearing the session [see PR #112]

• Prevent user type data source to be created without setting a user [see PR #111]

v0.4.0 | April 29, 2021

Warning: Upgrading to this version requires running flexmeasures db upgrade (you can create a backup first
with flexmeasures db-ops dump).

New features

• Allow for views and CLI functions to come from plugins [see also PR #91]

• Configure the UI menu with FLEXMEASURES_LISTED_VIEWS [see PR #91]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

• Asset edit form displayed wrong error message. Also enabled the asset edit form to display the invalid user input
back to the user [see PR #93]

Infrastructure / Support

• Updated dependencies, including Flask-Security-Too [see PR #82]

• Improved documentation after user feedback [see PR #97]

• Begin experimental integration with timely beliefs lib: Sensor data as TimedBeliefs [see PR #79 and PR #99]

• Add sensors with CLI command currently meant for developers only [see PR #83]

• Add data (beliefs about sensor events) with CLI command currently meant for developers only [see PR #85 and
PR #103]

32 Chapter 5. Developer support

https://www.github.com/FlexMeasures/flexmeasures/pull/135
https://www.github.com/FlexMeasures/flexmeasures/pull/122
https://www.github.com/FlexMeasures/flexmeasures/pull/117
https://www.github.com/FlexMeasures/flexmeasures/pull/112
https://github.com/FlexMeasures/flexmeasures/pull/111
https://github.com/FlexMeasures/flexmeasures/pull/91
https://github.com/FlexMeasures/flexmeasures/pull/91
https://flexmeasures.io/v040-plugin-support/
https://www.github.com/FlexMeasures/flexmeasures/pull/93
https://www.github.com/FlexMeasures/flexmeasures/pull/82
https://www.github.com/FlexMeasures/flexmeasures/pull/97
https://github.com/SeitaBV/timely-beliefs
https://www.github.com/FlexMeasures/flexmeasures/pull/79
https://github.com/FlexMeasures/flexmeasures/pull/99
https://github.com/FlexMeasures/flexmeasures/pull/83
https://github.com/FlexMeasures/flexmeasures/pull/85
https://github.com/FlexMeasures/flexmeasures/pull/103

FlexMeasures Documentation, Release 0.17

v0.3.1 | April 9, 2021

Bugfixes

• PostMeterData endpoint was broken in API v2.0 [see PR #95]

v0.3.0 | April 2, 2021

New features

• FlexMeasures can be installed with pip and its CLI commands can be run with flexmeasures [see PR #54]

• Optionally setting recording time when posting data [see PR #41]

• Add assets and weather sensors with CLI commands [see PR #74]

Note: Read more on these features on the FlexMeasures blog.

Bugfixes

• Show screenshots in documentation and add some missing content [see PR #60]

• Documentation listed 2.0 API endpoints twice [see PR #59]

• Better xrange and title if only schedules are plotted [see PR #67]

• User page did not list number of assets correctly [see PR #64]

• Missing postPrognosis endpoint for >1.0 API blueprints [part of PR #41]

Infrastructure / Support

• Added concept pages to documentation [see PR #65]

• Dump and restore postgres database as CLI commands [see PR #68]

• Improved installation tutorial as part of [PR #54]

• Moved developer docs from Readmes into the main documentation [see PR #73]

• Ensured unique sensor ids for all sensors [see PR #70 and (fix) PR #77]

v0.2.3 | February 27, 2021

New features

• Power charts available via the API [see PR #39]

• User management via the API [see PR #25]

• Better visibility of asset icons on maps [see PR #30]

Note: Read more on these features on the FlexMeasures blog.

5.3. I want to build new features quickly, not spend days solving basic problems 33

https://www.github.com/FlexMeasures/flexmeasures/pull/95
https://www.github.com/FlexMeasures/flexmeasures/pull/54
https://www.github.com/FlexMeasures/flexmeasures/pull/41
https://github.com/FlexMeasures/flexmeasures/pull/74
https://flexmeasures.io/v030-pip-install-cli-commands-belief-time-api/
https://www.github.com/FlexMeasures/flexmeasures/pull/60
https://www.github.com/FlexMeasures/flexmeasures/pull/59
https://www.github.com/FlexMeasures/flexmeasures/pull/67
https://www.github.com/FlexMeasures/flexmeasures/pull/64
https://www.github.com/FlexMeasures/flexmeasures/pull/41
https://www.github.com/FlexMeasures/flexmeasures/pull/65
https://github.com/FlexMeasures/flexmeasures/pull/68
https://www.github.com/FlexMeasures/flexmeasures/pull/54
https://github.com/FlexMeasures/flexmeasures/pull/73
https://github.com/FlexMeasures/flexmeasures/pull/70
https://github.com/FlexMeasures/flexmeasures/pull/77
https://www.github.com/FlexMeasures/flexmeasures/pull/39
https://www.github.com/FlexMeasures/flexmeasures/pull/25
https://www.github.com/FlexMeasures/flexmeasures/pull/30
https://flexmeasures.io/v023-user-api-power-chart-api-better-icons/

FlexMeasures Documentation, Release 0.17

Bugfixes

• Fix maps on new asset page (update MapBox lib) [see PR #27]

• Some asset links were broken [see PR #20]

• Password reset link on account page was broken [see PR #23]

Infrastructure / Support

• CI via Github Actions [see PR #1]

• Integration with timely beliefs lib: Sensors [see PR #13]

• Apache 2.0 license [see PR #16]

• Load js & css from CDN [see PR #21]

• Start using marshmallow for input validation, also introducing HTTP status 422 (Unprocessable Entity)
in the API [see PR #25]

• Replace solarpy with pvlib (due to license conflict) [see PR #16]

• Stop supporting the creation of new users on asset creation (to reduce complexity) [see PR #36]

5.3.4 Benefits

Automation

FlexMeasures provides decision-making support so that the platform operator can schedule flexibility activations. It
forecasts the state of assets and proposes the best flexibility activations (shifting or curtailment) for future periods. This
is done with modern forecasting and scheduling intelligence.

Insight

Both platform operator and asset owners can monitor the assets - past and current states as well as forecasts are displayed
numerically in plots and tables. Activations of flexibility which were ordered in the past can be reviewed. Proposed
and scheduled flexibility activations show their expected effects (on imbalance as well as on financial returns).

Autonomy

The companies connected to FlexMeasures only give up as much control as necessary. The asset owners still control
the main behaviour of their assets. The owners allow the platform operator to schedule flexibility activations within
limits they can set.

Also the platform operator stays in charge: They can choose to approve all proposed flexibility activations manually or to
let FlexMeasures automatically schedule them. As FlexMeasures is open source, they can choose to host it themselves
or let a third party (like Seita BV) do that.

34 Chapter 5. Developer support

https://www.github.com/FlexMeasures/flexmeasures/pull/27
https://www.github.com/FlexMeasures/flexmeasures/pull/20
https://www.github.com/FlexMeasures/flexmeasures/pull/23
https://www.github.com/FlexMeasures/flexmeasures/pull/1
https://github.com/SeitaBV/timely-beliefs
https://www.github.com/FlexMeasures/flexmeasures/pull/13
https://www.github.com/FlexMeasures/flexmeasures/pull/16
https://www.github.com/FlexMeasures/flexmeasures/pull/21
https://www.github.com/FlexMeasures/flexmeasures/pull/25
https://www.github.com/FlexMeasures/flexmeasures/pull/16
https://www.github.com/FlexMeasures/flexmeasures/pull/36

FlexMeasures Documentation, Release 0.17

Profit sharing

The platform operator (as ESCo or Aggregator) and asset owners can share the profit made from flexibility activations
between them. FlexMeasures plans on providing basic accounting for this.

5.3.5 In-built smart functionality

The main purpose of the FlexMeasures platform is to serve as a basis to rapidly build energy flexibility services. Much
software architecture and wiring groundwork is already included for this purpose, like an API, support for plotting and
multi-tenancy and extensibility.

That said, several smart features come with FlexMeasures. Once the sensor structure and data is in place, they should
be usable without much coding.

Todo: We’ll write more tutorials on this.

Monitoring

The FlexMeasures platform continuously reads in meter data from your assets. To assist your maintenance, it can alert
you to situations which need your attention:

• Breaches of thresholds (protect devices)

• Data gaps & strange outliers (assure data quality)

• Idle processes / leaks (minimise waste)

Todo: These features are work in progress. Most of our customers already do this by themselves in a straightforward
manner.

Forecasting

The FlexMeasures platform continuously creates forecasts for the rest of day.

All relevant data should be forecasted:

• Energy assets

• Weather data

• Market prices

Scheduling

The FlexMeasures platform optimises schedules for your flexible assets. This is where energy flexibility is valorised!

Examples are:

• Charging schedules of batteries

• Heat pumps management

• Buffering of machinery

5.3. I want to build new features quickly, not spend days solving basic problems 35

https://github.com/FlexMeasures/flexmeasures/projects/12

FlexMeasures Documentation, Release 0.17

The goals can be maximal cost savings, maximal usage of solar power or stable energy supply for the most crucial
consumers.

5.3.6 Algorithms

• Forecasting

• Scheduling

– Storage devices

• Possible future work on algorithms

– More configurable forecasting

– Other optimisation goals for scheduling

– Scheduling of other flexible asset types

– Broker algorithm

– Trading algorithm

Forecasting

Forecasting algorithms are used by FlexMeasures to assess the likelihood of future consumption/production and prices.
Weather forecasting is included in the platform, but is usually not the result of an internal algorithm (weather forecast
services are being used by import scripts, e.g. with this tool).

FlexMeasures uses linear regression and falls back to naive forecasting of the last known value if errors happen. What
might be even more important than the type of algorithm is the features handed to the model — lagged values (e.g.
value of the same time yesterday) and regressors (e.g. wind speed prediction to forecast wind power production).

The performance of our algorithms is indicated by the mean absolute error (MAE) and the weighted absolute percentage
error (WAPE). Power profiles on an asset level often include zero values, such that the mean absolute percentage error
(MAPE), a common statistical measure of forecasting accuracy, is undefined. For such profiles, it is more useful to
report the WAPE, which is also known as the volume weighted MAPE. The MAE of a power profile gives an indication
of the size of the uncertainty in consumption and production. This allows the user to compare an asset’s predictability
to its flexibility, i.e. to the size of possible flexibility activations.

Example benchmarks per asset type are listed in the table below for various assets and forecasting horizons. FlexMea-
sures updates the benchmarks automatically for the data currently selected by the user. Amongst other factors, accuracy
is influenced by:

• The chosen metric (see below)

• Resolution of the forecast

• Horizon of the forecast

• Asset type

• Location / Weather conditions

• Level of aggregation

Accuracies in the table are reported as 1 minus WAPE, which can be interpreted as follows:

• 100% accuracy denotes that all values are correct.

36 Chapter 5. Developer support

https://github.com/SeitaBV/weatherforecaststorage

FlexMeasures Documentation, Release 0.17

• 50% accuracy denotes that, on average, the values are wrong by half of the reference value.

• 0% accuracy denotes that, on average, the values are wrong by exactly the reference value (i.e. zeros or twice
the reference value).

• negative accuracy denotes that, on average, the values are off-the-chart wrong (by more than the reference value
itself).

Asset Building Charge Points Solar Wind (offshore) Day-ahead market
Average power per asset 204 W 75 W 140 W 518 W
1 - WAPE (1 hour ahead) 93.4 % 87.6 % 95.2 % 81.6 % 88.0 %
1 - WAPE (6 hours ahead) 92.6 % 73.0 % 83.7 % 73.8 % 81.9 %
1 - WAPE (24 hours ahead) 92.4 % 65.2 % 46.1 % 60.1 % 81.4 %
1 - WAPE (48 hours ahead) 92.1 % 63.7 % 43.3 % 56.9 % 72.3 %

Defaults:

• The application uses an ordinary least squares auto-regressive model with external variables.

• Lagged outcome variables are selected based on the periodicity of the asset (e.g. daily and/or weekly).

• Common external variables are weather forecasts of temperature, wind speed and irradiation.

• Timeseries data with frequent zero values are transformed using a customised Box-Cox transformation.

• To avoid over-fitting, cross-validation is used.

• Before fitting, explicit annotations of expert knowledge to the model (like the definition of asset-specific season-
ality and special time events) are possible.

• The model is currently fit each day for each asset and for each horizon.

Improvements:

• Most assets have yearly seasonality (e.g. wind, solar) and therefore forecasts would benefit from >= 2 years of
history.

Scheduling

Given price conditions or other conditions of relevance, a scheduling algorithm is used by the Aggregator (in case of
explicit DR) or by the Energy Service Company (in case of implicit DR) to form a recommended schedule for the
Prosumer’s flexible assets.

Storage devices

So far, FlexMeasures provides algorithms for storage — for batteries (e.g. home batteries or EVs) and car charging
stations. We thus cover the asset types “battery”, “one-way_evse” and “two-way_evse”.

These algorithms schedule the storage assets based directly on the latest beliefs regarding market prices, within the
specified time window. They are mixed integer linear programs, which are configured in FlexMeasures and then handed
to a dedicated solver.

For all scheduling algorithms, a starting state of charge (SOC) as well as a set of SOC targets can be given. If no SOC
is available, we set the starting SOC to 0.

Also, per default we incentivise the algorithms to prefer scheduling charging now rather than later, and discharging
later rather than now. We achieve this by adding a tiny artificial price slope. We penalise the future with at most 1 per

5.3. I want to build new features quickly, not spend days solving basic problems 37

FlexMeasures Documentation, Release 0.17

thousand times the price spread. This behaviour can be turned off with the prefer_charging_sooner parameter set to
False.

Note: For the resulting consumption schedule, consumption is defined as positive values.

Possible future work on algorithms

Enabling more algorithmic expression in FlexMeasures is crucial. This are a few ideas for future work. Some of them
are excellent topics for Bachelor or Master theses. so get in touch if that is of interest to you.

More configurable forecasting

On the roadmap for FlexMeasures is to make features easier to configure, especially regressors. Furthermore, we plan
to add more types of forecasting algorithms, like random forest or even LSTM.

Other optimisation goals for scheduling

Next to market prices, optimisation goals like reduced CO2 emissions are sometimes required. There are multiple ways
to measure this, e.g. against the CO2 mix in the grid, or the use of fossil fuels.

Scheduling of other flexible asset types

Next to storage, there are other interesting flexible assets which can require specific implementations. For shifting,
there are heat pumps and other buffers. For curtailment, there are wind turbines and solar panels.

Note: See flexibility_types for more info on shifting and curtailment.

Broker algorithm

A broker algorithm is used by the Aggregator to analyse flexibility in the Supplier’s portfolio of assets, and to suggest
the most valuable flexibility activations to take for each time slot. The differences to single-asset scheduling are that
these activations are based on a helicopter perspective (the Aggregator optimises a portfolio, not a single asset) and
that the flexibility offers are presented to the Supplier in the form of an order book.

Trading algorithm

A trading algorithm is used to assist the Supplier with its decision-making across time slots, based on the order books
made by the broker (see above). The algorithm suggests which offers should be accepted next, and the Supplier may
automate its decision-making by letting the algorithm place orders on its behalf.

A default approach would be a myopic greedy strategy — order all flexibility opportunities with a positive expected
value in the first available timeslot, then those in the second available timeslot, and so on.

38 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

5.3.7 Security aspects

Data

There are two types of data on FlexMeasures servers - files (e.g. source code, images) and data in a database (e.g. user
data and time series for energy consumption/generation or weather).

• Files are stored on EBS volumes on Amazon Web Services. These are shared with other customers of Amazon,
but protected from them by Linux’s chroot system – each user can see only the files in their own section of the
disk.

• Database data is stored in PostgresDB instances which are not shared with other Amazon customers. They are
password-protected.

• Finally, The application communicates all data with HTTPS, the Hypertext Transfer Protocol encrypted by Trans-
port Layer Security. This is used even if the application is accessed via http://.

Authentication

Authentication is the system by which users tell the FlexMeasures platform that they are who they claim they are. This
involves a username/password combination (“credentials”) or an access token.

• No user passwords are stored in clear text on any server - the FlexMeasures platform only stores the hashed
passwords (encrypted with the bcrypt hashing algorithm). If an attacker steals these password hashes, they
cannot compute the passwords from them in a practical amount of time.

• Access tokens are used so that the sending of usernames and passwords is limited (even if they are encrypted
via https, see above) when dealing with the part of the FlexMeasures platform which sees the most traffic: the
API functionality. Tokens thus have use cases for some scenarios, where developers want to treat authentica-
tion information with a little less care than credentials should be treated with, e.g. sharing among computers.
However, they also expire fast, which is a common industry practice (by making them short-lived and requiring
refresh, FlexMeasures limits the time an attacker can abuse a stolen token). At the moment, the access tokens on
FlexMeasures platform expire after six hours. Access tokens are encrypted and validated with the sha256_crypt
algorithm, and the functionality to expire tokens is realised by storing the seconds since January 1, 2011 in the
token. The maximum age of access tokens in FlexMeasures can be altered by setting the env variable SECU-
RITY_TOKEN_MAX_AGE to the number of seconds after which tokens should expire.

Note: Authentication (and authorization, see below) affects the FlexMeasures API and UI. The CLI (command line
interface) can only be used if the user is already on the server and can execute flexmeasures commands, thus we can
safely assume they are admins.

Authorization

Authorization is the system by which the FlexMeasures platform decides whether an authenticated user can access data.
Data about users and assets. Or metering data, forecasts and schedules.

For instance, a user is authorized to update his or her personal data, like the surname. Other users should not be
authorized to do that. We can also authorize users to do something because they belong to a certain account. An
example for this is to read the meter data of the account’s assets. Any regular user should only be able to read data that
their account should be able to see.

Note: Each user belongs to exactly one account.

5.3. I want to build new features quickly, not spend days solving basic problems 39

https://passlib.readthedocs.io/en/stable/lib/passlib.hash.bcrypt.html
https://passlib.readthedocs.io/en/stable/lib/passlib.hash.sha256_crypt.html
https://passlib.readthedocs.io/en/stable/lib/passlib.hash.sha256_crypt.html
https://pythonhosted.org/itsdangerous/#itsdangerous.TimestampSigner
https://pythonhosted.org/itsdangerous/#itsdangerous.TimestampSigner

FlexMeasures Documentation, Release 0.17

In a nutshell, the way FlexMeasures implements authorization works as follows: The data models codify under which
conditions a user can have certain permissions to work with their data. Permissions allow distinct ways of access like
reading, writing or deleting. The API endpoints are where we know what needs to happen to what data, so there we
make sure that the user has the necessary permissions.

We already discussed certain conditions under which a user has access to data — being a certain user or belonging to
a specific account. Furthermore, authorization conditions can also be implemented via roles:

• Account roles are often used for authorization. We support several roles which are mentioned in the USEF
framework but more roles are possible (e.g. defined by custom-made services, see below). For example, a user
might be authorized to write sensor data if they belong to an account with the “MDC” account role (“MDC”
being short for meter data company).

• User roles give a user personal authorizations. For instance, we have a few admins who can perform all
actions, and admin-readers who can read everything. Other roles have only an effect within the user’s account,
e.g. there could be an “HR” role which allows to edit user data like surnames within the account.

• Roles cannot be edited via the UI at the moment. They are decided when a user or account is created in the CLI
(for adding roles later, we use the database for now). Editing roles in UI and CLI is future work.

Note: Custom energy flexibility services developed on top of FlexMeasures also need to implement authorization.
More on this in Custom authorization. Here is an example for a custom authorization concept: services can use account
roles to achieve their custom authorization. E.g. if several services run on one FlexMeasures server, each service could
define a “MyService-subscriber” account role, to make sure that only users of such accounts can use the endpoints.

5.3.8 Device scheduler

Introduction

This generic device scheduler is able to handle an EMS with multiple devices, with various types of constraints on the
EMS level and on the device level, and with multiple market commitments on the EMS level.

A typical example is a house with many devices. The commitments are assumed to be with regard to the flow of energy
to the device (positive for consumption, negative for production). In practice, this generic scheduler is used in the
StorageScheduler to schedule a storage device.

The solver minimises the costs of deviating from the commitments.

Notation

Indexes

Symbol Variable in the Code Description
𝑐 c Commitments, for example, day-ahead or intra-day market commitments.
𝑑 d Devices, for example, a battery or a load.
𝑗 j 0-indexed time dimension.

Note: The time index 𝑗 has two interpretations: a time period or an instantaneous moment at the end of time period
𝑗. For example, 𝑗 in flow constraints correspond to time periods, whereas 𝑗 used in a stock constraint refers to the end
of time period 𝑗.

40 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Parameters

Symbol Variable in the Code Description
𝑃𝑟𝑖𝑐𝑒𝑢𝑝(𝑐, 𝑗) up_price Price of incurring an upwards deviations in commitment 𝑐 during

time period 𝑗.
𝑃𝑟𝑖𝑐𝑒𝑑𝑜𝑤𝑛(𝑐, 𝑗) down_price Price of incurring a downwards deviations in commitment 𝑐 dur-

ing time period 𝑗.
𝜂𝑢𝑝(𝑑, 𝑗) de-

vice_derivative_up_efficiency
Upwards conversion efficiency.

𝜂𝑑𝑜𝑤𝑛(𝑑, 𝑗) de-
vice_derivative_down_efficiency

Downwards conversion efficiency.

𝑆𝑡𝑜𝑐𝑘𝑚𝑖𝑛(𝑑, 𝑗) device_min Minimum quantity for the stock of device 𝑑 at the end of time
period 𝑗.

𝑆𝑡𝑜𝑐𝑘𝑚𝑎𝑥(𝑑, 𝑗) device_max Maximum quantity for the stock of device 𝑑 at the end of time
period 𝑗.

𝜖(𝑑, 𝑗) efficiencies Stock energy losses.
𝑃𝑚𝑎𝑥(𝑑, 𝑗) device_derivative_max Maximum flow of device 𝑑 during time period 𝑗.
𝑃𝑚𝑖𝑛(𝑑, 𝑗) device_derivative_min Minimum flow of device 𝑑 during time period 𝑗.
𝑃 𝑒𝑚𝑠
𝑚𝑖𝑛 (𝑗) ems_derivative_min Minimum flow of the EMS during time period 𝑗.

𝑃 𝑒𝑚𝑠
𝑚𝑎𝑥(𝑗) ems_derivative_max Maximum flow of the EMS during time period 𝑗.

𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡(𝑐, 𝑗)commitment_quantity Commitment c (at EMS level) over time step 𝑗.
𝑀 M Large constant number, upper bound of 𝑃𝑜𝑤𝑒𝑟𝑢𝑝(𝑑, 𝑗) and

|𝑃𝑜𝑤𝑒𝑟𝑑𝑜𝑤𝑛(𝑑, 𝑗)|

Variables

Symbol Variable in the Code Description
∆𝑢𝑝(𝑐, 𝑗) commit-

ment_upwards_deviation
Upwards deviation from the power commitment 𝑐 of the EMS during
time period 𝑗.

∆𝑑𝑜𝑤𝑛(𝑐, 𝑗) commit-
ment_downwards_deviation

Downwards deviation from the power commitment 𝑐 of the EMS dur-
ing time period 𝑗.

∆𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗)n/a Change of stock of device 𝑑 at the end of time period 𝑗.
𝑃𝑢𝑝(𝑑, 𝑗) device_power_up Upwards power of device 𝑑 during time period 𝑗.
𝑃𝑑𝑜𝑤𝑛(𝑑, 𝑗) device_power_down Downwards power of device 𝑑 during time period 𝑗.
𝑃 𝑒𝑚𝑠(𝑗) ems_power Aggregated power of all the devices during time period 𝑗.
𝜎(𝑑, 𝑗) device_power_sign Upwards power activation if 𝜎(𝑑, 𝑗) = 1, downwards power activation

otherwise.

Cost function

The cost function quantifies the total cost of upwards and downwards deviations from the different commitments.

min[
∑︁
𝑐,𝑗

∆𝑢𝑝(𝑐, 𝑗) · 𝑃𝑟𝑖𝑐𝑒𝑢𝑝(𝑐, 𝑗) + ∆𝑑𝑜𝑤𝑛(𝑐, 𝑗) · 𝑃𝑟𝑖𝑐𝑒𝑑𝑜𝑤𝑛(𝑐, 𝑗)] (5.1)

5.3. I want to build new features quickly, not spend days solving basic problems 41

FlexMeasures Documentation, Release 0.17

State dynamics

To simplify the description of the model, the auxiliary variable ∆𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗) is introduced in the documentation. It
represents the change of 𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗), taking into account conversion efficiencies but not considering the storage losses.

∆𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗) =
𝑃𝑑𝑜𝑤𝑛(𝑑, 𝑗)

𝜂𝑑𝑜𝑤𝑛(𝑑, 𝑗)
+ 𝑃𝑢𝑝(𝑑, 𝑗) · 𝜂𝑢𝑝(𝑑, 𝑗) (5.2)

𝑆𝑡𝑜𝑐𝑘𝑚𝑖𝑛(𝑑, 𝑗) ≤ 𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗) − 𝑆𝑡𝑜𝑐𝑘(𝑑,−1) ≤ 𝑆𝑡𝑜𝑐𝑘𝑚𝑎𝑥(𝑑, 𝑗) (5.3)

Perfect efficiency

𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗) = 𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗 − 1) + ∆𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗) (5.4)

Left efficiency

First apply the stock change, then apply the losses (i.e. the stock changes on the left side of the time interval in which
the losses apply)

𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗) = (𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗 − 1) + ∆𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗)) · 𝜖(𝑑, 𝑗) (5.5)

Right efficiency

First apply the losses, then apply the stock change (i.e. the stock changes on the right side of the time interval in which
the losses apply)

𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗) = 𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗 − 1) · 𝜖(𝑑, 𝑗) + ∆𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗) (5.6)

Linear efficiency

Assume the change happens at a constant rate, leading to a linear stock change, and exponential decay, within the
current interval

𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗) = 𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗 − 1) · 𝜖(𝑑, 𝑗) + ∆𝑆𝑡𝑜𝑐𝑘(𝑑, 𝑗) · 𝜖(𝑑, 𝑗) − 1

𝑙𝑜𝑔(𝜖(𝑑, 𝑗))
(5.7)

Constraints

Device bounds

𝑃𝑚𝑖𝑛(𝑑, 𝑗) ≤ 𝑃𝑢𝑝(𝑑, 𝑗) + 𝑃𝑑𝑜𝑤𝑛(𝑑, 𝑗) ≤ 𝑃𝑚𝑎𝑥(𝑑, 𝑗) (5.8)

𝑚𝑖𝑛(𝑃𝑚𝑖𝑛(𝑑, 𝑗), 0) ≤ 𝑃𝑑𝑜𝑤𝑛(𝑑, 𝑗) ≤ 0 (5.9)

0 ≤ 𝑃𝑢𝑝(𝑑, 𝑗) ≤ 𝑚𝑎𝑥(𝑃𝑚𝑎𝑥(𝑑, 𝑗), 0) (5.10)

42 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Upwards/Downwards activation selection

Avoid simultaneous upwards and downwards activation during the same time period.

𝑃𝑢𝑝(𝑑, 𝑗) ≤ 𝑀 · 𝜎(𝑑, 𝑗) (5.11)

−𝑃𝑑𝑜𝑤𝑛(𝑑, 𝑗) ≤ 𝑀 · (1 − 𝜎(𝑑, 𝑗)) (5.12)

Grid constraints

𝑃 𝑒𝑚𝑠(𝑑, 𝑗) = 𝑃𝑢𝑝(𝑑, 𝑗) + 𝑃𝑑𝑜𝑤𝑛(𝑑, 𝑗) (5.13)

𝑃 𝑒𝑚𝑠
𝑚𝑖𝑛 (𝑗) ≤

∑︁
𝑑

𝑃 𝑒𝑚𝑠(𝑑, 𝑗) ≤ 𝑃 𝑒𝑚𝑠
𝑚𝑎𝑥(𝑗) (5.14)

Power coupling constraints

∑︁
𝑑

𝑃 𝑒𝑚𝑠(𝑑, 𝑗) =
∑︁
𝑐

𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡(𝑐, 𝑗) + ∆𝑢𝑝(𝑐, 𝑗) + ∆𝑑𝑜𝑤𝑛(𝑐, 𝑗) (5.15)

5.3.9 Installation & First steps

Preparing FlexMeasures for running

This section walks you through installing FlexMeasures on your own PC and running it continuously. We’ll cover
getting started by making a secret key, connecting a database and creating one user & one asset.

Note: Maybe these starting points are also interesting for you:

• For an example to see FlexMeasures in action with the least effort, see Toy example: Scheduling a battery, from
scratch.

• You can run FlexMeasures via Docker, see docker and Running a complete stack with docker-compose.

• Are you not hosting FlexMeasures, but want to learn how to interact with it? Start with Posting data.

Install FlexMeasures

Install dependencies and the flexmeasures platform itself:

$ pip install flexmeasures

Note: With newer Python versions and Windows, some smaller dependencies (e.g. tables or rq-win) might cause
issues as support is often slower. You might overcome this with a little research, by installing from wheels or from the
repo, respectively.

5.3. I want to build new features quickly, not spend days solving basic problems 43

http://www.pytables.org/usersguide/installation.html#prerequisitesbininst
https://github.com/michaelbrooks/rq-win#installation-and-use
https://github.com/michaelbrooks/rq-win#installation-and-use

FlexMeasures Documentation, Release 0.17

Make a secret key for sessions and password salts

Set a secret key which is used to sign user sessions and re-salt their passwords. The quickest way is with an environment
variable, like this:

$ export SECRET_KEY=something-secret

(on Windows, use set instead of export)

This suffices for a quick start.

If you want to consistently use FlexMeasures, we recommend you add this setting to your config file at ~/.
flexmeasures.cfg and use a truly random string. Here is a Pythonic way to generate a good secret key:

$ python -c "import secrets; print(secrets.token_urlsafe())"

Configure environment

Set an environment variable to indicate in which environment you are operating (one out of develop-
ment|testing|staging|production). We’ll go with development here:

$ export FLASK_ENV=development

(on Windows, use set instead of export)

or:

$ echo "FLASK_ENV=development" >> .env

Note: The default is production, which will not work well on localhost due to SSL issues.

Preparing the time series database

• Make sure you have a Postgres (Version 9+) database for FlexMeasures to use. See Postgres database (section
“Getting ready to use”) for instructions on this.

• Tell flexmeasures about it:

$ export SQLALCHEMY_DATABASE_URI="postgresql://<user>:<password>@<host-
→˓address>[:<port>]/<db>"

If you install this on localhost, host-address is 127.0.0.1 and the port can be left out. (on Windows, use set
instead of export)

• Create the Postgres DB structure for FlexMeasures:

$ flexmeasures db upgrade

This suffices for a quick start.

Note: For a more permanent configuration, you can create your FlexMeasures configuration file at ~/.
flexmeasures.cfg and add this:

44 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

SQLALCHEMY_DATABASE_URI = "postgresql://<user>:<password>@<host-address>[:<port>]/<db>"

Adding data

Add an account & user

FlexMeasures is a tenant-based platform — multiple clients can enjoy its services on one server. Let’s create a tenant
account first:

$ flexmeasures add account --name "Some company"

This command will tell us the ID of this account. Let’s assume it was 2.

FlexMeasures is also a web-based platform, so we need to create a user to authenticate:

$ flexmeasures add user --username <your-username> --email <your-email-address> --
→˓account-id 2 --roles=admin

• This will ask you to set a password for the user.

• Giving the first user the admin role is probably what you want.

Add structure

Populate the database with some standard asset types, user roles etc.:

$ flexmeasures add initial-structure

Add your first asset

There are three ways to add assets:

First, you can use the flexmeasures CLI Commands:

$ flexmeasures add asset --name "my basement battery pack" --asset-type-id 3 --latitude␣
→˓65 --longitude 123.76 --account-id 2

For the asset type ID, I consult flexmeasures show asset-types.

For the account ID, I looked at the output of flexmeasures add account (the command we issued above) — I could
also have consulted flexmeasures show accounts.

The second way to add an asset is the UI — head over to https://localhost:5000/assets (after you started
FlexMeasures, see step “Run FlexMeasures” further down) and add a new asset there in a web form.

Finally, you can also use the POST /api/v2_0/assets endpoint in the FlexMeasures API to create an asset.

5.3. I want to build new features quickly, not spend days solving basic problems 45

api/v2_0.html#post--api-v2_0-assets

FlexMeasures Documentation, Release 0.17

Add your first sensor

Usually, we are here because we want to measure something with respect to our assets. Each assets can have sensors
for that, so let’s add a power sensor to our new battery asset, using the flexmeasures CLI Commands:

$ flexmeasures add sensor --name power --unit MW --event-resolution 5 --timezone Europe/
→˓Amsterdam --asset-id 1 --attributes '{"capacity_in_mw": 7}'

The asset ID I got from the last CLI command, or I could consult flexmeasures show account --account-id
<my-account-id>.

Add time series data (beliefs)

There are three ways to add data:

First, you can load in data from a file (CSV or Excel) via the flexmeasures CLI Commands:

$ flexmeasures add beliefs --file my-data.csv --skiprows 2 --delimiter ";" --source␣
→˓OurLegacyDatabase --sensor-id 1

This assumes you have a file my-data.csv with measurements, which was exported from some legacy database, and that
the data is about our sensor with ID 1. This command has many options, so do use its --help function.

Second, you can use the POST /api/v3_0/sensors/data endpoint in the FlexMeasures API to send meter data.

Finally, you can tell FlexMeasures to create forecasts for your meter data with the flexmeasures add forecasts
command, here is an example:

$ flexmeasures add forecasts --from-date 2020-03-08 --to-date 2020-04-08 --asset-type␣
→˓Asset --asset my-solar-panel

Note: You can also use the API to send forecast data.

Running FlexMeasures as a web service

It’s finally time to start running FlexMeasures:

$ flexmeasures run

(This might print some warnings, see the next section where we go into more detail)

Note: In a production context, you shouldn’t run a script - hand the app object to a WSGI process, as your platform of
choice describes. Often, that requires a WSGI script. We provide an example WSGI script in Continuous integration.
You can also take a look at FlexMeasures’ Dockerfile to get an idea how to run FlexMeasures with gunicorn.

You can visit http://localhost:5000 now to see if the app’s UI works. When you see the dashboard, the map will
not work. For that, you’ll need to get your MAPBOX_ACCESS_TOKEN and add it to your config file.

46 Chapter 5. Developer support

api/v3_0.html#post--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.17

Other settings, for full functionality

Set mail settings

For FlexMeasures to be able to send email to users (e.g. for resetting passwords), you need an email account which can
do that (e.g. GMail). Set the MAIL_* settings in your configuration, see Mail.

Install an LP solver

For planning balancing actions, the FlexMeasures platform uses a linear program solver. Currently that is the CBC or
HiGHS solvers. See FLEXMEASURES_LP_SOLVER if you want to change to a different solver.

CBC

Installing CBC can be done on Unix via:

$ apt-get install coinor-cbc

(also available in different popular package managers).

We provide a script for installing from source (without requiring sudo rights) in the ci folder.

More information (e.g. for installing on Windows) on the CBC website.

HiGHS

HiGHS is a modern LP solver that aims at solving large problems. It can be installed using pip:

$ pip install highspy

More information (e.g. for installing on Windows) on the HiGHS website.

Install and configure Redis

To let FlexMeasures queue forecasting and scheduling jobs, install a Redis server (or rent one) and configure access to
it within FlexMeasures’ config file (see above). You can find the necessary settings in Redis.

Then, start workers in a console (or some other method to keep a long-running process going):

$ flexmeasures jobs run-worker --queue forecasting
$ flexmeasures jobs run-worker --queue scheduling

5.3. I want to build new features quickly, not spend days solving basic problems 47

https://projects.coin-or.org/Cbc
https://highs.dev/
https://redis.io/

FlexMeasures Documentation, Release 0.17

Where to go from here?

If your data structure is good, you should think about (continually) adding measurement data. This tutorial mentioned
how to add data, but Posting data goes deeper with examples and terms & definitions.

Then, you probably want to use FlexMeasures to generate forecasts and schedules! For this, read further in Forecasting
& scheduling.

5.3.10 Toy example: Introduction and setup

This page is a starting point of a series of tutorials that will help you get practical experience with FlexMeasures.

Let’s walk through an example from scratch! We’ll . . .

• install FlexMeasures

• create an account

• load hourly prices

What do you need? Your own computer, with one of two situations: either you have Docker or your computer supports
Python 3.8+, pip and PostgresDB. The former might be easier, see the installation step below. But you choose.

Below are the flexmeasures CLI commands we’ll run, and which we’ll explain step by step. There are some other
crucial steps for installation and setup, so this becomes a complete example from scratch, but this is the meat:

setup an account with a user and an energy market (ID 1)
$ flexmeasures add toy-account
load prices to optimise the schedule against
$ flexmeasures add beliefs --sensor-id 1 --source toy-user prices-tomorrow.csv --
→˓timezone Europe/Amsterdam

Okay, let’s get started!

Note: You can copy the commands by hovering on the top right corner of code examples. You’ll copy only the
commands, not the output!

Install Flexmeasures and the database

Docker

If docker is running on your system, you’re good to go. Otherwise, see here.

We start by installing the FlexMeasures platform, and then use Docker to run a postgres database and tell FlexMeasures
to create all tables.

$ docker pull lfenergy/flexmeasures:latest
$ docker pull postgres
$ docker network create flexmeasures_network
$ docker run --rm --name flexmeasures-tutorial-db -e POSTGRES_PASSWORD=fm-db-passwd -e␣
→˓POSTGRES_DB=flexmeasures-db -d --network=flexmeasures_network postgres:latest
$ docker run --rm --name flexmeasures-tutorial-fm --env SQLALCHEMY_DATABASE_
→˓URI=postgresql://postgres:fm-db-passwd@flexmeasures-tutorial-db:5432/flexmeasures-db --
→˓env SECRET_KEY=notsecret --env FLASK_ENV=development --env LOGGING_LEVEL=INFO -d --

(continues on next page)

48 Chapter 5. Developer support

https://www.docker.com/
https://www.docker.com/
https://docs.docker.com/get-docker/

FlexMeasures Documentation, Release 0.17

(continued from previous page)

→˓network=flexmeasures_network -p 5000:5000 lfenergy/flexmeasures
$ docker exec flexmeasures-tutorial-fm bash -c "flexmeasures db upgrade"

Note: A tip on Linux/macOS — You might have the docker command, but need sudo rights to execute it. alias
docker='sudo docker' enables you to still run this tutorial.

Now - what’s very important to remember is this: The rest of this tutorial will happen inside the
flexmeasures-tutorial-fm container! This is how you hop inside the container and run a terminal there:

$ docker exec -it flexmeasures-tutorial-fm bash

To leave the container session, hold CTRL-D or type “exit”.

To stop the containers, you can type

$ docker stop flexmeasures-tutorial-db
$ docker stop flexmeasures-tutorial-fm

To start the containers again, do this (note that re-running the docker run commands above deletes and re-creates all
data!):

$ docker start flexmeasures-tutorial-db
$ docker start flexmeasures-tutorial-fm

Note: For newer versions of MacOS, port 5000 is in use by default by Control Center. You can turn this off by going
to System Preferences > Sharing and untick the “Airplay Receiver” box. If you don’t want to do this for some reason,
you can change the host port in the docker run command to some other port, for example 5001. To do this, change -p
5000:5000 in the command to -p 5001:5000. If you do this, remember that you will have to go to localhost:5001
in your browser when you want to inspect the FlexMeasures UI.

Note: Got docker-compose? You could run this tutorial with 5 containers :) — Go to Seeing it work: Running the toy
tutorial.

On your PC

This example is from scratch, so we’ll assume you have nothing prepared but a (Unix) computer with Python (3.8+)
and two well-known developer tools, pip and postgres.

We’ll create a database for FlexMeasures:

$ sudo -i -u postgres
$ createdb -U postgres flexmeasures-db
$ createuser --pwprompt -U postgres flexmeasures-user # enter your password, we'll␣
→˓use "fm-db-passwd"
$ exit

Then, we can install FlexMeasures itself, set some variables and tell FlexMeasures to create all tables:

$ pip install flexmeasures
$ export SQLALCHEMY_DATABASE_URI="postgresql://flexmeasures-user:fm-db-

(continues on next page)

5.3. I want to build new features quickly, not spend days solving basic problems 49

https://pip.pypa.io
https://www.postgresql.org/download/

FlexMeasures Documentation, Release 0.17

(continued from previous page)

→˓passwd@localhost:5432/flexmeasures-db" SECRET_KEY=notsecret LOGGING_LEVEL="INFO"␣
→˓DEBUG=0
$ export FLASK_ENV="development"
$ flexmeasures db upgrade

Note: When installing with pip, on some platforms problems might come up (e.g. macOS, Windows). One reason
is that FlexMeasures requires some libraries with lots of C code support (e.g. Numpy). One way out is to use Docker,
which uses a prepared Linux image, so it’ll definitely work.

In case you want to re-run the tutorial, then it’s recommended to delete the old database and create a fresh one. Run
the following command to create a clean database with a new user, where it is optional. If you don’t provide the user,
then the default postgres user will be used to create the database.

$ make clean-db db_name=flexmeasures-db [db_user=flexmeasures]

Add some structural data

The data we need for our example is both structural (e.g. a company account, a user, an asset) and numeric (we want
market prices to optimize against).

Let’s create the structural data first.

FlexMeasures offers a command to create a toy account with a battery:

$ flexmeasures add toy-account --kind battery

Generic asset type `solar` created successfully.
Generic asset type `wind` created successfully.
Generic asset type `one-way_evse` created successfully.
Generic asset type `two-way_evse` created successfully.
Generic asset type `battery` created successfully.
Generic asset type `building` created successfully.
Generic asset type `process` created successfully.
Creating account Toy Account ...
Toy account Toy Account with user toy-user@flexmeasures.io created successfully. You␣
→˓might want to run `flexmeasures show account --id 1`
Adding transmission zone type ...
Adding NL transmission zone ...
Created day-ahead prices
The sensor recording day-ahead prices is day-ahead prices (ID: 1).
Created <GenericAsset None: 'toy-battery' (battery)>
Created discharging
Created <GenericAsset None: 'toy-solar' (solar)>
Created production
The sensor recording battery discharging is discharging (ID: 2).
The sensor recording solar forecasts is production (ID: 3).

And with that, we’re done with the structural data for this tutorial!

If you want, you can inspect what you created:

50 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

$ flexmeasures show account --id 1

===========================
Account Toy Account (ID: 1)
===========================

Account has no roles.

All users:

ID Name Email Last Login Last Seen Roles
---- -------- ------------------------ ------------ ----------- -------------
1 toy-user toy-user@flexmeasures.io None None account-admin

All assets:

ID Name Type Location
---- ----------- ------- -----------------
2 toy-battery battery (52.374, 4.88969)
3 toy-solar solar (52.374, 4.88969)

$ flexmeasures show asset --id 2

=========================
Asset toy-battery (ID: 2)
=========================

Type Location Attributes
------- ----------------- ----------------------------
battery (52.374, 4.88969) capacity_in_mw: 0.5

min_soc_in_mwh: 0.05
max_soc_in_mwh: 0.45
sensors_to_show: [1, [3, 2]]

All sensors in asset:

ID Name Unit Resolution Timezone Attributes
---- ----------- ------ ------------ ---------------- ------------
2 discharging MW 15 minutes Europe/Amsterdam

Yes, that is quite a large battery :)

Note: Obviously, you can use the flexmeasures command to create your own, custom account and assets. See CLI
Commands. And to create, edit or read asset data via the API, see Version 3.0.

We can also look at the battery asset in the UI of FlexMeasures (in Docker, the FlexMeasures web server al-
ready runs, on your PC you can start it with flexmeasures run). Visit http://localhost:5000/ (username is “toy-
user@flexmeasures.io”, password is “toy-password”):

5.3. I want to build new features quickly, not spend days solving basic problems 51

http://localhost:5000/
mailto:toy-user@flexmeasures.io
mailto:toy-user@flexmeasures.io

FlexMeasures Documentation, Release 0.17

Note: You won’t see the map tiles, as we have not configured the MAPBOX_ACCESS_TOKEN . If you have one, you
can configure it via flexmeasures.cfg (for Docker, see Configuration and customization).

Add some price data

Now to add price data. First, we’ll create the CSV file with prices (EUR/MWh, see the setup for sensor 1 above) for
tomorrow.

$ TOMORROW=$(date --date="next day" '+%Y-%m-%d')
$ echo "Hour,Price
$ ${TOMORROW}T00:00:00,10
$ ${TOMORROW}T01:00:00,11
$ ${TOMORROW}T02:00:00,12
$ ${TOMORROW}T03:00:00,15
$ ${TOMORROW}T04:00:00,18
$ ${TOMORROW}T05:00:00,17
$ ${TOMORROW}T06:00:00,10.5
$ ${TOMORROW}T07:00:00,9
$ ${TOMORROW}T08:00:00,9.5
$ ${TOMORROW}T09:00:00,9
$ ${TOMORROW}T10:00:00,8.5
$ ${TOMORROW}T11:00:00,10
$ ${TOMORROW}T12:00:00,8
$ ${TOMORROW}T13:00:00,5
$ ${TOMORROW}T14:00:00,4
$ ${TOMORROW}T15:00:00,4

(continues on next page)

52 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

(continued from previous page)

$ ${TOMORROW}T16:00:00,5.5
$ ${TOMORROW}T17:00:00,8
$ ${TOMORROW}T18:00:00,12
$ ${TOMORROW}T19:00:00,13
$ ${TOMORROW}T20:00:00,14
$ ${TOMORROW}T21:00:00,12.5
$ ${TOMORROW}T22:00:00,10
$ ${TOMORROW}T23:00:00,7" > prices-tomorrow.csv

This is time series data, in FlexMeasures we call “beliefs”. Beliefs can also be sent to FlexMeasures via API or imported
from open data hubs like ENTSO-E or OpenWeatherMap. However, in this tutorial we’ll show how you can read data
in from a CSV file. Sometimes that’s just what you need :)

$ flexmeasures add beliefs --sensor-id 1 --source toy-user prices-tomorrow.csv --
→˓timezone Europe/Amsterdam
Successfully created beliefs

In FlexMeasures, all beliefs have a data source. Here, we use the username of the user we created earlier. We could
also pass a user ID, or the name of a new data source we want to use for CLI scripts.

Note: Attention: We created and imported prices where the times have no time zone component! That happens a
lot. FlexMeasures can localize them for you to a given timezone. Here, we localized the data to the timezone of the
price sensor - Europe/Amsterdam - so the start time for the first price is 2022-03-03 00:00:00+01:00 (midnight in
Amsterdam).

Let’s look at the price data we just loaded:

$ flexmeasures show beliefs --sensor-id 1 --start ${TOMORROW}T00:00:00+01:00 --duration␣
→˓PT24H

Beliefs for Sensor 'day-ahead prices' (ID 1).
Data spans a day and starts at 2022-03-03 00:00:00+01:00.
The time resolution (x-axis) is an hour.

15EUR/MWh

10EUR/MWh

5EUR/MWh

(continues on next page)

5.3. I want to build new features quickly, not spend days solving basic problems 53

https://github.com/SeitaBV/flexmeasures-entsoe
https://github.com/SeitaBV/flexmeasures-openweathermap

FlexMeasures Documentation, Release 0.17

(continued from previous page)

5 10 15 20
day-ahead prices

Again, we can also view these prices in the FlexMeasures UI:

Note: Technically, these prices for tomorrow may be forecasts (depending on whether you are running through this
tutorial before or after the day-ahead market’s gate closure). You can also use FlexMeasures to compute forecasts
yourself. See Forecasting & scheduling.

5.3.11 Toy example: Scheduling a battery, from scratch

Let’s walk through an example from scratch! We’ll optimize a 12h-schedule for a battery that is half full.

Okay, let’s get started!

Note: You can copy the commands by hovering on the top right corner of code examples. You’ll copy only the
commands, not the output!

Note: If you haven’t run through Toy example: Introduction and setup yet, do that first. There, we added power prices
for a 24h window.

54 Chapter 5. Developer support

http://localhost:5000/sensors/1/

FlexMeasures Documentation, Release 0.17

Make a schedule

After going through the setup, we can finally create the schedule, which is the main benefit of FlexMeasures (smart
real-time control).

We’ll ask FlexMeasures for a schedule for our (dis)charging sensor (ID 2). We also need to specify what to optimize
against. Here we pass the Id of our market price sensor (ID 1). To keep it short, we’ll only ask for a 12-hour window
starting at 7am. Finally, the scheduler should know what the state of charge of the battery is when the schedule starts
(50%) and what its roundtrip efficiency is (90%).

$ flexmeasures add schedule for-storage --sensor-id 2 --consumption-price-sensor 1 \
--start ${TOMORROW}T07:00+01:00 --duration PT12H \
--soc-at-start 50% --roundtrip-efficiency 90%

New schedule is stored.

Great. Let’s see what we made:

$ flexmeasures show beliefs --sensor-id 2 --start ${TOMORROW}T07:00:00+01:00 --duration␣
→˓PT12H
Beliefs for Sensor 'discharging' (ID 2).
Data spans 12 hours and starts at 2022-03-04 07:00:00+01:00.
The time resolution (x-axis) is 15 minutes.

0.5MW

0.0MW

-0.5MW

10 20 30 40
discharging

Here, negative values denote output from the grid, so that’s when the battery gets charged.

We can also look at the charging schedule in the FlexMeasures UI (reachable via the asset page for the battery):

5.3. I want to build new features quickly, not spend days solving basic problems 55

http://localhost:5000/sensors/2/

FlexMeasures Documentation, Release 0.17

Recall that we only asked for a 12 hour schedule here. We started our schedule after the high price peak (at 4am) and
it also had to end before the second price peak fully realized (at 8pm). Our scheduler didn’t have many opportunities
to optimize, but it found some. For instance, it does buy at the lowest price (at 2pm) and sells it off at the highest price
within the given 12 hours (at 6pm).

The asset page for the battery shows both prices and the schedule.

56 Chapter 5. Developer support

http://localhost:5000/assets/2/

FlexMeasures Documentation, Release 0.17

Note: The flexmeasures add schedule for-storage command also accepts state-of-charge targets, so the
schedule can be more sophisticated. But that is not the point of this tutorial. See flexmeasures add schedule
for-storage --help.

This tutorial showed the fastest way to a schedule. In Toy example II: Adding solar production and limited grid con-
nection, we’ll go further into settings with more realistic ingredients: solar panels and a limited grid connection.

5.3.12 Toy example II: Adding solar production and limited grid connection

So far we haven’t taken into account any other devices that consume or produce electricity. The battery was free to use
all available capacity towards the grid.

What if other devices will be using some of that capacity? Our schedules need to reflect that, so we stay within given
limits.

Note: The capacity is given by capacity_in_mw, an attribute we placed on the battery asset earlier (see Toy exam-
ple: Scheduling a battery, from scratch). We will tell FlexMeasures to take the solar production into account (using
--inflexible-device-sensor) for this capacity limit.

We’ll now add solar production forecast data and then ask for a new schedule, to see the effect of solar on the available
headroom for the battery.

Adding PV production forecasts

First, we’ll create a new CSV file with solar forecasts (MW, see the setup for sensor 3 in part I of this tutorial) for
tomorrow.

$ TOMORROW=$(date --date="next day" '+%Y-%m-%d')
$ echo "Hour,Price
$ ${TOMORROW}T00:00:00,0.0
$ ${TOMORROW}T01:00:00,0.0
$ ${TOMORROW}T02:00:00,0.0
$ ${TOMORROW}T03:00:00,0.0
$ ${TOMORROW}T04:00:00,0.01
$ ${TOMORROW}T05:00:00,0.03
$ ${TOMORROW}T06:00:00,0.06
$ ${TOMORROW}T07:00:00,0.1
$ ${TOMORROW}T08:00:00,0.14
$ ${TOMORROW}T09:00:00,0.17
$ ${TOMORROW}T10:00:00,0.19
$ ${TOMORROW}T11:00:00,0.21
$ ${TOMORROW}T12:00:00,0.22
$ ${TOMORROW}T13:00:00,0.21
$ ${TOMORROW}T14:00:00,0.19
$ ${TOMORROW}T15:00:00,0.17
$ ${TOMORROW}T16:00:00,0.14
$ ${TOMORROW}T17:00:00,0.1
$ ${TOMORROW}T18:00:00,0.06
$ ${TOMORROW}T19:00:00,0.03
$ ${TOMORROW}T20:00:00,0.01

(continues on next page)

5.3. I want to build new features quickly, not spend days solving basic problems 57

FlexMeasures Documentation, Release 0.17

(continued from previous page)

$ ${TOMORROW}T21:00:00,0.0
$ ${TOMORROW}T22:00:00,0.0
$ ${TOMORROW}T23:00:00,0.0" > solar-tomorrow.csv

Then, we read in the created CSV file as beliefs data. This time, different to above, we want to use a new data source
(not the user) — it represents whoever is making these solar production forecasts. We create that data source first, so we
can tell flexmeasures add beliefs to use it. Setting the data source type to “forecaster” helps FlexMeasures to visually
distinguish its data from e.g. schedules and measurements.

Note: The flexmeasures add source command also allows to set a model and version, so sources can be distin-
guished in more detail. But that is not the point of this tutorial. See flexmeasures add source --help.

$ flexmeasures add source --name "toy-forecaster" --type forecaster
Added source <Data source 4 (toy-forecaster)>
$ flexmeasures add beliefs --sensor-id 3 --source 4 solar-tomorrow.csv --timezone Europe/
→˓Amsterdam
Successfully created beliefs

The one-hour CSV data is automatically resampled to the 15-minute resolution of the sensor that is recording solar
production. We can see solar production in the FlexMeasures UI :

Note: The flexmeasures add beliefs command has many options to make sure the read-in data is correctly
interpreted (unit, timezone, delimiter, etc). But that is not the point of this tutorial. See flexmeasures add beliefs
--help.

58 Chapter 5. Developer support

http://localhost:5000/sensors/3/

FlexMeasures Documentation, Release 0.17

Trigger an updated schedule

Now, we’ll reschedule the battery while taking into account the solar production. This will have an effect on the
available headroom for the battery, given the capacity_in_mw limit discussed earlier.

$ flexmeasures add schedule for-storage --sensor-id 2 --consumption-price-sensor 1 \
--inflexible-device-sensor 3 \
--start ${TOMORROW}T07:00+02:00 --duration PT12H \
--soc-at-start 50% --roundtrip-efficiency 90%

New schedule is stored.

We can see the updated scheduling in the FlexMeasures UI :

The asset page for the battery now shows the solar data, too:

5.3. I want to build new features quickly, not spend days solving basic problems 59

http://localhost:5000/sensors/2/
http://localhost:5000/assets/1/

FlexMeasures Documentation, Release 0.17

Though this schedule is quite similar, we can see that it has changed from the one we computed earlier (when we did
not take solar into account).

First, during the sunny hours of the day, when solar power is being send to the grid, the battery’s output (at around
9am and 11am) is now lower, as the battery shares capacity_in_mw with the solar production. In the evening (around
7pm), when solar power is basically not present anymore, battery discharging to the grid is still at its previous levels.

Second, charging of the battery is also changed a bit (around 10am), as less can be discharged later.

Moreover, we can use reporters to compute the capacity headroom (see Toy example IV: Computing reports for more
details). The image below shows that the scheduler is respecting the capacity limits.

60 Chapter 5. Developer support

https://raw.githubusercontent.com/FlexMeasures/screenshots/main/tut/toy-schedule/asset-view-without-solar.png

FlexMeasures Documentation, Release 0.17

In the case of the scheduler that we ran in the previous tutorial, which did not yet consider the PV, the discharge power
would have exceeded the headroom:

Note: You can add arbitrary sensors to a chart using the attribute sensors_to_show. See Assets & data for more.

We hope this part of the tutorial shows how to incorporate a limited grid connection rather easily with FlexMeasures.
There are more ways to model such settings, but this is a straightforward one.

This tutorial showed a quick way to add an inflexible load (like solar power) and a grid connection. In Toy example
III: Computing schedules for processes, we’ll turn to something different: the optimal timing of processes with fixed
energy work and duration.

5.3.13 Toy example III: Computing schedules for processes

Until this point we’ve been using a static battery, one of the most flexible energy assets, to reduce electricity bills. A
battery can modulate rather freely, and both charge and discharge.

However, in some settings, we can reduce electricity bills by just smartly timing the necessary work that we know we
have to do. We call this work a “process”. In other words, if the process can be displaced, by breaking it into smaller
consumption periods or shifting its start time, the process run can match the lower price hours better.

For example, we could have a load that consumes energy at a constant rate (e.g. 200kW) for a fixed duration (e.g. 4h),
but there’s some flexibility in the start time. In that case, we could find the optimal start time in order to minimize the
energy cost.

Examples of flexible processes are:
• Water irrigation in agriculture

• Mechanical pulping in the paper industry

• Water pumping in waste water management

• Cooling for the food industry

For consumers under ToU (Time of Use) tariffs, FlexMeasures ProcessScheduler can plan the start time of the process
to minimize the overall cost of energy. Alternatively, it can create a consumption plan to minimize the CO2 emissions.

5.3. I want to build new features quickly, not spend days solving basic problems 61

FlexMeasures Documentation, Release 0.17

In this tutorial, you’ll learn how to schedule processes using three different policies: INFLEXIBLE, BREAKABLE
and SHIFTABLE.

Moreover, we’ll touch upon the use of time restrictions to avoid scheduling a process in certain times of the day.

Setup

Before moving forward, we’ll add the process asset and three sensors to store the schedules resulting from following
three different policies.

$ flexmeasures add toy-account --kind process

Account '<Account Toy Account (ID:1)>' already exists. Skipping account creation.␣
→˓Use `flexmeasures delete account --id 1` if you need to remove it.

User with email toy-user@flexmeasures.io already exists in account Toy Account.
The sensor recording day-ahead prices is day-ahead prices (ID: 1).
Created <GenericAsset None: 'toy-process' (process)>
Created Power (INFLEXIBLE)
Created Power (BREAKABLE)
Created Power (SHIFTABLE)
The sensor recording the power of the INFLEXIBLE load is Power (INFLEXIBLE) (ID: 4).
The sensor recording the power of the BREAKABLE load is Power (BREAKABLE) (ID: 5).
The sensor recording the power of the SHIFTABLE load is Power (SHIFTABLE) (ID: 6).

Trigger an updated schedule

In this example, we are planning to consume at a 200kW constant power for a period of 4h.

This load is to be schedule for tomorrow, except from the period from 3pm to 4pm (imposed using the --forbid flag).

Now we are ready to schedule a process. Let’s start with the INFLEXIBLE policy, the simplest.

flexmeasures add schedule for-process --sensor-id 4 --consumption-price-sensor 1\
--start ${TOMORROW}T00:00:00+02:00 --duration PT24H --process-duration PT4H \
--process-power 0.2MW --process-type INFLEXIBLE \
--forbid "{\"start\" : \"${TOMORROW}T15:00:00+02:00\", \"duration\" : \"PT1H\"}"

Under the INFLEXIBLE policy, the process starts as soon as possible, in this case, coinciding with the start of the
planning window.

Following the INFLEXIBLE policy, we’ll schedule the same 4h block using a BREAKABLE policy.

flexmeasures add schedule for-process --sensor-id 5 --consumption-price-sensor 1\
--start ${TOMORROW}T00:00:00+02:00 --duration PT24H --process-duration PT4H \
--process-power 0.2MW --process-type BREAKABLE \
--forbid "{\"start\" : \"${TOMORROW}T15:00:00+02:00\", \"duration\" : \"PT1H\"}"

The BREAKABLE policy splits or breaks the process into blocks that can be scheduled discontinuously. The smallest
possible unit is (currently) determined by the sensor’s resolution.

Finally, we’ll schedule the process using the SHIFTABLE policy.

flexmeasures add schedule for-process --sensor-id 6 --consumption-price-sensor 1\
--start ${TOMORROW}T00:00:00+02:00 --duration PT24H --process-duration PT4H \

(continues on next page)

62 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

(continued from previous page)

--process-power 0.2MW --process-type SHIFTABLE \
--forbid "{\"start\" : \"${TOMORROW}T15:00:00+02:00\", \"duration\" : \"PT1H\"}"

Results

The image below shows the resulting schedules following each of the three policies. You will see similar results in your
FlexMeasures UI.

In the first policy, there’s no flexibility and it needs to schedule the process as soon as possible. Meanwhile, in the
BREAKABLE policy, the consumption blocks surrounds the time restriction to consume in the cheapest hours. Among
the three polices, the BREAKABLE policy can achieve the best Finally, in the SHIFTABLE policy, the process is shifted
to capture the best prices, avoiding the time restrictions.

Let’s list the power price the policies achieved for each of the four blocks they scheduled:

5.3. I want to build new features quickly, not spend days solving basic problems 63

http://localhost:5000/assets/4/

FlexMeasures Documentation, Release 0.17

Block INFLEXIBLE BREAKABLE SHIFTABLE
1 10.00 5.00 10.00
2 11.00 4.00 8.00
3 12.00 5.50 5.00
4 15.00 7.00 4.00
Average Price (EUR/MWh) 12.00 5.37 6.75
Total Cost (EUR) 9.60 4.29 5.40

Quantitatively, comparing the total cost of running the process under each policy, the BREAKABLE policy achieves
the best results. This is because it can fit much more consumption blocks in the cheapest hours.

This tutorial showed a quick way to optimize the activation of processes. In Toy example IV: Computing reports, we’ll
turn to something different: using reporters to apply transformations to sensor data.

5.3.14 Toy example IV: Computing reports

Warning: The reporting functionality is still in an early development stage. Beware that major changes might be
introduced.

So far, we have worked on scheduling batteries and processes. Now, we are moving to one of the other three pillars of
FlexMeasures: reporting.

In essence, reporters apply arbitrary transformations to data coming from some sensors (multiple inputs) and save the
results to other sensors (multiple outputs). In practice, this allows to compute KPIs (such as profit and total daily energy
production), to apply operations to beliefs (e.g. changing the sign of a power sensor for some time period), among other
things.

Note:
Currently, FlexMeasures comes with the following reporters:

• PandasReporter: applies arbitrary Pandas methods to sensor data.

• AggregatorReporter: combines data from multiple sensors into one using any of the methods supported by
the Pandas aggregate function (e.g. sum, average, max, min. . .).

• ProfitLossReporter: computes the profit/loss due to an energy flow under a specific tariff.

Moreover, it’s possible to implement your custom reporters in plugins. Instructions for this to come.

Now, coming back to the tutorial, we are going to use the AggregatorReporter and the ProfitLossReporter. In the first
part, we’ll use the AggregatorReporter to compute the (discharge) headroom of the battery in Toy example II: Adding
solar production and limited grid connection. That way, we can verify the maximum power at which the battery can
discharge at any point of time. In the second part, we’ll use the ProfitLossReporter to compute the costs of operating
the process of Tut. Part III in the different policies.

Before getting to the meat of the tutorial, we need to set up up all the entities. Instead of having to do that manually (e.g.
using commands such as flexmeasures add sensor), we have prepared a command that does that automatically.

64 Chapter 5. Developer support

https://pandas.pydata.org

FlexMeasures Documentation, Release 0.17

Setup

Just as in previous sections, we need to run the command flexmeasures add toy-account, but this time with a
different value for kind:

$ flexmeasures add toy-account --kind reporter

Under the hood, this command is adding the following entities:
• A yearly sensor that stores the capacity of the grid connection.

• A power sensor, headroom, to store the remaining capacity for the battery. This is where we’ll store the
report.

• A ProfitLossReporter configured to use the prices that we set up in Tut. Part II.

• Three sensors to register the profits/losses from running the three different processes of Tut. Part III.

Let’s check it out!

Run the command below to show the values for the grid connection capacity:

$ TOMORROW=$(date --date="next day" '+%Y-%m-%d')
$ flexmeasures show beliefs --sensor-id 7 --start ${TOMORROW}T00:00:00+02:00 --duration␣
→˓PT24H --resolution PT1H

Beliefs for Sensor 'grid connection capacity' (ID 7).
Data spans a day and starts at 2023-08-14 00:00:00+02:00.
The time resolution (x-axis) is an hour.

1.0MW

0.5MW

0.0MW

-0.5MW

5 10 15 20
grid connection capacity

Moreover, we can check the freshly created source <Source id=6> which defines the ProfitLossReporter with the
required configuration. You’ll notice that the config is under the data_generator field. That’s because reporters belong
to a bigger category of classes that also contains the Schedulers and Forecasters.

$ flexmeasures show data-sources --show-attributes --id 5

(continues on next page)

5.3. I want to build new features quickly, not spend days solving basic problems 65

FlexMeasures Documentation, Release 0.17

(continued from previous page)

ID Name Type User ID Model Version Attributes
---- ------------ -------- --------- -------------- --------- ------------------

→˓-----------------------
6 FlexMeasures reporter ProfitLossReporter {

"data_
→˓generator": {

"config":
→˓{

→˓"consumption_price_sensor": 1
}

}
}

Compute headroom

In this case, the discharge headroom is nothing but the difference between the grid connection capacity and the PV
power. To compute that quantity, we can use the AggregatorReporter using the weights to make the PV to subtract the
grid connection capacity.

In practice, we need to create the config and parameters:

$ echo "
$ {
$ 'weights' : {
$ 'grid connection capacity' : 1.0,
$ 'PV' : -1.0,
$ }
$ }" > headroom-config.json

$ echo "
$ {
$ 'input' : [{'name' : 'grid connection capacity','sensor' : 7},
$ {'name' : 'PV', 'sensor' : 3}],
$ 'output' : [{'sensor' : 8}]
$ }" > headroom-parameters.json

Finally, we can create the reporter with the following command:

$ TOMORROW=$(date --date="next day" '+%Y-%m-%d')
$ flexmeasures add report --reporter AggregatorReporter \

--parameters headroom-parameters.json --config headroom-config.json \
--start-offset DB,1D --end-offset DB,2D \
--resolution PT15M

Now we can visualize the headroom in the following link, which should resemble the following image.

66 Chapter 5. Developer support

http://localhost:5000/sensor/8/

FlexMeasures Documentation, Release 0.17

The graph shows that the capacity of the grid is at full disposal for the battery when there’s no sun (thus no PV gener-
ation), while at noon the battery can only discharge at 280kW max.

Process scheduler profit

For the second part of this tutorial, we are going to use the ProfitLossReporter to compute the losses (defined as cost -
revenue) of operating the process from Tut. Part III, under the three different policies: INFLEXIBLE, BREAKABLE
and SHIFTABLE.

In addition, we’ll explore another way to invoke reporters: data generators. Without going too much into detail, data
generators create new data. The thee main types are: Reporters, Schedulers and Forecasters. This will come handy as
the three reports that we are going to create share the same config. The config defines the price sensor to use and sets
the reporter to work in losses mode which means that it will return costs as positive values and revenue as negative
values.

Still, we need to define the parameters. The three reports share the same structure for the parameters with the following
fields:

• input: sensor that stores the power/energy flow. The number of sensors is limited to 1.

• output: sensor to store the report. We can provide sensors with different resolutions to store the same results at
different time scales.

Note: It’s possible to define the config and parameters in JSON or YAML formats.

After setting up config and parameters, we can invoke the reporter using the command flexmeasures add report.
The command takes the data source id, the files containing the parameters and the timing parameters (start and end).
For this particular case, we make use of the offsets to indicate that we want the report to encompass the day of tomorrow.

5.3. I want to build new features quickly, not spend days solving basic problems 67

FlexMeasures Documentation, Release 0.17

Inflexible process

Define parameters in a JSON file:

$ echo "
$ {
$ 'input' : [{'sensor' : 4}],
$ 'output' : [{'sensor' : 9}]
$ }" > inflexible-parameters.json

Create report:

$ flexmeasures add report --source 6 \
--parameters inflexible-parameters.json \
--start-offset DB,1D --end-offset DB,2D

Check the results here. The image should be similar to the one below.

Breakable process

Define parameters in a JSON file:

$ echo "
$ {
$ 'input' : [{'sensor' : 5}],
$ 'output' : [{'sensor' : 10}]
$ }" > breakable-parameters.json

Create report:

$ flexmeasures add report --source 6 \
--parameters breakable-parameters.json \
--start-offset DB,1D --end-offset DB,2D

68 Chapter 5. Developer support

http://localhost:5000/sensor/9/

FlexMeasures Documentation, Release 0.17

Check the results here. The image should be similar to the one below.

Shiftable process

Define parameters in a JSON file:

$ echo "
$ {
$ 'input' : [{'sensor' : 6}],
$ 'output' : [{'sensor' : 11}]
$ }" > shiftable-parameters.json

Create report:

$ flexmeasures add report --source 6 \
--parameters shiftable-parameters.json \
--start-offset DB,1D --end-offset DB,2D

Check the results here. The image should be similar to the one below.

5.3. I want to build new features quickly, not spend days solving basic problems 69

http://localhost:5000/sensor/10/
http://localhost:5000/sensor/11/

FlexMeasures Documentation, Release 0.17

Now, we can compare the results of the reports to the ones we computed manually in this table). Keep in mind that the
report is showing the profit of each 15min period and adding them all shows that it matches with our previous results.

5.3.15 Posting data

The platform FlexMeasures strives on the data you feed it. Let’s demonstrate how you can get data into FlexMeasures
using the API. This is where FlexMeasures gets connected to your system as a smart backend and helps you build smart
energy services.

We will show how to use the API endpoints for POSTing data. You can call these at regular intervals (through scheduled
scripts in your system, for example), so that FlexMeasures always has recent data to work with. Of course, these
endpoints can also be used to load historic data into FlexMeasures, so that the forecasting models have access to
enough data history.

Note: For the purposes of forecasting and scheduling, it is often advisable to use a less fine-grained resolution than most
metering services keep. For example, while such services might measure every ten seconds, FlexMeasures will usually
do its job no less effective if you feed it data with a resolution of five minutes. This will also make the data integration
much easier. Keep in mind that many data sources like weather forecasting or markets can have data resolutions of an
hour, anyway.

Table of contents

• Prerequisites

• Posting sensor data

• Observations vs forecasts: The time of knowledge

• Posting flexibility states

70 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Prerequisites

• FlexMeasures needs some structural meta data for data to be understood. For example, for adding weather data
we need to define a weather sensor, and what kind of weather sensors there are. You also need a user account.
If you host FlexMeasures yourself, you need to add this info first. Head over to Getting started, where these
steps are covered, study our CLI Commands or look into plugins which do this like flexmeasures-entsoe or
flexmeasures-openweathermap.

• You should be familiar with where to find your API endpoints (see Main endpoint and API versions) and how to
authenticate against the API (see Authentication).

Note: For deeper explanations of the data and the meta fields we’ll send here, You can always read the API Introduction,
to the FlexMeasures API, e.g. Signs of power values, Frequency and resolution, Setting the recording time and Units.

Note: To address assets and sensors, these tutorials assume entity addresses valid in the namespace fm1. See API
Introduction for more explanations.

Posting sensor data

Sensor data (both observations and forecasts) can be posted to POST /sensors/data. This endpoint represents the basic
method of getting time series data into FlexMeasures via API. It is agnostic to the type of sensor and can be used to
POST data for both physical and economical events that have happened in the past or will happen in the future. Some
examples:

• readings from electricity and gas meters

• readings from temperature and pressure sensors

• state of charge of a battery

• estimated availability of parking spots

• price forecasts

The exact URL will depend on your domain name, and will look approximately like this:

[POST] https://company.flexmeasures.io/api/<version>/sensors/data

This example “PostSensorDataRequest” message posts prices for hourly intervals between midnight and midnight the
next day for the Korean Power Exchange (KPX) day-ahead auction, registered under sensor 16. The prior indicates
that the prices were published at 3pm on December 31st 2014 (i.e. the clearing time of the KPX day-ahead market,
which is at 3 PM on the previous day — see below for a deeper explanation).

{
"type": "PostSensorDataRequest",
"sensor": "ea1.2021-01.io.flexmeasures.company:fm1.16",
"values": [

52.37,
51.14,
49.09,
48.35,
48.47,
49.98,

(continues on next page)

5.3. I want to build new features quickly, not spend days solving basic problems 71

https://github.com/SeitaBV/flexmeasures-entsoe
https://github.com/SeitaBV/flexmeasures-openweathermap
../api/v3_0.html#post--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.17

(continued from previous page)

58.7,
67.76,
69.21,
70.26,
70.46,
70,
70.7,
70.41,
70,
64.53,
65.92,
69.72,
70.51,
75.49,
70.35,
70.01,
66.98,
58.61

],
"start": "2015-01-01T00:00:00+09:00",
"duration": "PT24H",
"prior": "2014-12-31T15:00:00+09:00",
"unit": "KRW/kWh"

}

Note how the resolution of the data comes out at 60 minutes when you divide the duration by the number of data points.
If this resolution does not match the sensor’s resolution, FlexMeasures will try to upsample the data to make the match
or, if that is not possible, complain. Likewise, if the data unit does not match the sensor’s unit, FlexMeasures will
attempt to convert the data or, if that is not possible, complain.

Being explicit when posting power data

For power data, USEF specifies separate message types for observations and forecasts. Correspondingly, we allow the
following message types to be used with the POST /sensors/data endpoint:

{
"type": "PostMeterDataRequest"

}

{
"type": "PostPrognosisRequest"

}

For these message types, FlexMeasures validates whether the data unit is suitable for communicating power data.
Additionally, we validate whether meter data lies in the past, and prognoses lie in the future.

72 Chapter 5. Developer support

../api/v3_0.html#post--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.17

Single value, single sensor

A single average power value for a 15-minute time interval for a single sensor, posted 5 minutes after realisation.

{
"type": "PostSensorDataRequest",
"sensor": "ea1.2021-01.io.flexmeasures.company:fm1.1",
"value": 220,
"start": "2015-01-01T00:00:00+00:00",
"duration": "PT0H15M",
"horizon": "-PT5M",
"unit": "MW"

}

Multiple values, single sensor

Multiple values (indicating a univariate timeseries) for 15-minute time intervals for a single sensor, posted 5 minutes
after each realisation.

{
"type": "PostSensorDataRequest",
"sensor": "ea1.2021-01.io.flexmeasures.company:fm1.1",
"values": [

220,
210,
200

],
"start": "2015-01-01T00:00:00+00:00",
"duration": "PT0H45M",
"horizon": "-PT5M",
"unit": "MW"

}

Observations vs forecasts: The time of knowledge

To correctly tell FlexMeasures when a meter reading or forecast was known is crucial, as it determines which data is
being used to compute schedules or to make other forecasts.

Usually, the time of posting is assumed to be the time when the data was known. But you can also explicitly tell
FlexMeasures what these times are. This either works with one fixed time (for the whole set of data being sent) or with
a horizon (which applies to each data point separately).

E.g. to post a forecast rather than an observation after the fact, simply set the prior to the moment at which the
forecasts were made, e.g. at “2015-01-01T16:30:00+09:00”. Assuming your data starts at 5.00pm, this denotes that
the data are forecasts, made half an hour before realisation.

Alternatively, to indicate that each individual observation was made directly after the end of its 15-minute interval (i.e.
at 3.15pm, 3.30pm and so on), set a horizon to “PT0H” instead of a prior.

Finally, delays in reading out sensor data can be simulated by setting the horizon field to a negative value. For example,
a horizon of “-PT1H” would denote that each temperature reading was observed one hour after the fact (i.e. at 4.15pm,
4.30pm and so on).

See Setting the recording time for more information regarding the prior and horizon fields.

5.3. I want to build new features quickly, not spend days solving basic problems 73

FlexMeasures Documentation, Release 0.17

A good example for the use of the prior field are markets, which have clearing times. For example, at the KPX day-
ahead auction this is every day at 3pm. This point in time (i.e. when contracts are signed) determines the difference
between an ex-post observation and an ex-ante forecast.

Another example for the prior field is running simulations with FlexMeasures. It gives you control over the timing so
that you could run a month in the past as if it happened right now.

Posting flexibility states

There is one more crucial kind of data that FlexMeasures needs to know about: What are the current states of flexible
devices? For example, a battery has a certain state of charge, which is relevant to describe the flexibility that the battery
currently has. In our terminology, this is called the “flex model” and you can read more at Describing flexibility.

Owners of such devices can post the flex model along with triggering the creation of a new schedule, to [POST]
/schedules/trigger. The URL might look like this:

https://company.flexmeasures.io/api/<version>/sensors/10/schedules/trigger

The following example triggers a schedule for a power sensor (with ID 10) of a battery asset, asking to take into account
the battery’s current state of charge. From this, FlexMeasures derives the energy flexibility this battery has in the next
48 hours and computes an optimal charging schedule. The endpoint also allows to limit the flexibility range and also
to set target values.

{
"start": "2015-06-02T10:00:00+00:00",
"flex-model": {

"soc-at-start": 12.1,
"soc-unit": "kWh"

}
}

Note: At the moment, FlexMeasures only supports flexibility models suitable for batteries and car chargers here (asset
types “battery”, “one-way_evse” or “two-way_evse”). This will be expanded to other flexible assets as needed.

Note: Flexibility states are persisted on sensor attributes. To record a more complete history of the state of charge, set
up a separate sensor and post data to it using [POST] /sensors/data (see Posting sensor data).

In How scheduling jobs are queued, we’ll cover what happens when FlexMeasures is triggered to create a new schedule,
and how those schedules can be retrieved via the API, so they can be used to steer assets.

5.3.16 Forecasting & scheduling

Once FlexMeasures contains data (see Posting data), you can enjoy its forecasting and scheduling services. Let’s
take a look at how FlexMeasures users can access information from these services, and how you (if you are hosting
FlexMeasures yourself) can set up the data science queues for this.

Table of contents

• Maintaining the queues

74 Chapter 5. Developer support

../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
../api/v3_0.html#post--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.17

• How forecasting jobs are queued

• How scheduling jobs are queued

• Getting power forecasts (prognoses)

• Getting schedules (control signals)

If you want to learn more about the actual algorithms used in the background, head over to Algorithms.

Note: FlexMeasures comes with in-built scheduling algorithms. You can use your own algorithm, as well, see plugin-
customization.

Maintaining the queues

Note: If you are not hosting FlexMeasures yourself, skip right ahead to How forecasting jobs are queued or Getting
power forecasts (prognoses).

Here we assume you have access to a Redis server and configured it (see Redis).

Start to run one worker for each kind of job (in a separate terminal):

$ flexmeasures jobs run-worker --queue forecasting
$ flexmeasures jobs run-worker --queue scheduling

You can also clear the job queues:

$ flexmeasures jobs clear-queue --queue forecasting
$ flexmeasures jobs clear-queue --queue scheduling

When the main FlexMeasures process runs (e.g. by flexmeasures run), the queues of forecasting and schedul-
ing jobs can be visited at http://localhost:5000/tasks/forecasting and http://localhost:5000/tasks/
schedules, respectively (by admins).

When forecasts and schedules have been generated, they should be visible at http://localhost:5000/assets/
<id>.

Note: You can run workers who process jobs on different computers than the main server process. This can be a great
architectural choice. Just keep in mind to use the same databases (postgres/redis) and to stick to the same FlexMeasures
version on both.

5.3. I want to build new features quickly, not spend days solving basic problems 75

FlexMeasures Documentation, Release 0.17

How forecasting jobs are queued

A forecasting job is an order to create forecasts based on measurements. A job can be about forecasting one point in
time or about forecasting a range of points.

In FlexMeasures, the usual way of creating forecasting jobs would be right in the moment when new power, weather
or price data arrives through the API (see Posting data). So technically, you don’t have to do anything to keep fresh
forecasts.

The decision which horizons to forecast is currently also taken by FlexMeasures. For power data, FlexMeasures makes
this decision depending on the asset resolution. For instance, a resolution of 15 minutes leads to forecast horizons of 1,
6, 24 and 48 hours. For price data, FlexMeasures chooses to forecast prices forward 24 and 48 hours These are decent
defaults, and fixing them has the advantage that schedulers (see below) will know what to expect. However, horizons
will probably become more configurable in the near future of FlexMeasures.

You can also add forecasting jobs directly via the CLI. We explain this practice in the next section.

Historical forecasts

There might be reasons to add forecasts of past time ranges. For instance, for visualisation of past system behaviour
and to check how well the forecasting models have been doing on a longer stretch of data.

If you host FlexMeasures yourself, we provide a CLI task for adding forecasts for whole historic periods. This is an
example call:

Here we request 6-hour forecasts to be made for two sensors, for a period of two days:

$ flexmeasures add forecasts --sensor-id 2 --sensor-id 3 \
--from-date 2015-02-01 --to-date 2015-08-31 \
--horizon 6 --as-job

This is half a year of data, so it will take a while.

It can be good advice to dispatch this work in smaller chunks. Alternatively, note the --as-job parameter. If you use
it, the forecasting jobs will be queued and picked up by worker processes (see above). You could run several workers
(e.g. one per CPU) to get this work load done faster.

Run flexmeasures add forecasts --help for more information.

How scheduling jobs are queued

In FlexMeasures, a scheduling job is an order to plan optimised actions for flexible devices. It usually involves a linear
program that combines a state of energy flexibility with forecasted data to draw up a consumption or production plan
ahead of time.

There are two ways to queue a scheduling job:

First, we can add a scheduling job to the queue via the API. We already learned about the [POST] /schedules/trigger
endpoint in Posting flexibility states, where we saw how to post a flexibility state (in this case, the state of charge of a
battery at a certain point in time).

Here, we extend that (storage) example with an additional target value, representing a desired future state of charge.

{
"start": "2015-06-02T10:00:00+00:00",
"flex-model": {

"soc-at-start": 12.1,
(continues on next page)

76 Chapter 5. Developer support

../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger

FlexMeasures Documentation, Release 0.17

(continued from previous page)

"soc-unit": "kWh"
"soc-targets": [

{
"value": 25,
"datetime": "2015-06-02T16:00:00+00:00"

}
}

}

We now have described the state of charge at 10am to be 12.1. In addition, we requested that it should be 25 at 4pm.
For instance, this could mean that a car should be charged at 90% at that time.

If FlexMeasures receives this message, a scheduling job will be made and put into the queue. In turn, the scheduling
job creates a proposed schedule. We’ll look a bit deeper into those further down in Getting schedules (control signals).

Note: Even without a target state of charge, FlexMeasures will create a scheduling job. The flexible device can then
be used with more freedom to reach the system objective (e.g. buy power when it is cheap, store it, and sell back when
it’s expensive).

A second way to add scheduling jobs is via the CLI, so this is available for people who host FlexMeasures themselves:

$ flexmeasures add schedule for-storage --sensor-id 1 --consumption-price-sensor 2 \
--start 2022-07-05T07:00+01:00 --duration PT12H \
--soc-at-start 50% --roundtrip-efficiency 90% --as-job

Here, the --as-job parameter makes the difference for queueing — without it, the schedule is computed right away.

Run flexmeasures add schedule for-storage --help for more information.

Getting power forecasts (prognoses)

Prognoses (the USEF term used for power forecasts) are used by FlexMeasures to determine the best control signals to
valorise on balancing opportunities.

You can access forecasts via the FlexMeasures API at [GET] /sensors/data. Getting them might be useful if you want to
use prognoses in your own system, or to check their accuracy against meter data, i.e. the realised power measurements.
The FlexMeasures UI also lists forecast accuracy, and visualises prognoses and meter data next to each other.

A prognosis can be requested at a URL looking like this:

https://company.flexmeasures.io/api/<version>/sensors/data

This example requests a prognosis for 24 hours, with a rolling horizon of 6 hours before realisation.

{
"type": "GetPrognosisRequest",
"sensor": "ea1.2021-01.io.flexmeasures.company:fm1.1",
"start": "2015-01-01T00:00:00+00:00",
"duration": "PT24H",
"horizon": "PT6H",
"resolution": "PT15M",
"unit": "MW"

}

5.3. I want to build new features quickly, not spend days solving basic problems 77

../api/v3_0.html#get--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.17

Getting schedules (control signals)

We saw above how FlexMeasures can create optimised schedules with control signals for flexible devices (see Posting
flexibility states). You can access the schedules via the [GET] /schedules/<uuid> endpoint. The URL then looks like
this:

https://company.flexmeasures.io/api/<version>/sensors/<id>/schedules/<uuid>

Here, the schedule’s Universally Unique Identifier (UUID) should be filled in that is returned in the [POST] /sched-
ules/trigger response. Schedules can be queried by their UUID for up to 1 week after they were triggered (ask your
host if you need to keep them around longer). Afterwards, the exact schedule can still be retrieved through the [GET]
/sensors/data, using precise filter values for start, prior and source.

The following example response indicates that FlexMeasures planned ahead 45 minutes for the requested battery power
sensor. The list of consecutive power values represents the target consumption of the battery (negative values for
production). Each value represents the average power over a 15 minute time interval.

{
"values": [

2.15,
3,
2

],
"start": "2015-06-02T10:00:00+00:00",
"duration": "PT45M",
"unit": "MW"

}

How to interpret these control signals?

One way of reaching the target consumption in this example is to let the battery start to consume with 2.15 MW at
10am, increase its consumption to 3 MW at 10.15am and decrease its consumption to 2 MW at 10.30am.

However, because the targets values represent averages over 15-minute time intervals, the battery still has some degrees
of freedom. For example, the battery might start to consume with 2.1 MW at 10.00am and increase its consumption
to 2.25 at 10.10am, increase its consumption to 5 MW at 10.15am and decrease its consumption to 2 MW at 10.20am.
That should result in the same average values for each quarter-hour.

5.3.17 Building custom UIs

FlexMeasures provides its own UI (see Dashboard), but it is a back office platform first. Most energy service companies
already have their own user-facing system. We therefore made it possible to incorporate information from FlexMeasures
in custom UIs.

This tutorial will show how the FlexMeasures API can be used from JavaScript to extract information and display it in
a browser (using HTML). We’ll extract information about users, assets and even whole plots!

Table of contents

• Get an authentication token

• Load user information

• Load asset information

• Embedding charts

78 Chapter 5. Developer support

../api/v3_0.html#get--api-v3_0-sensors-(id)-schedules-(uuid)
../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger
../api/v3_0.html#get--api-v3_0-sensors-data
../api/v3_0.html#get--api-v3_0-sensors-data

FlexMeasures Documentation, Release 0.17

Note: We’ll use standard JavaScript for this tutorial, in particular the fetch functionality, which many browsers support
out-of-the-box these days. You might want to use more high-level frameworks like jQuery, Angular, React or VueJS
for your frontend, of course.

Get an authentication token

FlexMeasures provides the [POST] /api/requestAuthToken endpoint, as discussed in Authentication. Here is a
JavaScript function to call it:

var flexmeasures_domain = "http://localhost:5000";

function getAuthToken(){
return fetch(flexmeasures_domain + '/api/requestAuthToken',

{
method: "POST",
mode: "cors",
headers:
{

"Content-Type": "application/json",
},
body: JSON.stringify({"email": email, "password": password})

}
)
.then(function(response) { return response.json(); })
.then(console.log("Got auth token from FlexMeasures server ..."));

}

It only expects you to set email and password somewhere (you could also pass them to the function, your call). In
addition, we expect here that flexmeasures_domain is set to the FlexMeasures server you interact with, for example
“https://company.flexmeasures.io”.

We’ll see how to make use of the getAuthToken function right away, keep on reading.

Load user information

Let’s say we are interested in a particular user’s meta data. For instance, which email address do they have and which
timezone are they operating in?

Given we have set a variable called userId, here is some code to find out and display that information in a simple
HTML table:

<h1>User info</h1>
<p>

Email address:
</p>
<p>

Time zone:
</p>

function loadUserInfo(userId, authToken) {
fetch(flexmeasures_domain + '/api/v2_0/user/' + userId,

(continues on next page)

5.3. I want to build new features quickly, not spend days solving basic problems 79

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
../api/v2_0.html#post--api-v2_0-requestAuthToken
https://company.flexmeasures.io

FlexMeasures Documentation, Release 0.17

(continued from previous page)

{
method: "GET",
mode: "cors",
headers:

{
"Content-Type": "application/json",
"Authorization": authToken
},

}
)
.then(console.log("Got user data from FlexMeasures server ..."))
.then(function(response) { return response.json(); })
.then(function(userInfo) {

document.querySelector('#user_email').innerHTML = userInfo.email;
document.querySelector('#user_timezone').innerHTML = userInfo.timezone;

})
}

document.onreadystatechange = () => {
if (document.readyState === 'complete') {

getAuthToken()
.then(function(response) {

var authToken = response.auth_token;
loadUserInfo(userId, authToken);

})
}

}

The result looks like this in your browser:

From FlexMeasures, we are using the [GET] /user endpoint, which loads information about one user. Browse its
documentation to learn about other information you could get.

80 Chapter 5. Developer support

../api/v3_0.html#get--api-v3_0-user-(id)

FlexMeasures Documentation, Release 0.17

Load asset information

Similarly, we can load asset information. Say we have a variable accountId and we want to show which assets
FlexMeasures administrates for that account.

For the example below, we’ve used the ID of the account from our toy tutorial, see toy tutorial.

<style>
#assetTable th, #assetTable td {

border-right: 1px solid gray;
padding-left: 5px;
padding-right: 5px;

}
</style>

<table id="assetTable">
<thead>

<tr>
<th>Asset name</th>
<th>ID</th>
<th>Latitude</th>
<th>Longitude</th>

</tr>
</thead>
<tbody></tbody>

</table>

function loadAssets(accountId, authToken) {
var params = new URLSearchParams();
params.append("account_id", accountId);
fetch(flexmeasures_domain + '/api/v3_0/assets?' + params.toString(),

{
method: "GET",
mode: "cors",
headers:

{
"Content-Type": "application/json",
"Authorization": authToken
},

}
)
.then(console.log("Got asset data from FlexMeasures server ..."))
.then(function(response) { return response.json(); })
.then(function(rows) {

rows.forEach(row => {
const tbody = document.querySelector('#assetTable tbody');
const tr = document.createElement('tr');
tr.innerHTML = `<td>${row.name}</td><td>${row.id}</td><td>${row.latitude}</td>

→˓<td>${row.longitude}</td>`;
tbody.appendChild(tr);
});

})
}

(continues on next page)

5.3. I want to build new features quickly, not spend days solving basic problems 81

FlexMeasures Documentation, Release 0.17

(continued from previous page)

document.onreadystatechange = () => {
if (document.readyState === 'complete') {

getAuthToken()
.then(function(response) {

var authToken = response.auth_token;
loadAssets(accountId, authToken);

})
}

}

The result looks like this in your browser:

From FlexMeasures, we are using the [GET] /assets endpoint, which loads a list of assets. Note how, unlike the user
endpoint above, we are passing a query parameter to the API (account_id). We are only displaying a subset of the
information which is available about assets. Browse the endpoint documentation to learn other information you could
get.

For a listing of public assets, replace /api/v3_0/assets with /api/v3_0/assets/public.

Embedding charts

Creating charts from data can consume lots of development time. FlexMeasures can help here by delivering ready-made
charts. In this tutorial, we’ll embed a chart with electricity prices.

First, we define a div tag for the chart and a basic layout (full width). We also load the visualization libraries we need
(more about that below), and set up a custom formatter we use in FlexMeasures charts.

<script src="https://d3js.org/d3.v6.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/vega@5.22.1"></script>
<script src="https://cdn.jsdelivr.net/npm/vega-lite@5.2.0"></script>
<script src="https://cdn.jsdelivr.net/npm/vega-embed@6.20.8"></script>
<script>

vega.expressionFunction('quantityWithUnitFormat', function(datum, params) {
return d3.format(params[0])(datum) + " " + params[1];

});
</script>

<div id="sensor-chart" style="width: 100%;"></div>

Now we define a JavaScript function to ask the FlexMeasures API for a chart and then embed it:

function embedChart(params, authToken, sensorId, divId){
fetch(

flexmeasures_domain + '/api/dev/sensor/' + sensorId + '/chart?include_data=true&
→˓' + params.toString(),

(continues on next page)

82 Chapter 5. Developer support

../api/v3_0.html#get--api-v3_0-assets

FlexMeasures Documentation, Release 0.17

(continued from previous page)

{
method: "GET",
mode: "cors",
headers:

{
"Content-Type": "application/json",
"Authorization": authToken
}

}
)
.then(function(response) {return response.json();})
.then(function(data) {vegaEmbed(divId, data)})

}

This function allows us to request a chart (actually, a JSON specification of a chart that can be interpreted by vega-lite),
and then embed it within a div tag of our choice.

From FlexMeasures, we are using the GET /api/dev/sensor/(id)/chart/ endpoint. Browse the endpoint documentation
to learn more about it.

Note: Endpoints in the developer API are still under development and are subject to change in new releases.

Here are some common parameter choices for our JavaScript function:

var params = new URLSearchParams();
params.append("width", 400); // an integer number of pixels; without it, the chart will␣
→˓be scaled to the full width of the container (note that we set the div width to 100%)
params.append("height", 400); // an integer number of pixels; without it, a FlexMeasures␣
→˓default is used
params.append("event_starts_after", '2022-10-01T00:00+01'); // only fetch events from␣
→˓midnight October 1st
params.append("event_ends_before", '2022-10-08T00:00+01'); // only fetch events until␣
→˓midnight October 8th
params.append("beliefs_before", '2022-10-03T00:00+01'); // only fetch beliefs prior to␣
→˓October 3rd (time travel)

As FlexMeasures uses the Vega-Lite Grammar of Interactive Graphics internally, we also need to import this library to
render the chart (see the script tags above). It’s crucial to note that FlexMeasures is not transferring images across
HTTP here, just information needed to render them.

Note: It’s best to match the visualization library versions you use in your frontend to those used by FlexMea-
sures. These are set by the FLEXMEASURES_JS_VERSIONS config (see Configuration) with defaults kept in
flexmeasures/utils/config_defaults.

Now let’s call this function when the HTML page is opened, to embed our chart:

document.onreadystatechange = () => {
if (document.readyState === 'complete') {

getAuthToken()
.then(function(response) {

var authToken = response.auth_token;
(continues on next page)

5.3. I want to build new features quickly, not spend days solving basic problems 83

../api/dev.html#get--api-dev-sensor-(id)-chart-
https://vega.github.io/vega-lite/

FlexMeasures Documentation, Release 0.17

(continued from previous page)

var params = new URLSearchParams();
params.append("event_starts_after", '2022-01-01T00:00+01');
embedChart(params, authToken, 1, '#sensor-chart');

})
}

}

The parameters we pass in describe what we want to see: all data for sensor 3 since 2022. If you followed our toy
tutorial on a fresh FlexMeasures installation, sensor 1 contains market prices (authenticate with the toy-user to gain
access).

The result looks like this in your browser:

5.3.18 Dashboard

The dashboard shows where the user’s assets are located and how many different asset types are connected to the
platform. The view serves to quickly identify the status of assets, such as whether there are upcoming opportunities to
valorise on flexibility activations. In particular, the page contains:

• Interactive map of assets

• Summary of asset types

• Grouping by accounts

84 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Interactive map of assets

The map shows all of the user’s assets with icons for each asset type. Hovering over an asset allows users to see its
name and ownership, and clicking on an asset allows the user to navigate to its page to see more details, for instance
forecasts.

Summary of asset types

The summary below the map lists all asset types that the user has hooked up to the platform and how many of each
there are. Clicking on the asset type name leads to the asset’s page, where its data is shown.

Grouping by accounts

Note: This is a feature for user with role admin or admin-reader.

By default, the map is layered by asset type. However, on the bottom right admins can also switch to grouping by
accounts. Then, map layers will contain the assets owned by accounts, and you can easily see who you’re serving with
what.

5.3.19 Assets & data

The asset page allows to see data from the asset’s sensors, and also to edit attributes of the asset, like its location. Other
attributes are stored as a JSON string, which can be edited here as well. This is meant for meta information that may be
used to customize views or functionality, e.g. by plugins. This includes the possibility to specify which sensors the asset
page should show. For instance, here we include a price sensor from a public asset, by setting {"sensor_to_show":
[3, 2]} (sensor 3 on top, followed by sensor 2 below).

5.3. I want to build new features quickly, not spend days solving basic problems 85

FlexMeasures Documentation, Release 0.17

Note: It is possible to overlay data for multiple sensors, by setting the sensors_to_show attribute to a nested list. For
example, {"sensor_to_show": [3, [2, 4]]} would show the data for sensor 4 laid over the data for sensor 2.

Note: While it is possible to show an arbitrary number of sensors this way, we recommend showing only the most
crucial ones for faster loading, less page scrolling, and generally, a quick grasp of what the asset is up to.

86 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Note: Asset attributes can be edited through the CLI as well, with the CLI command flexmeasures edit
attribute.

5.3.20 Administration

The administrator can see assets and users here.

Assets

Listing all assets:

Users

Listing all users:

Viewing one user:

5.3. I want to build new features quickly, not spend days solving basic problems 87

FlexMeasures Documentation, Release 0.17

5.3.21 API Introduction

This document details the Application Programming Interface (API) of the FlexMeasures web service. The API sup-
ports user automation for flexibility valorisation in the energy sector, both in a live setting and for the purpose of
simulating scenarios. The web service adheres to the concepts and terminology used in the Universal Smart Energy
Framework (USEF).

All requests and responses to and from the web service should be valid JSON messages. For deeper explanations on
how to construct messages, see Notation.

Main endpoint and API versions

All versions of the API are released on:

https://<flexmeasures-root-url>/api

So if you are running FlexMeasures on your computer, it would be:

https://localhost:5000/api

Let’s assume we are running a server for a client at:

https://company.flexmeasures.io/api

where company is a client of ours. All their accounts’ data lives on that server.

We assume in this document that the FlexMeasures instance you want to connect to is hosted at https://company.
flexmeasures.io.

Let’s see what the /api endpoint returns:

>>> import requests
>>> res = requests.get("https://company.flexmeasures.io/api")
>>> res.json()

(continues on next page)

88 Chapter 5. Developer support

https://company.flexmeasures.io
https://company.flexmeasures.io

FlexMeasures Documentation, Release 0.17

(continued from previous page)

{'flexmeasures_version': '0.9.0',
'message': 'For these API versions endpoints are available. An authentication token can␣
→˓be requested at: /api/requestAuthToken. For a list of services, see https://
→˓flexmeasures.readthedocs.io',
'status': 200,
'versions': ['v3_0']
}

So this tells us which API versions exist. For instance, we know that the latest API version is available at:

https://company.flexmeasures.io/api/v3_0

Also, we can see that a list of endpoints is available on https://flexmeasures.readthedocs.io for each of these versions.

Note: Sunset API versions are still documented there, simply select an older version.

Authentication

Service usage is only possible with a user access token specified in the request header, for example:

{
"Authorization": "<token>"

}

A fresh “<token>” can be generated on the user’s profile after logging in:

https://company.flexmeasures.io/logged-in-user

or through a POST request to the following endpoint:

https://company.flexmeasures.io/api/requestAuthToken

using the following JSON message for the POST request data:

{
"email": "<user email>",
"password": "<user password>"

}

which gives a response like this if the credentials are correct:

{
"auth_token": "<authentication token>",
"user_id": "<ID of the user>"

}

Note: Each access token has a limited lifetime, see Authentication.

5.3. I want to build new features quickly, not spend days solving basic problems 89

https://flexmeasures.readthedocs.io

FlexMeasures Documentation, Release 0.17

Deprecation and sunset

When an API feature becomes obsolete, we deprecate it. Deprecation of major features doesn’t happen a lot, but when
it does, it happens in multiple stages, during which we support clients and hosts in adapting. For more information
on our multi-stage deprecation approach and available options for FlexMeasures hosts, see Deprecation and sunset for
hosts.

Clients

Professional API users should monitor API responses for the "Deprecation" and "Sunset" response headers [see
draft-ietf-httpapi-deprecation-header-02 and RFC 8594, respectively], so system administrators can be warned when
using API endpoints that are flagged for deprecation and/or are likely to become unresponsive in the future.

The deprecation header field shows an IMF-fixdate indicating when the API endpoint was deprecated. The sunset
header field shows an IMF-fixdate indicating when the API endpoint is likely to become unresponsive.

More information about a deprecation, sunset, and possibly recommended replacements, can be found under the
"Link" response header. Relevant relations are:

• "deprecation"

• "successor-version"

• "latest-version"

• "alternate"

• "sunset"

Here is a client-side code example in Python (this merely prints out the deprecation header, sunset header and relevant
links, and should be revised to make use of the client’s monitoring tools):

def check_deprecation_and_sunset(self, url, response):
"""Print deprecation and sunset headers, along with info links.

Reference

https://flexmeasures.readthedocs.io/en/latest/api/introduction.html#deprecation-and-
→˓sunset
"""
Go through the response headers in their given order
for header, content in response.headers:

if header == "Deprecation":
print(f"Your request to {url} returned a deprecation warning. Deprecation:

→˓{content}")
elif header == "Sunset":

print(f"Your request to {url} returned a sunset warning. Sunset: {content}")
elif header == "Link" and ('rel="deprecation";' in content or 'rel="sunset";' in␣

→˓content):
print(f"Further info is available: {content}")

90 Chapter 5. Developer support

https://datatracker.ietf.org/doc/draft-ietf-httpapi-deprecation-header/
https://www.rfc-editor.org/rfc/rfc8594
https://www.rfc-editor.org/rfc/rfc7231#section-7.1.1.1
https://www.rfc-editor.org/rfc/rfc7231#section-7.1.1.1

FlexMeasures Documentation, Release 0.17

Hosts

FlexMeasures versions go through the following stages for deprecating major features (such as API versions):

• Stage 1: Deprecation: status 200 (OK) with relevant headers, plus a toggle to 410 (Gone) for blackout tests

• Stage 2: Preliminary sunset: status 410 (Gone), plus a toggle to 200 (OK) for sunset rollbacks

• Stage 3: Definitive sunset: status 410 (Gone)

Let’s go over these stages in more detail.

Stage 1: Deprecation

When upgrading to a FlexMeasures version that deprecates an API version (e.g. flexmeasures==0.12 deprecates API
version 2), clients will receive "Deprecation" and "Sunset" response headers [see draft-ietf-httpapi-deprecation-
header-02 and RFC 8594, respectively].

Hosts should not expect every client to monitor response headers and proactively upgrade to newer API versions. Please
make sure that your users have upgraded before you upgrade to a FlexMeasures version that sunsets an API version.
You can do this by checking your server logs for warnings about users who are still calling deprecated endpoints.

In addition, we recommend running blackout tests during the deprecation notice phase. You (and your users) can
learn which systems need attention and how to deal with them. Be sure to announce these beforehand. Here is an
example of how to run a blackout test: If a sunset happens in version 0.13, and you are hosting a version which
includes the deprecation notice (e.g. 0.12), FlexMeasures will simulate the sunset if you set the config setting
FLEXMEASURES_API_SUNSET_ACTIVE = True (see Sunset Configuration). During such a blackout test, clients will
receive HTTP status 410 (Gone) responses when calling corresponding endpoints.

What is a blackout test
A blackout test is a planned, timeboxed event when a host will turn off a certain API or some of the API capabilities. The
test is meant to help developers understand the impact the retirement will have on the applications and users. Source:
Platform of Trust

Stage 2: Preliminary sunset

When upgrading to a FlexMeasures version that sunsets an API version (e.g. flexmeasures==0.13 sunsets API
version 2), clients will receive HTTP status 410 (Gone) responses when calling corresponding endpoints.

In case you have users that haven’t upgraded yet, and would still like to upgrade FlexMeasures (to the version that offi-
cially sunsets the API version), you can. For a little while after sunset (usually one more minor version), we will con-
tinue to support a “sunset rollback”. To enable this, just set the config setting FLEXMEASURES_API_SUNSET_ACTIVE
= False and consider announcing some more blackout tests to your users, during which you can set this setting to
True to reactivate the sunset.

5.3. I want to build new features quickly, not spend days solving basic problems 91

https://datatracker.ietf.org/doc/draft-ietf-httpapi-deprecation-header/
https://datatracker.ietf.org/doc/draft-ietf-httpapi-deprecation-header/
https://www.rfc-editor.org/rfc/rfc8594
https://design.oftrust.net/api-migration-policies/blackout-testing
https://design.oftrust.net/api-migration-policies/blackout-testing

FlexMeasures Documentation, Release 0.17

Stage 3: Definitive sunset

After upgrading to one of the next FlexMeasures versions (e.g. flexmeasures==0.14), clients that call sunset end-
points will receive HTTP status 410 (Gone) responses.

5.3.22 Notation

This page helps you to construct messages to the FlexMeasures API. Please consult the endpoint documentation first.
Here we dive into topics useful across endpoints.

Singular vs plural keys

Throughout this document, keys are written in singular if a single value is listed, and written in plural if multiple values
are listed, for example:

{
"keyToValue": "this is a single value",
"keyToValues": ["this is a value", "and this is a second value"]

}

The API, however, does not distinguish between singular and plural key notation.

Sensors and entity addresses

In many API endpoints, sensors are identified by their ID, e.g. /sensors/45. However, all sensors can also be
identified with an entity address following the EA1 addressing scheme prescribed by USEF[1], which is mostly taken
from IETF RFC 3720 [2].

This is the complete structure of an EA1 address:

{
"sensor": "ea1.{date code}.{reversed domain name}:{locally unique string}"

}

Here is a full example for an entity address of a sensor in FlexMeasures:

{
"sensor": "ea1.2021-02.io.flexmeasures.company:fm1.73"

}

where FlexMeasures runs at company.flexmeasures.io (which the current domain owner started using in February 2021),
and the locally unique string uses the fm1 scheme (see below) to identify sensor ID 73.

Assets are listed at:

https://company.flexmeasures.io/assets

The full entity addresses of all of the asset’s sensors can be obtained on the asset’s page, e.g. for asset 81:

https://company.flexmeasures.io/assets/81

92 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Entity address structure

Some deeper explanations about an entity address:

• “ea1” is a constant, indicating this is a type 1 USEF entity address

• The date code “must be a date during which the naming authority owned the domain name used in this format,
and should be the first month in which the domain name was owned by this naming authority at 00:01 GMT of
the first day of the month.

• The reversed domain name is taken from the naming authority (person or organization) creating this entity address

• The locally unique string can be used for local purposes, and FlexMeasures uses it to identify the resource. Fields
in the locally unique string are separated by colons, see for other examples IETF RFC 3721, page 6 [3]. While [2]
says it’s possible to use dashes, dots or colons as separators, we might use dashes and dots in latitude/longitude
coordinates of sensors, so we settle on colons.

[1] https://www.usef.energy/app/uploads/2020/01/USEF-Flex-Trading-Protocol-Specifications-1.01.pdf

[2] https://tools.ietf.org/html/rfc3720

[3] https://tools.ietf.org/html/rfc3721

Types of sensor identification used in FlexMeasures

FlexMeasures expects the locally unique string string to contain information in a certain structure. We distinguish type
fm0 and type fm1 FlexMeasures entity addresses.

The fm1 scheme is the latest version. It uses the fact that all FlexMeasures sensors have unique IDs.

ea1.2021-01.io.flexmeasures:fm1.42
ea1.2021-01.io.flexmeasures:fm1.<sensor_id>

The fm0 scheme is the original scheme. It identified different types of sensors (such as grid connections, weather
sensors and markets) in different ways. The fm0 scheme has been sunset since API version 3.

Timeseries

Timestamps and durations are consistent with the ISO 8601 standard. The frequency of the data is implicit (from
duration and number of values), while the resolution of the data is explicit, see Frequency and resolution.

All timestamps in requests to the API must be timezone-aware. For instance, in the below example, the timezone
indication “Z” indicates a zero offset from UTC.

We use the following shorthand for sending sequential, equidistant values within a time interval:

{
"values": [

10,
5,
8

],
"start": "2016-05-01T13:00:00Z",
"duration": "PT45M"

}

Technically, this is equal to:

5.3. I want to build new features quickly, not spend days solving basic problems 93

https://www.usef.energy/app/uploads/2020/01/USEF-Flex-Trading-Protocol-Specifications-1.01.pdf
https://tools.ietf.org/html/rfc3720
https://tools.ietf.org/html/rfc3721

FlexMeasures Documentation, Release 0.17

{
"timeseries": [

{
"value": 10,
"start": "2016-05-01T13:00:00Z",
"duration": "PT15M"

},
{

"value": 5,
"start": "2016-05-01T13:15:00Z",
"duration": "PT15M"

},
{

"value": 8,
"start": "2016-05-01T13:30:00Z",
"duration": "PT15M"

}
]

}

This intuitive convention allows us to reduce communication by sending univariate timeseries as arrays.

In all current versions of the FlexMeasures API, only equidistant timeseries data is expected to be communicated.
Therefore:

• only the array notation should be used (first notation from above),

• “start” should be a timestamp on the hour or a multiple of the sensor resolution thereafter (e.g. “16:10” works if
the resolution is 5 minutes), and

• “duration” should also be a multiple of the sensor resolution.

Describing flexibility

FlexMeasures computes schedules for energy systems that consist of multiple devices that consume and/or produce
electricity. We model a device as an asset with a power sensor, and compute schedules only for flexible devices, while
taking into account inflexible devices.

To compute a schedule, FlexMeasures first needs to assess the flexibility state of the system. This is described by the
flex model (information about the state and possible actions of the flexible device) and the flex-context (information
about the system as a whole, in order to assess the value of activating flexibility).

This information goes beyond the usual time series recorded by an asset’s sensors. It’s being sent through the API when
triggering schedule computation. Some parts of it can be persisted on the asset & sensor model as attributes (that’s
design work in progress).

We distinguish the information with two groups:

94 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Flex model

The flexibility model describes to the scheduler what the flexible asset’s state is, and what constraints or preferences
should be taken into account. Which type of flexibility model is relevant to a scheduler usually relates to the type of
device.

Usually, not the whole flexibility model is needed. FlexMeasures can infer missing values in the flex model, and even
get them (as default) from the sensor’s attributes. This means that API and CLI users don’t have to send the whole flex
model every time.

Here are the three types of flexibility models you can expect to be built-in:

1) For storage devices (e.g. batteries, and EV batteries connected to charge points), the schedule deals with the
state of charge (SOC).

The possible flexibility parameters are:

• soc-at-start (defaults to 0)

• soc-unit (kWh or MWh)

• soc-min (defaults to 0)

• soc-max (defaults to max soc target)

• soc-minima (defaults to NaN values)

• soc-maxima (defaults to NaN values)

• soc-targets (defaults to NaN values)

• roundtrip-efficiency (defaults to 100%)

• storage-efficiency (defaults to 100%)1

• prefer-charging-sooner (defaults to True, also signals a preference to discharge later)

• power-capacity (defaults to the Sensor attribute capacity_in_mw)

For some examples, see the [POST] /sensors/(id)/schedules/trigger endpoint docs.

2) For processes
• power: nominal power of the load.

• duration: time that the load last.

• optimization_sense: objective of the scheduler, to maximize or minimize.

• time_restrictions: time periods in which the load cannot be schedule to.

• process_type: INFLEXIBLE, BREAKABLE or SHIFTABLE.

3) For buffer devices (e.g. thermal energy storage systems connected to heat pumps), use the same flexibility
parameters described above for storage devices. Here are some tips to model a buffer with these parameters:

• Describe the thermal energy content in kWh or MWh.

• Set soc-minima to the accumulative usage forecast.
1 The storage efficiency (e.g. 95% or 0.95) to use for the schedule is applied over each time step equal to the sensor resolution. For example, a

storage efficiency of 95 percent per (absolute) day, for scheduling a 1-hour resolution sensor, should be passed as a storage efficiency of 0.951/24 =
0.997865.

5.3. I want to build new features quickly, not spend days solving basic problems 95

../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger

FlexMeasures Documentation, Release 0.17

• Set roundtrip-efficiency to the square of the conversion efficiency.2

• Set storage-efficiency to a value below 100% to model (heat) loss.

In addition, folks who write their own custom scheduler (see Plugin Customizations) might also require their custom
flexibility model. That’s no problem, FlexMeasures will let the scheduler decide which flexibility model is relevant and
how it should be validated.

Note: We also aim to model situations with more than one flexible asset, with different types of flexibility. This is
ongoing architecture design work, and therefore happens in development settings, until we are happy with the outcomes.
Thoughts welcome :)

Flex context

With the flexibility context, we aim to describe the system in which the flexible assets operates:

• inflexible-device-sensors — power sensors that are relevant, but not flexible, such as a sensor recording
rooftop solar power connected behind the main meter, whose production falls under the same contract as the
flexible device(s) being scheduled

• consumption-price-sensor — the sensor which defines costs/revenues of consuming energy

• production-price-sensor — the sensor which defines cost/revenues of producing energy

• site-power-capacity— defaults to the Asset attribute capacity_in_mw— maximum/minimum achievable
power at the grid connection point3.

• site-consumption-capacity — defaults to the Asset attribute consumption_capacity_in_mw — maxi-
mum consumption power at the grid connection point5. If site-power-capacity is defined, the minimum
between the site-power-capacity and site-consumption-capacity will be used.

• site-production-capacity — defaults to the Asset attribute production_capacity_in_mw — maximum
production power at the grid connection point4. If site-power-capacity is defined, the minimum between
the site-power-capacity and site-production-capacity will be used.

These should be independent on the asset type and consequently also do not depend on which scheduling algorithm is
being used.

Warning: If no (symmetric, consumption and production) site capacity is defined (also not as defaults), the
scheduler will not enforce any bound on the site power.

2 Setting a roundtrip efficiency of higher than 1 is not supported. We plan to implement a separate field for COP (coefficient of performance)
values.

3 site-consumption-capacity and site-production-capacity allow defining asymmetric contracted transport capacities for each direc-
tion (i.e. production and consumption).

5 Example: with a connection capacity (site-power-capacity) of 1 MVA (apparent power) and a consumption capacity
(site-consumption-capacity) of 800 kW (active power), the scheduler will make sure that the grid inflow doesn’t exceed 800 kW.

4 Example: with a connection capacity (site-power-capacity) of 1 MVA (apparent power) and a production capacity
(site-production-capacity) of 400 kW (active power), the scheduler will make sure that the grid outflow doesn’t exceed 400 kW.

96 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Tracking the recording time of beliefs

For all its time series data, FlexMeasures keeps track of the time they were recorded. Data can be defined and filtered
accordingly, which allows you to get a snapshot of what was known at a certain point in time.

Note: FlexMeasures uses the timely-beliefs data model for modelling such facts about time series data, and accordingly
we use the term “belief” in this documentation. In that model, the recording time is referred to as “belief time”.

Querying by recording time

Some GET endpoints have two optional timing fields to allow such filtering.

The prior field (a timestamp) can be used to select beliefs recorded before some moment in time. It can be used to
“time-travel” to see the state of information at some moment in the past.

In addition, the horizon field (a duration) can be used to select beliefs recorded before some moment in time, relative
to each event. For example, to filter out meter readings communicated within a day (denoted by a negative horizon) or
forecasts created at least a day beforehand (denoted by a positive horizon).

The two timing fields follow the ISO 8601 standard and are interpreted as follows:

• prior: recorded prior to <timestamp>.

• horizon: recorded at least <duration> before the fact (indicated by a positive horizon), or at most <duration>
after the fact (indicated by a negative horizon).

For example (note that you can use both fields together):

{
"horizon": "PT6H",
"prior": "2020-08-01T17:00:00Z"

}

These fields denote that the data should have been recorded at least 6 hours before the fact (i.e. forecasts) and prior to
5 PM on August 1st 2020 (UTC).

Note: In addition to these two timing filters, beliefs can be filtered by their source (see Sources).

Setting the recording time

Some POST endpoints have two optional fields to allow setting the time at which beliefs are recorded in an explicit
manner. This is useful to keep an accurate history of what was known at what time, especially for prognoses. If not
used, FlexMeasures will infer the belief time from the arrival time of the message.

The “prior” field (a timestamp) can be used to set a single time at which the entire time series (e.g. a prognosed series)
was recorded. Alternatively, the “horizon” field (a duration) can be used to set the recording times relative to each
(prognosed) event. In case both fields are set, the earliest possible recording time is determined and recorded for each
(prognosed) event.

The two timing fields follow the ISO 8601 standard and are interpreted as follows:

5.3. I want to build new features quickly, not spend days solving basic problems 97

https://github.com/SeitaBV/timely-beliefs/#the-data-model

FlexMeasures Documentation, Release 0.17

{
"values": [

10,
5,
8

],
"start": "2016-05-01T13:00:00Z",
"duration": "PT45M",
"prior": "2016-05-01T07:45:00Z",

}

This message implies that the entire prognosis was recorded at 7:45 AM UTC, i.e. 6 hours before the end of the entire
time interval.

{
"values": [

10,
5,
8

],
"start": "2016-05-01T13:00:00Z",
"duration": "PT45M",
"horizon": "PT6H"

}

This message implies that all prognosed values were recorded 6 hours in advance. That is, the value for 1:00-1:15 PM
was made at 7:15 AM, the value for 1:15-1:30 PM was made at 7:30 AM, and the value for 1:30-1:45 PM was made at
7:45 AM.

Negative horizons may also be stated (breaking with the ISO 8601 standard) to indicate a belief about something that
has already happened (i.e. after the fact, or simply ex post). For example, the following message implies that all
prognosed values were made 10 minutes after the fact:

{
"values": [

10,
5,
8

],
"start": "2016-05-01T13:00:00Z",
"duration": "PT45M",
"horizon": "-PT10M"

}

Note that, for a horizon indicating a belief 10 minutes after the start of each 15-minute interval, the “horizon” would
have been “PT5M”. This denotes that the prognosed interval has 5 minutes left to be concluded.

98 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Frequency and resolution

FlexMeasures handles two types of time series, which can be distinguished by defining the following timing properties
for events recorded by sensors:

• Frequency: how far apart events occur (a constant duration between event starts)

• Resolution: how long an event lasts (a constant duration between the start and end of an event)

Note: FlexMeasures runs on Pandas, and follows Pandas terminology accordingly. The term frequency as used by
Pandas is the reciprocal of the SI quantity for frequency.

1. The first type of time series describes non-instantaneous events such as average hourly wind speed. For this case,
it is commonly assumed that frequency == resolution. That is, events follow each other sequentially and
without delay.

2. The second type of time series describes instantaneous events (zero resolution) such as temperature at a given
time. For this case, we have frequency != resolution.

Specifying a frequency and resolution is redundant for POST requests that contain both “values” and a “duration” —
FlexMeasures computes the frequency by dividing the duration by the number of values, and, for sensors that record
non-instantaneous events, assumes the resolution of the data is equal to the frequency.

When POSTing data, FlexMeasures checks this inferred resolution against the required resolution of the sensors that
are posted to. If these can’t be matched (through upsampling), an error will occur.

GET requests (such as /sensors/data) return data with a frequency either equal to the resolution that the sensor is con-
figured for (for non-instantaneous sensors), or a default frequency befitting (in our opinion) the requested time interval.
A “resolution” may be specified explicitly to obtain the data in downsampled form, which can be very beneficial for
download speed. For non-instantaneous sensors, the specified resolution needs to be a multiple of the sensor’s res-
olution, e.g. hourly or daily values if the sensor’s resolution is 15 minutes. For instantaneous sensors, the specified
resolution is interpreted as a request for data in a specific frequency. The resolution of the underlying data will remain
zero (and the returned message will say so).

Sources

Requests for data may filter by source. FlexMeasures keeps track of the data source (the data’s author, for example,
a user, forecaster or scheduler belonging to a given organisation) of time series data. For example, to obtain data
originating from data source 42, include the following:

{
"source": 42,

}

Data source IDs can be found by hovering over data in charts.

5.3. I want to build new features quickly, not spend days solving basic problems 99

https://en.wikipedia.org/wiki/SI_derived_unit

FlexMeasures Documentation, Release 0.17

Units

The FlexMeasures API is quite flexible with sent units. A valid unit for timeseries data is any unit that is convertible
to the configured sensor unit registered in FlexMeasures. So, for example, you can send timeseries data with “W” unit
to a “kW” sensor. And if you wish to do so, you can even send a timeseries with “kWh” unit to a “kW” sensor. In this
case, FlexMeasures will convert the data using the resolution of the timeseries.

Signs of power values

USEF recommends to use positive power values to indicate consumption and negative values to indicate production,
i.e. to take the perspective of the Prosumer. If an asset has been configured as a pure producer or pure consumer, the
web service will help avoid mistakes by checking the sign of posted power values.

5.3.23 Version 3.0

Summary

Resource Operation Description
Asset GET /api/v3_0/assets Download asset list

POST /api/v3_0/assets Create a new asset
DELETE /api/v3_0/assets/(id) Delete an asset
GET /api/v3_0/assets/(id) Get an asset
PATCH /api/v3_0/assets/(id) Update an asset
GET /api/v3_0/assets/public Return all public assets.

Chart GET /api/v3_0/assets/(id)/chart/ Download a chart with time series
GET /api/v3_0/assets/(id)/chart_data/ Download time series for use in charts

Data GET /api/v3_0/sensors/data Download sensor data
POST /api/v3_0/sensors/data Upload sensor data

Health GET /api/v3_0/health/ready Get readiness status
Public GET /api/ List available API versions

POST /api/requestAuthToken Obtain an authentication token
GET /api/v3_0 Obtain a service listing for this version

Schedule GET /api/v3_0/sensors/(id)/schedules/(uuid) Download schedule from the platform
POST /api/v3_0/sensors/(id)/schedules/trigger Trigger scheduling job

Sensor GET /api/v3_0/sensors Download sensor list
POST /api/v3_0/sensors Create a new Sensor
DELETE /api/v3_0/sensors/(id) Delete a sensor
GET /api/v3_0/sensors/(id) Get a sensor
PATCH /api/v3_0/sensors/(id) Update a sensor

User GET /api/v3_0/users Download user list
GET /api/v3_0/users/(id) Get a user
PATCH /api/v3_0/users/(id) Patch data for an existing user
PATCH /api/v3_0/users/(id)/password-reset Password reset

100 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

API Details

GET /api/

Public endpoint to list API versions.

POST /api/requestAuthToken

API endpoint to get a fresh authentication access token. Be aware that this fresh token has a limited lifetime
(which depends on the current system setting SECURITY_TOKEN_MAX_AGE).

Pass the email parameter to identify the user. Pass the password parameter to authenticate the user (if not already
authenticated in current session)

GET /api/v3_0

API endpoint to get a service listing for this version.

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – PROCESSED

GET /api/v3_0/assets

List all assets owned by a certain account.

This endpoint returns all accessible assets for the account of the user. The account_id query parameter can be
used to list assets from a different account.

Example response
An example of one asset being returned:

[
{

"id": 1,
"name": "Test battery",
"latitude": 10,
"longitude": 100,
"account_id": 2,
"generic_asset_type_id": 1

}
]

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – PROCESSED

• 400 Bad Request – INVALID_REQUEST

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

5.3. I want to build new features quickly, not spend days solving basic problems 101

https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

FlexMeasures Documentation, Release 0.17

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

POST /api/v3_0/assets

Create new asset.

This endpoint creates a new asset.

Example request

{
"name": "Test battery",
"generic_asset_type_id": 2,
"account_id": 2,
"latitude": 40,
"longitude": 170.3,

}

The newly posted asset is returned in the response.

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 201 Created – CREATED

• 400 Bad Request – INVALID_REQUEST

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

DELETE /api/v3_0/assets/(id)
Delete an asset given its identifier.

This endpoint deletes an existing asset, as well as all sensors and measurements recorded for it.

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 204 No Content – DELETED

• 400 Bad Request – INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-
PECTED_PARAMS

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

102 Chapter 5. Developer support

https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

FlexMeasures Documentation, Release 0.17

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

GET /api/v3_0/assets/(id)
Fetch a given asset.

This endpoint gets an asset.

Example response

{
"generic_asset_type_id": 2,
"name": "Test battery",
"id": 1,
"latitude": 10,
"longitude": 100,
"account_id": 1,

}

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – PROCESSED

• 400 Bad Request – INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-
PECTED_PARAMS

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

PATCH /api/v3_0/assets/(id)
Update an asset given its identifier.

This endpoint sets data for an existing asset. Any subset of asset fields can be sent.

The following fields are not allowed to be updated: - id - account_id

Example request

{
"latitude": 11.1,
"longitude": 99.9,

}

Example response
The whole asset is returned in the response:

5.3. I want to build new features quickly, not spend days solving basic problems 103

https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.17

{
"generic_asset_type_id": 2,
"id": 1,
"latitude": 11.1,
"longitude": 99.9,
"name": "Test battery",
"account_id": 2,

}

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – UPDATED

• 400 Bad Request – INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-
PECTED_PARAMS

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

GET /api/v3_0/assets/(id)/chart/
GET from /assets/<id>/chart

GET /api/v3_0/assets/(id)/chart_data/
GET from /assets/<id>/chart_data

Data for use in charts (in case you have the chart specs already).

GET /api/v3_0/assets/public

Return all public assets.

This endpoint returns all public assets.

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – PROCESSED

• 400 Bad Request – INVALID_REQUEST

• 401 Unauthorized – UNAUTHORIZED

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

104 Chapter 5. Developer support

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.17

GET /api/v3_0/health/ready

Get readiness status

Example response:

{
'database_sql': True,
'database_redis': False

}

GET /api/v3_0/sensors

API endpoint to list all sensors of an account.

This endpoint returns all accessible sensors. Accessible sensors are sensors in the same account as the current
user. Only admins can use this endpoint to fetch sensors from a different account (by using the account_id query
parameter).

Example response
An example of one sensor being returned:

[
{

"entity_address": "ea1.2021-01.io.flexmeasures.company:fm1.42",
"event_resolution": PT15M,
"generic_asset_id": 1,
"name": "Gas demand",
"timezone": "Europe/Amsterdam",
"unit": "m3/h"
"id": 2

}
]

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – PROCESSED

• 400 Bad Request – INVALID_REQUEST

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

POST /api/v3_0/sensors

Create new asset.

This endpoint creates a new Sensor.

Example request

5.3. I want to build new features quickly, not spend days solving basic problems 105

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.17

{
"name": "power",
"event_resolution": "PT1H",
"unit": "kWh",
"generic_asset_id": 1,

}

Example response
The whole sensor is returned in the response:

{
"name": "power",
"unit": "kWh",
"entity_address": "ea1.2023-08.localhost:fm1.1",
"event_resolution": "PT1H",
"generic_asset_id": 1,
"timezone": "UTC",
"id": 2

}

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 201 Created – CREATED

• 400 Bad Request – INVALID_REQUEST

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

DELETE /api/v3_0/sensors/(id)
Delete a sensor given its identifier.

This endpoint deletes an existing sensor, as well as all measurements recorded for it.

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 204 No Content – DELETED

106 Chapter 5. Developer support

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

FlexMeasures Documentation, Release 0.17

• 400 Bad Request – INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-
PECTED_PARAMS

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

GET /api/v3_0/sensors/(id)
Fetch a given sensor.

This endpoint gets a sensor.

Example response

{
"name": "some gas sensor",
"unit": "m3/h",
"entity_address": "ea1.2023-08.localhost:fm1.1",
"event_resolution": "PT10M",
"generic_asset_id": 4,
"timezone": "UTC",
"id": 2

}

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – PROCESSED

• 400 Bad Request – INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-
PECTED_PARAMS

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

PATCH /api/v3_0/sensors/(id)
Update a sensor given its identifier.

This endpoint updates the descriptive data of an existing sensor.

Any subset of sensor fields can be sent. However, the following fields are not allowed to be updated: - id -
generic_asset_id - entity_address

Only admin users have rights to update the sensor fields. Be aware that changing unit, event resolution and
knowledge horizon should currently only be done on sensors without existing belief data (to avoid a serious
mismatch), or if you really know what you are doing.

Example request

5.3. I want to build new features quickly, not spend days solving basic problems 107

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.17

{
"name": "POWER",

}

Example response
The whole sensor is returned in the response:

{
"name": "some gas sensor",
"unit": "m3/h",
"entity_address": "ea1.2023-08.localhost:fm1.1",
"event_resolution": "PT10M",
"generic_asset_id": 4,
"timezone": "UTC",
"id": 2

}

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – UPDATED

• 400 Bad Request – INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-
PECTED_PARAMS

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

GET /api/v3_0/sensors/(id)/schedules/
uuid
Get a schedule from FlexMeasures.

Optional fields
• “duration” (6 hours by default; can be increased to plan further into the future)

Example response
This message contains a schedule indicating to consume at various power rates from 10am UTC onwards for a
duration of 45 minutes.

{
"values": [

2.15,
3,
2

],
(continues on next page)

108 Chapter 5. Developer support

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.17

(continued from previous page)

"start": "2015-06-02T10:00:00+00:00",
"duration": "PT45M",
"unit": "MW"

}

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – PROCESSED

• 400 Bad Request – INVALID_TIMEZONE, INVALID_DOMAIN, INVALID_UNIT, UN-
KNOWN_SCHEDULE, UNRECOGNIZED_CONNECTION_GROUP

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 405 Method Not Allowed – INVALID_METHOD

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

POST /api/v3_0/sensors/(id)/schedules/trigger
Trigger FlexMeasures to create a schedule.

Trigger FlexMeasures to create a schedule for this sensor. The assumption is that this sensor is the power sensor
on a flexible asset.

In this request, you can describe:

• the schedule’s main features (when does it start, what unit should it report, prior to what time can we assume
knowledge)

• the flexibility model for the sensor (state and constraint variables, e.g. current state of charge of a battery,
or connection capacity)

• the flexibility context which the sensor operates in (other sensors under the same EMS which are relevant,
e.g. prices)

For details on flexibility model and context, see Describing flexibility. Below, we’ll also list some examples.

Note: This endpoint does not support to schedule an EMS with multiple flexible sensors at once. This will hap-
pen in another endpoint. See https://github.com/FlexMeasures/flexmeasures/issues/485. Until then, it is possible
to call this endpoint for one flexible endpoint at a time (considering already scheduled sensors as inflexible).

The length of the schedule can be set explicitly through the ‘duration’ field. Otherwise, it is set by the config
setting FLEXMEASURES_PLANNING_HORIZON , which defaults to 48 hours. If the flex-model contains tar-
gets that lie beyond the planning horizon, the length of the schedule is extended to accommodate them. Finally,
the schedule length is limited by max_planning_horizon_config, which defaults to 2520 steps of the sensor’s
resolution. Targets that exceed the max planning horizon are not accepted.

5.3. I want to build new features quickly, not spend days solving basic problems 109

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://github.com/FlexMeasures/flexmeasures/issues/485

FlexMeasures Documentation, Release 0.17

The appropriate algorithm is chosen by FlexMeasures (based on asset type). It’s also possible to use custom
schedulers and custom flexibility models, see Plugin Customizations.

If you have ideas for algorithms that should be part of FlexMeasures, let us know: https://flexmeasures.io/
get-in-touch/

Example request A
This message triggers a schedule for a storage asset, starting at 10.00am, at which the state of charge (soc) is 12.1
kWh.

{
"start": "2015-06-02T10:00:00+00:00",
"flex-model": {

"soc-at-start": 12.1,
"soc-unit": "kWh"

}
}

Example request B
This message triggers a 24-hour schedule for a storage asset, starting at 10.00am, at which the state of charge
(soc) is 12.1 kWh, with a target state of charge of 25 kWh at 4.00pm. The global minimum and maximum soc are
set to 10 and 25 kWh, respectively. To guarantee a minimum SOC in the period prior to 4.00pm, local minima
constraints are imposed (via soc-minima) at 2.00pm and 3.00pm, for 15kWh and 20kWh, respectively. Roundtrip
efficiency for use in scheduling is set to 98%. Storage efficiency is set to 99.99%, denoting the state of charge
left after each time step equal to the sensor’s resolution. Aggregate consumption (of all devices within this EMS)
should be priced by sensor 9, and aggregate production should be priced by sensor 10, where the aggregate power
flow in the EMS is described by the sum over sensors 13, 14 and 15 (plus the flexible sensor being optimized, of
course). Note that, if forecasts for sensors 13, 14 and 15 are not available, a schedule cannot be computed.

{
"start": "2015-06-02T10:00:00+00:00",
"duration": "PT24H",
"flex-model": {

"soc-at-start": 12.1,
"soc-unit": "kWh",
"soc-targets": [

{
"value": 25,
"datetime": "2015-06-02T16:00:00+00:00"

},
],
"soc-minima" : [

{
"value": 15,
"datetime" : "2015-06-02T14:00:00+00:00"

},
{

"value": 20,
"datetime" : "2015-06-02T15:00:00+00:00"

}
],
"soc-min": 10,
"soc-max": 25,
"roundtrip-efficiency": 0.98,

(continues on next page)

110 Chapter 5. Developer support

https://flexmeasures.io/get-in-touch/
https://flexmeasures.io/get-in-touch/

FlexMeasures Documentation, Release 0.17

(continued from previous page)

"storage-efficiency": 0.9999,
"power-capacity" : "25kW"

},
"flex-context": {

"consumption-price-sensor": 9,
"production-price-sensor": 10,
"inflexible-device-sensors": [13, 14, 15],
"site-power-capacity": "100kW",
"site-production-capacity": "80kW",
"site-consumption-capacity": "100kW"

}
}

Example response
This message indicates that the scheduling request has been processed without any error. A scheduling job has
been created with some Universally Unique Identifier (UUID), which will be picked up by a worker. The given
UUID may be used to obtain the resulting schedule: see /sensors/<id>/schedules/<uuid>.

{
"status": "PROCESSED",
"schedule": "364bfd06-c1fa-430b-8d25-8f5a547651fb",
"message": "Request has been processed."

}

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – PROCESSED

• 400 Bad Request – INVALID_DATA

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 405 Method Not Allowed – INVALID_METHOD

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

GET /api/v3_0/sensors/data

Get sensor data from FlexMeasures.

Example request

{
"sensor": "ea1.2021-01.io.flexmeasures:fm1.1",
"start": "2021-06-07T00:00:00+02:00",
"duration": "PT1H",

(continues on next page)

5.3. I want to build new features quickly, not spend days solving basic problems 111

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.17

(continued from previous page)

"resolution": "PT15M",
"unit": "m3/h"

}

The unit has to be convertible from the sensor’s unit.

Optional fields
• “resolution” (see Frequency and resolution)

• “horizon” (see Tracking the recording time of beliefs)

• “prior” (see Tracking the recording time of beliefs)

• “source” (see Sources)

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – PROCESSED

• 400 Bad Request – INVALID_REQUEST

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

POST /api/v3_0/sensors/data

Post sensor data to FlexMeasures.

Example request

{
"sensor": "ea1.2021-01.io.flexmeasures:fm1.1",
"values": [-11.28, -11.28, -11.28, -11.28],
"start": "2021-06-07T00:00:00+02:00",
"duration": "PT1H",
"unit": "m3/h"

}

The above request posts four values for a duration of one hour, where the first event start is at the given start time,
and subsequent events start in 15 minute intervals throughout the one hour duration.

The sensor is the one with ID=1. The unit has to be convertible to the sensor’s unit. The resolution of the data
has to match the sensor’s required resolution, but FlexMeasures will attempt to upsample lower resolutions. The
list of values may include null values.

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

112 Chapter 5. Developer support

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

FlexMeasures Documentation, Release 0.17

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – PROCESSED

• 400 Bad Request – INVALID_REQUEST

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

GET /api/v3_0/users

API endpoint to list all users of an account.

This endpoint returns all accessible users. By default, only active users are returned. The include_inactive query
parameter can be used to also fetch inactive users. Accessible users are users in the same account as the current
user. Only admins can use this endpoint to fetch users from a different account (by using the account_id query
parameter).

Example response
An example of one user being returned:

[
{

'active': True,
'email': 'test_prosumer@seita.nl',
'account_id': 13,
'flexmeasures_roles': [1, 3],
'id': 1,
'timezone': 'Europe/Amsterdam',
'username': 'Test Prosumer User'

}
]

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – PROCESSED

• 400 Bad Request – INVALID_REQUEST

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

5.3. I want to build new features quickly, not spend days solving basic problems 113

https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.17

GET /api/v3_0/users/(id)
API endpoint to get a user.

This endpoint gets a user. Only admins or the members of the same account can use this endpoint.

Example response

{
'account_id': 1,
'active': True,
'email': 'test_prosumer@seita.nl',
'flexmeasures_roles': [1, 3],
'id': 1,
'timezone': 'Europe/Amsterdam',
'username': 'Test Prosumer User'

}

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – PROCESSED

• 400 Bad Request – INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-
PECTED_PARAMS

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

PATCH /api/v3_0/users/(id)
API endpoint to patch user data.

This endpoint sets data for an existing user. It has to be used by the user themselves, admins or account-admins
(of the same account). Any subset of user fields can be sent. If the user is not an (account-)admin, they can only
edit a few of their own fields.

The following fields are not allowed to be updated at all:
• id

• account_id

Example request

{
"active": false,

}

Example response
The following user fields are returned:

114 Chapter 5. Developer support

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2

FlexMeasures Documentation, Release 0.17

{
'account_id': 1,
'active': True,
'email': 'test_prosumer@seita.nl',
'flexmeasures_roles': [1, 3],
'id': 1,
'timezone': 'Europe/Amsterdam',
'username': 'Test Prosumer User'

}

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – UPDATED

• 400 Bad Request – INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-
PECTED_PARAMS

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

PATCH /api/v3_0/users/(id)/password-reset
API endpoint to reset the user’s current password, cookies and auth tokens, and to email a password reset link to
the user.

Reset the user’s password, and send them instructions on how to reset the password. This endpoint is useful from
a security standpoint, in case of worries the password might be compromised. It sets the current password to
something random, invalidates cookies and auth tokens, and also sends an email for resetting the password to the
user.

Users can reset their own passwords. Only admins can use this endpoint to reset passwords of other users.

Request Headers
• Authorization – The authentication token

• Content-Type – application/json

Response Headers
• Content-Type – application/json

Status Codes
• 200 OK – PROCESSED

• 400 Bad Request – INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEX-
PECTED_PARAMS

• 401 Unauthorized – UNAUTHORIZED

• 403 Forbidden – INVALID_SENDER

5.3. I want to build new features quickly, not spend days solving basic problems 115

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

FlexMeasures Documentation, Release 0.17

• 422 Unprocessable Entity – UNPROCESSABLE_ENTITY

5.3.24 Developer API

These endpoints are still under development and are subject to change in new releases.

Summary

Resource Operation Description
Chart GET /api/dev/asset/(id)/ Download asset attributes for use in

charts
GET /api/dev/sensor/(id)/ Download sensor attributes for use in

charts
GET /api/dev/sensor/(id)/chart/ Download a chart with time series
GET /api/dev/sensor/(id)/chart_annotations/ Download annotations for use in charts
GET /api/dev/sensor/(id)/chart_data/ Download time series for use in charts

API Details

GET /api/dev/asset/(id)/
GET from /asset/<id>

GET /api/dev/sensor/(id)/
GET from /sensor/<id>

GET /api/dev/sensor/(id)/chart/
GET from /sensor/<id>/chart

Optional fields
• “event_starts_after” (see the timely-beliefs documentation)

• “event_ends_before” (see the timely-beliefs documentation)

• “beliefs_after” (see the timely-beliefs documentation)

• “beliefs_before” (see the timely-beliefs documentation)

• “include_data” (if true, chart specs include the data; if false, use the GET /api/dev/sensor/(id)/chart_data/
endpoint to fetch data)

• “chart_type” (currently ‘bar_chart’ and ‘daily_heatmap’ are supported types)

• “width” (an integer number of pixels; without it, the chart will be scaled to the full width of the container
(hint: use <div style="width: 100%;"> to set a div width to 100%)

• “height” (an integer number of pixels; without it, FlexMeasures sets a default, currently 300)

GET /api/dev/sensor/(id)/chart_annotations/
GET from /sensor/<id>/chart_annotations

Annotations for use in charts (in case you have the chart specs already).

116 Chapter 5. Developer support

https://www.rfc-editor.org/rfc/rfc4918#section-11.2
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
../api/dev.html#get--api-dev-sensor-(id)-chart_data-

FlexMeasures Documentation, Release 0.17

GET /api/dev/sensor/(id)/chart_data/
GET from /sensor/<id>/chart_data

Data for use in charts (in case you have the chart specs already).

Optional fields
• “event_starts_after” (see the timely-beliefs documentation)

• “event_ends_before” (see the timely-beliefs documentation)

• “beliefs_after” (see the timely-beliefs documentation)

• “beliefs_before” (see the timely-beliefs documentation)

• “resolution” (see resolutions)

• “most_recent_beliefs_only” (if true, returns the most recent belief for each event; if false, returns each
belief for each event; defaults to true)

5.3.25 API change log

Note: The FlexMeasures API follows its own versioning scheme. This is also reflected in the URL (e.g. /api/v3_0),
allowing developers to upgrade at their own pace.

v3.0-13 | 2023-10-31

• Read access to accounts, assets and sensors is given to external consultants (users with the consultant role who
belong to a different organisation account) in case a consultancy relationship has been set up.

• The /accounts/<id> (GET) endpoint includes the account ID of its consultancy.

• Introduced the site-consumption-capacity and site-production-capacity to the flex-context field
for /sensors/<id>/schedules/trigger (POST).

v3.0-12 | 2023-09-20

• Introduced the power-capacity field under flex-model, and the site-power-capacity field under
flex-context, for /sensors/<id>/schedules/trigger (POST).

v3.0-11 | 2023-08-02

• Added REST endpoint for fetching one sensor: /sensors/<id> (GET)

• Added REST endpoint for adding a sensor: /sensors (POST)

• Added REST endpoint for patching a sensor: /sensors/<id> (PATCH)

• Added REST endpoint for deleting a sensor: /sensors/<id> (DELETE)

5.3. I want to build new features quickly, not spend days solving basic problems 117

https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors

FlexMeasures Documentation, Release 0.17

v3.0-10 | 2023-06-12

• Introduced the storage-efficiency field to the ``flex-model``field for /sensors/<id>/schedules/trigger
(POST).

• Introduced the database_redis optional field to the response of the endpoint /health/ready (GET).

v3.0-9 | 2023-04-26

• Added missing documentation for the public endpoints for authentication and listing active API versions.

• Added REST endpoint for listing available services for a specific API version: /api/v3_0 (GET). This function-
ality is similar to the getService endpoint for older API versions, but now also returns the full URL for each
available service.

v3.0-8 | 2023-03-23

• Added REST endpoint for listing accounts and their account roles: /accounts (GET)

• Added REST endpoint for showing an account and its account roles: /accounts/<id> (GET)

v3.0-7 | 2023-02-28

• Fix premature deserialization of flex-context field for /sensors/<id>/schedules/trigger (POST).

v3.0-6 | 2023-02-01

• Sunset all fields that were moved to flex-model and flex-context fields to /sensors/<id>/schedules/trigger
(POST). See v3.0-5.

v3.0-5 | 2023-01-04

• Introduced flex-model and flex-context fields to /sensors/<id>/schedules/trigger (POST). They are dictio-
naries and group pre-existing fields:

– soc-at-start -> send in flex-model instead

– soc-min -> send in flex-model instead

– soc-max -> send in flex-model instead

– soc-targets -> send in flex-model instead

– soc-unit -> send in flex-model instead

– roundtrip-efficiency -> send in flex-model instead

– prefer-charging-sooner -> send in flex-model instead

– consumption-price-sensor -> send in flex-context instead

– production-price-sensor -> send in flex-context instead

– inflexible-device-sensors -> send in flex-context instead

• Introduced the duration field to /sensors/<id>/schedules/trigger (POST) for setting a planning horizon explic-
itly.

118 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

• Allow posting soc-targets to /sensors/<id>/schedules/trigger (POST) that exceed the default planning hori-
zon, and ignore posted targets that exceed the max planning horizon.

• Added a subsection on deprecating and sunsetting to the Introduction section.

• Added a subsection on describing flexibility to the Notation section.

v3.0-4 | 2022-12-08

• Allow posting null values to /sensors/data (POST) to correctly space time series that include missing values
(the missing values are not stored).

• Introduced the source field to /sensors/data (GET) to obtain data for a given source (ID).

• Fixed the JSON wrapping of the return message for /sensors/data (GET).

• Changed the Notation section:

– Rewrote the section on filtering by source (ID) with a deprecation notice on filtering by account role and
user ID.

v3.0-3 | 2022-08-28

• Introduced consumption_price_sensor, production_price_sensor and
inflexible_device_sensors fields to /sensors/<id>/schedules/trigger (POST).

v3.0-2 | 2022-07-08

• Introduced the “resolution” field to /sensors/data (GET) to obtain data in a given resolution.

v3.0-1 | 2022-05-08

• Added REST endpoint for checking application health (readiness to accept requests): /health/ready (GET).

v3.0-0 | 2022-03-25

• Added REST endpoint for listing sensors: /sensors (GET).

• Added REST endpoints for managing sensor data: /sensors/data (GET, POST).

• Added REST endpoints for managing assets: /assets (GET, POST) and /assets/<id> (GET, PATCH, DELETE).

• Added REST endpoints for triggering and getting schedules: /sensors/<id>/schedules/<uuid> (GET) and /sen-
sors/<id>/schedules/trigger (POST).

• [Breaking change] Switched to plural resource names for REST endpoints: /users/<id> (GET, PATCH) and
/users/<id>/password-reset (PATCH).

• [Breaking change] Deprecated the following endpoints (NB replacement endpoints mentioned below no longer
require the message “type” field):

– getConnection -> use /sensors (GET) instead

– getDeviceMessage -> use /sensors/<id>/schedules/<uuid> (GET) instead, where <id> is the sensor id from
the “event” field and <uuid> is the value of the “schedule” field returned by /sensors/<id>/schedules/trigger
(POST)

5.3. I want to build new features quickly, not spend days solving basic problems 119

FlexMeasures Documentation, Release 0.17

– getMeterData -> use /sensors/data (GET) instead, replacing the “connection” field with “sensor”

– getPrognosis -> use /sensors/data (GET) instead, replacing the “connection” field with “sensor”

– getService -> use /api/v3_0 (GET) instead (since v3.0-9), or consult the public API documentation instead,
at https://flexmeasures.readthedocs.io

– postMeterData -> use /sensors/data (POST) instead, replacing the “connection” field with “sensor”

– postPriceData -> use /sensors/data (POST) instead, replacing the “market” field with “sensor”

– postPrognosis -> use /sensors/data (POST) instead, replacing the “connection” field with “sensor”

– postUdiEvent -> use /sensors/<id>/schedules/trigger (POST) instead, where <id> is the sensor id from the
“event” field, and rename the following fields:

∗ “datetime” -> “start”

∗ “value -> “soc-at-start”

∗ “unit” -> “soc-unit”

∗ “targets” -> “soc-targets”

∗ “soc_min” -> soc-min”

∗ “soc_max” -> soc-max”

∗ “roundtrip_efficiency” -> “roundtrip-efficiency”

– postWeatherData -> use /sensors/data (POST) instead

– restoreData

• Changed the Introduction section:

– Rewrote the section on service listing for API versions to refer to the public documentation.

– Rewrote the section on entity addresses to refer to sensors instead of connections.

– Rewrote the sections on roles and sources into a combined section that refers to account roles rather than
USEF roles.

– Deprecated the section on group notation.

v2.0-7 | 2022-05-05

API v2.0 is removed.

v2.0-6 | 2022-04-26

API v2.0 is sunset.

120 Chapter 5. Developer support

https://flexmeasures.readthedocs.io

FlexMeasures Documentation, Release 0.17

v2.0-5 | 2022-02-13

API v2.0 is deprecated.

v2.0-4 | 2022-01-04

• Updated entity addresses in documentation, according to the fm1 scheme.

• Changed the Introduction section:

– Rewrote the subsection on entity addresses to refer users to where they can find the entity addresses of their
sensors.

– Rewrote the subsection on sensor identification (formerly known as asset identification) to place the fm1
scheme front and center.

• Fixed the categorisation of the postMeterData, postPrognosis, postPriceData and postWeatherData endpoints
from the User category to the Data category.

v2.0-3 | 2021-06-07

• Updated all entity addresses in documentation according to the fm0 scheme, preserving backwards compatibility.

• Introduced the fm1 scheme for entity addresses for connections, markets, weather sensors and sensors.

v2.0-2 | 2021-04-02

• [Breaking change] Switched the interpretation of horizons to rolling horizons.

• [Breaking change] Deprecated the use of ISO 8601 repeating time intervals to denote rolling horizons.

• Introduced the “prior” field for postMeterData, postPrognosis, postPriceData and postWeatherData endpoints.

• Changed the Introduction section:

– Rewrote the subsection on prognoses to explain the horizon and prior fields.

• Changed the Simulation section:

– Rewrote relevant examples using horizon and prior fields.

v2.0-1 | 2021-02-19

• Added REST endpoints for managing users: /users/ (GET), /user/<id> (GET, PATCH) and
/user/<id>/password-reset (PATCH).

v2.0-0 | 2020-11-14

• Added REST endpoints for managing assets: /assets/ (GET, POST) and /asset/<id> (GET, PATCH, DELETE).

5.3. I want to build new features quickly, not spend days solving basic problems 121

FlexMeasures Documentation, Release 0.17

v1.3-14 | 2022-05-05

API v1.3 is removed.

v1.3-13 | 2022-04-26

API v1.3 is sunset.

v1.3-12 | 2022-02-13

API v1.3 is deprecated.

v1.3-11 | 2022-01-05

Affects all versions since v1.3.

• Changed and extended the postUdiEvent endpoint:

– The recording time of new schedules triggered by calling the endpoint is now the time at which the endpoint
was called, rather than the datetime of the sent state of charge (SOC).

– Introduced the “prior” field for the purpose of communicating an alternative recording time, thereby keeping
support for simulations.

– Introduced an optional “roundtrip_efficiency” field, for use in scheduling.

v1.3-10 | 2021-11-08

Affects all versions since v1.3.

• Fixed the getDeviceMessage endpoint for cases in which there are multiple schedules available, by returning only
the most recent one.

v1.3-9 | 2021-04-21

Affects all versions since v1.0.

• Fixed regression by partially reverting the breaking change of v1.3-8: Re-instantiated automatic inference of
horizons for Post requests for API versions below v2.0, but changed to inference policy: now inferring the data
was recorded right after each event took place (leading to a zero horizon for each data point) rather than after
the last event took place (which led to a different horizon for each data point); the latter had been the inference
policy before v1.3-8.

v1.3-8 | 2020-04-02

Affects all versions since v1.0.

• [Breaking change, partially reverted in v1.3-9] Deprecated the automatic inference of horizons for postMeter-
Data, postPrognosis, postPriceData and postWeatherData endpoints for API versions below v2.0.

122 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

v1.3-7 | 2020-12-16

Affects all versions since v1.0.

• Separated the dual purpose of the “horizon” field in the getMeterData and getPrognosis endpoints by introducing
the “prior” field:

– The “horizon” field in GET endpoints is now always interpreted as a rolling horizon, regardless of whether
it is stated as an ISO 8601 repeating time interval.

– The getMeterData and getPrognosis endpoints now accept an optional “prior” field to select only data
recorded before a certain ISO 8601 timestamp (replacing the unintuitive usage of the horizon field for
specifying a latest time of belief).

v1.3-6 | 2020-12-11

Affects all versions since v1.0.

• The getMeterData and getPrognosis endpoints now return the INVALID_SOURCE status 400 response in case
the optional “source” field is used and no relevant sources can be found.

v1.3-5 | 2020-10-29

Affects all versions since v1.0.

• Endpoints to POST meter data will now check incoming data to see if the required asset’s resolution is being used
— upsampling is done if possible. These endpoints can now return the REQUIRED_INFO_MISSING status 400
response.

• Endpoints to GET meter data will return data in the asset’s resolution — downsampling to the “resolution” field
is done if possible.

• As they need to determine the asset, all of the mentioned POST and GET endpoints can now return the UNREC-
OGNIZED_ASSET status 400 response.

v1.3-4 | 2020-06-18

• Improved support for use cases of the getDeviceMessage endpoint in which a longer duration, between posting
UDI events and retrieving device messages based on those UDI events, is required; the default time to live of
UDI event identifiers is prolonged from 500 seconds to 7 days, and can be set as a config variable (FLEXMEA-
SURES_PLANNING_TTL)

v1.3-3 | 2020-06-07

• Changed backend support (API specifications unaffected) for scheduling charging stations to scheduling Electric
Vehicle Supply Equipment (EVSE), in accordance with the Open Charge Point Interface (OCPI).

5.3. I want to build new features quickly, not spend days solving basic problems 123

FlexMeasures Documentation, Release 0.17

v1.3-2 | 2020-03-11

• Fixed example entity addresses in simulation section

v1.3-1 | 2020-02-08

• Backend change: the default planning horizon can now be set in FlexMeasures’s configuration (FLEXMEA-
SURES_PLANNING_HORIZON)

v1.3-0 | 2020-01-28

• Introduced new event type “soc-with-targets” to support scheduling charging stations (see extra example for the
postUdiEvent endpoint)

• The postUdiEvent endpoint now triggers scheduling jobs to be set up (rather than scheduling directly triggered
by the getDeviceMessage endpoint)

• The getDeviceMessage now queries the job queue and database for an available schedule

v1.2-6 | 2022-05-05

API v1.2 is removed.

v1.2-5 | 2022-04-26

API v1.2 is sunset.

v1.2-4 | 2022-02-13

API v1.2 is deprecated.

v1.2-3 | 2020-01-28

• Updated endpoint descriptions with additional possible status 400 responses:

– INVALID_DOMAIN for invalid entity addresses

– UNKNOWN_PRICES for infeasible schedules due to missing prices

v1.2-2 | 2018-10-08

• Added a list of registered types of weather sensors to the Simulation section and postWeatherData endpoint

• Changed example for the postPriceData endpoint to reflect Korean situation

124 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

v1.2-1 | 2018-09-24

• Added a local table of contents to the Simulation section

• Added a description of the postPriceData endpoint in the Simulation section

• Added a description of the postWeatherData endpoint in the Simulation section

• Revised the subsection about posting power data in the Simulation section

• Revised the entity address for UDI events to include the type of the event

i.e.

{
"type": "PostUdiEventRequest",
"event": "ea1.2021-01.io.flexmeasures.company:7:10:203:soc",

}

rather than the erroneously double-keyed:

{
"type": "PostUdiEventRequest",
"event": "ea1.2021-01.io.flexmeasures.company:7:10:203",
"type": "soc"

}

v1.2-0 | 2018-09-08

• Added a description of the postUdiEvent endpoint in the Prosumer and Simulation sections

• Added a description of the getDeviceMessage endpoint in the Prosumer and Simulation sections

v1.1-8 | 2022-05-05

API v1.1 is removed.

v1.1-7 | 2022-04-26

API v1.1 is sunset.

v1.1-6 | 2022-02-13

API v1.1 is deprecated.

5.3. I want to build new features quickly, not spend days solving basic problems 125

FlexMeasures Documentation, Release 0.17

v1.1-5 | 2020-06-18

• Fixed the getConnection endpoint where the returned list of connection names had been unnecessarily nested

v1.1-4 | 2020-03-11

• Added support for posting daily and weekly prices for the postPriceData endpoint

v1.1-3 | 2018-09-08

• Added the Simulation section:

– Added information about setting up a new simulation

– Added examples for calling the postMeterData endpoint

– Added example for calling the getPrognosis endpoint

v1.1-2 | 2018-08-15

• Added the postPrognosis endpoint

• Added the postPriceData endpoint

• Added a description of the postPrognosis endpoint in the Aggregator section

• Added a description of the postPriceData endpoint in the Aggregator and Supplier sections

• Added the restoreData endpoint for servers in play mode

v1.1-1 | 2018-08-06

• Added the getConnection endpoint

• Added the postWeatherData endpoint

• Changed the Introduction section:

– Added information about the sign of power values (production is negative)

– Updated information about horizons (now anchored to the end of each time interval rather than to the start)

• Added an optional horizon to the postMeterData endpoint

v1.1-0 | 2018-07-15

• Added the getPrognosis endpoint

• Changed the getMeterData endpoint to accept an optional resolution, source, and horizon

• Changed the Introduction section:

– Added information about timeseries resolutions

– Added information about sources

– Updated information about horizons

• Added a description of the getPrognosis endpoint in the Supplier section

126 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

v1.0-4 | 2022-05-05

API v1.0 is removed.

v1.0-3 | 2022-04-26

API v1.0 is sunset.

v1.0-2 | 2022-02-13

API v1.0 is deprecated.

v1.0-1 | 2018-07-10

• Moved specifications to be part of the platform’s Sphinx documentation:

– Each API service is now documented in the docstring of its respective endpoint

– Added sections listing all endpoints per version

– Documentation includes specifications of all supported API versions (supported versions have a registered
Flask blueprint)

v1.0-0 | 2018-07-10

• Started change log

• Added Introduction section with notes regarding:

– Authentication

– Relevant roles for the API

– Key notation

– The addressing scheme for assets

– Connection group notation

– Timeseries notation

– Prognosis notation

– Units of timeseries data

• Added a description of the getService endpoint in the Introduction section

• Added a description of the postMeterData endpoint in the MDC section

• Added a description of the getMeterData endpoint in the Prosumer section

5.3. I want to build new features quickly, not spend days solving basic problems 127

FlexMeasures Documentation, Release 0.17

5.3.26 CLI Commands

FlexMeasures comes with a command-line utility, which helps to manage data. Below, we list all available commands.

Each command has more extensive documentation if you call it with --help.

We keep track of changes to these commands in FlexMeasures CLI Changelog. You can also get the current overview
over the commands you have available by:

flexmeasures --help
flexmeasures [command] --help

This also shows admin commands made available through Flask and installed extensions (such as Flask-Security and
Flask-Migrate), of which some are referred to in this documentation.

add - Add data

flexmeasures add initial-structure Initialize structural data like users, roles and asset types.
flexmeasures add account-role Create a FlexMeasures tenant account role.
flexmeasures add account Create a FlexMeasures tenant account.
flexmeasures add user Create a FlexMeasures user.
flexmeasures add asset-type Create a new asset type.
flexmeasures add asset Create a new asset.
flexmeasures add sensor Add a new sensor.
flexmeasures add beliefs Load beliefs from file.
flexmeasures add source Add a new data source.
flexmeasures add forecasts Create forecasts.
flexmeasures add schedule for-storage Create a charging schedule for a storage asset.
flexmeasures add schedule for-process Create a schedule for a process asset.
flexmeasures add holidays Add holiday annotations to accounts and/or assets.
flexmeasures add annotation Add annotation to accounts, assets and/or sensors.
flexmeasures add toy-account Create a toy account, for tutorials and trying things.
flexmeasures add report Create a report.

show - Show data

flexmeasures show accounts List accounts.
flexmeasures show account Show an account, its users and assets.
flexmeasures show asset-types List available asset types.
flexmeasures show asset Show an asset and its sensors.
flexmeasures show roles List available account- and user roles.
flexmeasures show data-sources List available data sources.
flexmeasures show beliefs Plot time series data.
flexmeasures show reporters List available reporters.
flexmeasures show schedulers List available schedulers.

128 Chapter 5. Developer support

https://flask-security-too.readthedocs.io
https://flask-migrate.readthedocs.io

FlexMeasures Documentation, Release 0.17

edit - Edit data

flexmeasures edit attribute Edit (or add) an asset attribute or sensor attribute.
flexmeasures edit resample-data

Assign a new event resolution to an existing sensor
and resample its data accordingly.

delete - Delete data

flexmeasures delete structure

Delete all structural (non time-series) data,
like assets (types), roles and users.

flexmeasures delete account-role Delete a tenant account role.
flexmeasures delete account

Delete a tenant account & also their users
(with assets and power measurements).

flexmeasures delete user Delete a user & also their assets and power measure-
ments.

flexmeasures delete asset Delete an asset & also its sensors and data.
flexmeasures delete sensor Delete a sensor and all beliefs about it.
flexmeasures delete measurements Delete measurements (with horizon <= 0).
flexmeasures delete prognoses Delete forecasts and schedules (forecasts > 0).
flexmeasures delete unchanged-beliefs Delete unchanged beliefs.
flexmeasures delete nan-beliefs Delete NaN beliefs.

jobs - Job queueing

flexmeasures jobs run-worker Start a worker process for forecasting and/or scheduling jobs.
flexmeasures jobs show queues List job queues.
flexmeasures jobs clear-queue Clear a job queue.

db-ops - Operations on the whole database

flexmeasures db-ops dump Create a dump of all current data (using pg_dump).
flexmeasures db-ops load Load backed-up contents (see db-ops save), run reset first.
flexmeasures db-ops reset Reset database data and re-create tables from data model.
flexmeasures db-ops restore Restore the dump file, see db-ops dump (run reset first).
flexmeasures db-ops save Backup db content to files.

5.3. I want to build new features quickly, not spend days solving basic problems 129

FlexMeasures Documentation, Release 0.17

5.3.27 FlexMeasures CLI Changelog

since v0.17.0 | November 8, 2023

• Add --consultancy option to flexmeasures add account to create a consultancy relationship with another
account.

since v0.16.0 | September 29, 2023

• Add command flexmeasures add sources to add the base DataSources for the DataGenerators.

• Add command flexmeasures show chart to export sensor and asset charts in PNG or SVG formats.

• Add --kind reporter option to flexmeasures add toy-account to create the asset and sensors for the
reporter tutorial.

• Add --id option to flexmeasures show data-sources to show just one DataSource.

• Add --show-attributes flag to flexmeasures show data-sources to select whether to show the at-
tributes field or not.

since v0.15.0 | August 9, 2023

• Allow deleting multiple sensors with a single call to flexmeasures delete sensor by passing the --id
option multiple times.

• Add flexmeasures add schedule for-process to create a new process schedule for a given power sensor.

• Add support for describing config and parameters in YAML for the command flexmeasures add report,
editable in user’s code editor using the flags --edit-config or --edit-parameters.

• Add --kind process option to create the asset and sensors for the ProcessScheduler tutorial.

since v0.14.1 | June 20, 2023

• Avoid saving any NaN values to the database, when calling flexmeasures add report.

• Fix defaults for the --start-offset and --end-offset` options to ``flexmeasures add report,
which weren’t being interpreted in the local timezone of the reporting sensor.

since v0.14.0 | June 15, 2023

• Allow setting a storage efficiency using the new --storage-efficiency option to the flexmeasures add
schedule for-storage CLI command.

• Add CLI command flexmeasures add report to calculate a custom report from sensor data and save the
results to the database, with the option to export them to a CSV or Excel file.

• Add CLI command flexmeasures show reporters to list available reporters, including any defined in reg-
istered plugins.

• Add CLI command flexmeasures show schedulers to list available schedulers, including any defined in
registered plugins.

• Make --account-id optional in flexmeasures add asset to support creating public assets, which are avail-
able to all users.

130 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

since v0.13.0 | May 1, 2023

• Add flexmeasures add source CLI command for adding a new data source.

• Add --inflexible-device-sensor option to flexmeasures add schedule.

since v0.12.0 | January 04, 2023

• Add --resolution, --timezone and --to-file options to flexmeasures show beliefs, to show beliefs
data in a custom resolution and/or timezone, and also to save shown beliefs data to a CSV file.

• Add options to flexmeasures add beliefs to 1) read CSV data with timezone naive datetimes (use
--timezone to localize the data), 2) read CSV data with datetime/timedelta units (use --unit datetime or
--unit timedelta, 3) remove rows with NaN values, and 4) add filter to read-in data by matching values in
specific columns (use --filter-column and --filter-value together).

• Fix flexmeasures db-ops dump and flexmeasures db-ops restore incorrectly reporting a success
when pg_dump and pg_restore are not installed.

• Add flexmeasures monitor last-seen.

• Rename flexmeasures monitor tasks to flexmeasures monitor last-run.

• Rename flexmeasures add schedule to flexmeasures add schedule for-storage (in expectation of
more scheduling commands, based on in-built flex models).

since v0.11.0 | August 28, 2022

• Add flexmeasures jobs show-queues to show contents of computation job queues.

• --name parameter in flexmeasures jobs run-worker is now optional.

• Add --custom-message param to flexmeasures monitor tasks.

• Rename -optimization-context-id to --consumption-price-sensor in flexmeasures add
schedule, and added --production-price-sensor.

since v0.9.0 | March 25, 2022

• Add CLI commands for showing data flexmeasures show accounts, flexmeasures show account,
flexmeasures show roles, flexmeasures show asset-types, flexmeasures show asset,
flexmeasures show data-sources, and flexmeasures show beliefs.

• Add flexmeasures db-ops resample-data CLI command to resample sensor data to a different resolution.

• Add flexmeasures edit attribute CLI command to edit/add an attribute on an asset or sensor.

• Add flexmeasures add toy-account for tutorials and trying things.

• Add flexmeasures add schedule to create a new schedule for a given power sensor.

• Add flexmeasures delete asset to delete an asset (including its sensors and data).

• Rename flexmeasures add structure to flexmeasures add initial-structure.

5.3. I want to build new features quickly, not spend days solving basic problems 131

FlexMeasures Documentation, Release 0.17

since v0.8.0 | January 26, 2022

• Add flexmeasures add sensor, flexmeasures add asset-type, `flexmeasures add beliefs.
These were previously experimental features (under the dev-add command group).

• flexmeasures add asset now directly creates an asset in the new data model.

• Add flexmeasures delete sensor, flexmeasures delete nan-beliefs and flexmeasures delete
unchanged-beliefs.

since v0.6.0 | April 2, 2021

• Add flexmeasures add account, flexmeasures delete account, and the --account-id param to
flexmeasures add user.

since v0.4.0 | April 2, 2021

• Add the dev-add command group for experimental features around the upcoming data model refactoring.

since v0.3.0 | April 2, 2021

• Refactor CLI into the main groups add, delete, jobs and db-ops

• Add flexmeasures add asset, flexmeasures add user and flexmeasures add weather-sensor

• Split the populate-db command into flexmeasures add structure and flexmeasures add forecasts

5.3.28 Running via Docker

FlexMeasures can be run via docker.

Docker is great to save developers from installation trouble, but also for running FlexMeasures inside modern cloud
environments in a scalable manner.

Note: We also support running all needed parts of a FlexMeasures EMS setup via docker-compose, which is helpful
for developers and might inform hosting efforts. See Running a complete stack with docker-compose.

Warning: For now, the use case is local development. Using in production is a goal for later. Follow our progress.

The flexmeasures image

Getting the image

You can use versions we host at Docker Hub, e.g.:

docker pull lfenergy/flexmeasures:latest

You can also build the FlexMeasures image yourself, from source:

132 Chapter 5. Developer support

https://hub.docker.com/repository/docker/lfenergy/flexmeasures
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/
https://github.com/FlexMeasures/flexmeasures/projects/5

FlexMeasures Documentation, Release 0.17

docker build -t flexmeasures/my-version .

The tag is your choice.

Running

Running the image (as a container) might work like this (remember to get the image first, see above):

docker run --env SQLALCHEMY_DATABASE_URI=postgresql://user:pass@localhost:5432/dbname --
→˓env SECRET_KEY=blabla --env FLASK_ENV=development -d --net=host lfenergy/flexmeasures

Note: Don’t know what your image is called (its “tag”)? We used lfenergy/flexmeasures here, as that should be
the name when pulling it from Docker Hub. You can run docker images to see which images you have.

The two minimal environment variables to run the container successfully are the database URI and the secret key, see
Configuration. FLASK_ENV=development is needed if you do not have an SSL certificate set up (the default mode is
production, and in that mode FlexMeasures requires https for security reasons). If you see too much output, you can
also set LOGGING_LEVEL=INFO.

In this example, we connect to a postgres database running on our local computer, so we use the host network. In the
docker-compose section below, we use a Docker container for the database, as well.

Browsing http://localhost:5000 should work now and ask you to log in.

Of course, you might not have created a user. You can use docker exec -it <flexmeasures-container-name>
bash to go inside the container and use the CLI Commands to create everything you need.

Configuration and customization

Using Configuration by file is usually what you want to do. It’s easier than adding environment variables to docker
run. Also, not all settings can be given via environment variables. A good example is the MAPBOX_ACCESS_TOKEN ,
so you can load maps on the dashboard.

To load a configuration file into the container when starting up, we make use of the instance folder. You can put a
configuration file called flexmeasures.cfg into a local folder called flexmeasures-instance and then mount
that folder into the container, like this:

docker run -v $(pwd)/flexmeasures-instance:/app/instance:ro -d --net=host lfenergy/
→˓flexmeasures

Warning: The location of the instance folder depends on how we serve FlexMeasures. The above works with
gunicorn. See the compose file for an alternative (for the FlexMeasures CLI), and you can also read the above link
about the instance folder.

Note: This is also a way to add your custom logic (as described in Writing Plugins) to the container. We’ll document
that shortly. Plugins which should be installed (e.g. by pip) are a bit more difficult to support (you’d need to add pip
install before the actual entry point). Ideas welcome.

5.3. I want to build new features quickly, not spend days solving basic problems 133

https://flask.palletsprojects.com/en/2.1.x/config/#instance-folders

FlexMeasures Documentation, Release 0.17

5.3.29 Postgres database

This document describes how to get the postgres database ready to use and maintain it (do migrations / changes to the
structure).

Note: This is about a stable database, useful for longer development work or production. A super quick way to get a
postgres database running with Docker is described in Toy example: Scheduling a battery, from scratch. In Running a
complete stack with docker-compose we use both postgres and redis.

We also spend a few words on coding with database transactions in mind.

Table of contents

• Getting ready to use

– Install

– Make sure postgres represents datetimes in UTC timezone

– Create “flexmeasures” and “flexmeasures_test” databases and users

– Add Postgres Extensions to your database(s)

– Configure FlexMeasures app for that database

– Get structure (and some data) into place

• Visualize the data model

• Maintenance

– Make first migration

– Make another migration

– Get database structure updated

– Working with the migration history

– Check out database status

• Transaction management

Getting ready to use

Notes:

• We assume flexmeasures for your database and username here. You can use anything you like, of course.

• The name flexmeasures_test for the test database is good to keep this way, as automated tests are looking
for that database / user / password.

134 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Install

We believe FlexMeasures works with Postgres above version 9 and we ourselves have run it with versions up to 14.

On Linux:

$ # On Ubuntu and Debian, you can install postgres like this:
$ sudo apt-get install postgresql-12 # replace 12 with the version available in your␣
→˓packages
$ pip install psycopg2-binary

$ # On Fedora, you can install postgres like this:
$ sudo dnf install postgresql postgresql-server
$ sudo postgresql-setup --initdb --unit postgresql

On Windows:

• Download postgres here: https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

• Install and remember your postgres user password

• Add the lib and bin directories to your Windows path: http://bobbyong.com/blog/
installing-postgresql-on-windoes/

• conda install psycopg2

Using Docker Compose:

Alternatively, you can use Docker Compose to run a postgres database. Use can use the following docker-compose.
yml as a starting point:

version: '3.7'

services:
postgres:
image: postgres:latest
restart: always
environment:
POSTGRES_USER: flexmeasures
POSTGRES_PASSWORD: this-is-your-secret-choice
POSTGRES_DB: flexmeasures

ports:
- 5432:5432

volumes:
- ./postgres-data:/var/lib/postgresql/data

network_mode: host

To run this, simply type docker-compose up in the directory where you saved the docker-compose.yml file. Pass
the -d flag to run it in the background.

This will create a postgres database in a directory postgres-data in your current working directory. You can change
the password and database name to your liking. You can also change the port mapping to e.g. 5433:5432 if you already
have a postgres database running on your host machine.

5.3. I want to build new features quickly, not spend days solving basic problems 135

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
http://bobbyong.com/blog/installing-postgresql-on-windoes/
http://bobbyong.com/blog/installing-postgresql-on-windoes/

FlexMeasures Documentation, Release 0.17

Make sure postgres represents datetimes in UTC timezone

(Otherwise, pandas can get confused with daylight saving time.)

Luckily, many web hosters already have timezone= 'UTC' set correctly by default, but local postgres installations
often use timezone='localtime'.

In any case, check both your local installation and the server, like this:

Find the postgres.conf file. Mine is at /etc/postgresql/9.6/main/postgresql.conf. You can also type
SHOW config_file; in a postgres console session (as superuser) to find the config file.

Find the timezone setting and set it to ‘UTC’.

Then restart the postgres server.

$ sudo service postgresql restart

Note: If you are using Docker to run postgres, the timezone setting is already set to UTC by default.

Create “flexmeasures” and “flexmeasures_test” databases and users

From the terminal:

Open a console (use your Windows key and type cmd). Proceed to create a database as the postgres superuser (using
your postgres user password):

$ sudo -i -u postgres
$ createdb -U postgres flexmeasures
$ createdb -U postgres flexmeasures_test
$ createuser --pwprompt -U postgres flexmeasures # enter your password
$ createuser --pwprompt -U postgres flexmeasures_test # enter "flexmeasures_test" as␣
→˓password
$ exit

Or, from within Postgres console:

CREATE USER flexmeasures WITH UNENCRYPTED PASSWORD 'this-is-your-secret-choice';
CREATE DATABASE flexmeasures WITH OWNER = flexmeasures;
CREATE USER flexmeasures_test WITH UNENCRYPTED PASSWORD 'flexmeasures_test';
CREATE DATABASE flexmeasures_test WITH OWNER = flexmeasures_test;

Finally, test if you can log in as the flexmeasures user:

$ psql -U flexmeasures --password -h 127.0.0.1 -d flexmeasures

\q

136 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Add Postgres Extensions to your database(s)

To find the nearest sensors, FlexMeasures needs some extra Postgres support. Add the following extensions while
logged in as the postgres superuser:

$ sudo -u postgres psql

\connect flexmeasures
CREATE EXTENSION cube;
CREATE EXTENSION earthdistance;

If you have it, connect to the flexmeasures_test database and repeat creating these extensions there. Then exit.

Configure FlexMeasures app for that database

Write:

SQLALCHEMY_DATABASE_URI = "postgresql://flexmeasures:<password>@127.0.0.1/flexmeasures"

into the config file you are using, e.g. ~/.flexmeasures.cfg

Get structure (and some data) into place

You need data to enjoy the benefits of FlexMeasures or to develop features for it. In this section, there are some ways
to get started.

Import from another database

Here is a short recipe to import data from a FlexMeasures database (e.g. a demo database) into your local system.

On the to-be-exported database:

$ flexmeasures db-ops dump

Note: Only the data gets dumped here.

Then, we create the structure in our database anew, based on the data model given by the local codebase:

$ flexmeasures db-ops reset

Then we import the data dump we made earlier:

$ flexmeasures db-ops restore <DATABASE DUMP FILENAME>

A potential alembic_version error should not prevent other data tables from being restored. You can also choose to
import a complete db dump into a freshly created database, of course.

Note: To make sure passwords will be decrypted correctly when you authenticate, set the same SECU-
RITY_PASSWORD_SALT value in your config as the one that was in use when the dumped passwords were encrypted!

5.3. I want to build new features quickly, not spend days solving basic problems 137

FlexMeasures Documentation, Release 0.17

Create data manually

First, you can get the database structure with:

$ flexmeasures db upgrade

Note: If you develop code (and might want to make changes to the data model), you should also check out the
maintenance section about database migrations.

You can create users with the add user command. Check it out:

$ flexmeasures add user --help

You can create some pre-determined asset types and data sources with this command:

$ flexmeasures add initial-structure

You can also create assets in the FlexMeasures UI.

On the command line, you can add many things. Check what data you can add yourself:

$ flexmeasures add --help

For instance, you can create forecasts for your existing metered data with this command:

$ flexmeasures add forecasts --help

Check out it’s --help content to learn more. You can set which assets and which time window you want to forecast.
Of course, making forecasts takes a while for a larger dataset. You can also simply queue a job with this command (and
run a worker to process the Redis Queues).

Just to note, there are also commands to get rid of data. Check:

$ flexmeasures delete --help

Check out the CLI Commands documentation for more details.

Visualize the data model

You can visualise the data model like this:

$ make show-data-model

This will generate a picture based on the model code. You can also generate picture based on the actual database, see
inside the Makefile.

138 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Maintenance

Maintenance is supported with the alembic tool. It reacts automatically to almost all changes in the SQLAlchemy code.
With alembic, multiple databases, such as development, staging and production databases can be kept in sync.

Make first migration

Run these commands from the repository root directory (read below comments first):

$ flexmeasures db init
$ flexmeasures db migrate
$ flexmeasures db upgrade

The first command (flexmeasures db init) is only needed here once, it initialises the alembic migration tool. The
second command generates the SQL for your current db model and the third actually gives you the db structure.

With every migration, you get a new migration step in migrations/versions. Be sure to add that to git, as future
calls to flexmeasures db upgrade will need those steps, and they might happen on another computer.

Hint: You can edit these migrations steps, if you want.

Make another migration

Just to be clear that the db init command is needed only at the beginning - you usually do, if your model changed:

$ flexmeasures db migrate --message "Please explain what you did, it helps for later"
$ flexmeasures db upgrade

Get database structure updated

The goal is that on any other computer, you can always execute

$ flexmeasures db upgrade

to have the database structure up-to-date with all migrations.

Working with the migration history

The history of migrations is at your fingertips:

$ flexmeasures db current
$ flexmeasures db history

You can move back and forth through the history:

$ flexmeasures db downgrade
$ flexmeasures db upgrade

Both of these accept a specific revision id parameter, as well.

5.3. I want to build new features quickly, not spend days solving basic problems 139

FlexMeasures Documentation, Release 0.17

Check out database status

Log in into the database:

$ psql -U flexmeasures --password -h 127.0.0.1 -d flexmeasures

with the password from flexmeasures/development_config.py. Check which tables are there:

\dt

To log out:

\q

Transaction management

It is really useful (and therefore an industry standard) to bundle certain database actions within a transaction. Trans-
actions are atomic - either the actions in them all run or the transaction gets rolled back. This keeps the database in a
sane state and really helps having expectations during debugging.

Please see the package flexmeasures.data.transactional for details on how a FlexMeasures developer should
make use of this concept. If you are writing a script or a view, you will find there the necessary structural help to bundle
your work in a transaction.

5.3.30 How to deploy FlexMeasures

Here you can learn how to get FlexMeasures onto a server.

Note: FlexMeasures can be deployed via Docker. Read more at Running via Docker. You need other components (e.g.
postgres and redis) which are not handled here. See Running a complete stack with docker-compose for inspiration.

Table of contents

• WSGI configuration

• Install the linear solver on the server

WSGI configuration

On your own computer, flexmeasures run is a nice way to start FlexMeasures. On a production web server, you
want it done the WSGI way. Here is an example how to serve FlexMeasures as WSGI app:

This file contains the WSGI configuration required to serve up your
web application.
It works by setting the variable 'application' to a WSGI handler of some description.
The crucial part are the last two lines. We add some ideas for possible other logic.

import os
project_home = u'/path/to/your/code/flexmeasures'

(continues on next page)

140 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

(continued from previous page)

use this if you want to load your own ``.env`` file.
from dotenv import load_dotenv
load_dotenv(os.path.join(project_home, '.env'))
use this if you run from source
if project_home not in sys.path:

sys.path = [project_home] + sys.path
adapt PATH to find our LP solver if it is installed from source
os.environ["PATH"] = os.environ.get("PATH") + ":/home/seita/Cbc-2.9/bin"

create flask app - the name "application" has to be passed to the WSGI server
from flexmeasures.app import create as create_app
application = create_app()

The web server is told about the WSGI script, but also about the object which represents the application. For instance,
if this script is called wsgi.py, then the relevant argument to the gunicorn server is wsgi:application.

Keep in mind that FlexMeasures is based on Flask, so almost all knowledge on the web on how to deploy a Flask app
also helps with deploying FlexMeasures.

Install the linear solver on the server

To compute schedules, FlexMeasures uses the HiGHS mixed integer linear optimization solver (FlexMeasures solver
by default) or Cbc. Solvers are used through Pyomo, so in principle supporting a different solver would be possible.

They need to be installed in addition to FlexMeasures. Here is advice on how to install the two solvers we test internally:

Note: We default to HiGHS, as it seems more powerful

HiGHS can be installed using pip:

$ pip install highspy

Cbc needs to be present on the server where FlexMeasures runs, under the cbc command.

You can install it on Debian like this:

$ apt-get install coinor-cbc

If you can’t use the package manager on your host, the solver has to be installed from source. We provide an example
script in ci/install-cbc-from-source.sh to do that, where you can also pass a directory for the installation.

In case you want to install a later version, adapt the version in the script.

5.3. I want to build new features quickly, not spend days solving basic problems 141

https://flask.palletsprojects.com/
https://highs.dev/
https://github.com/coin-or/Cbc
http://www.pyomo.org
https://pyomo.readthedocs.io/en/stable/solving_pyomo_models.html#supported-solvers

FlexMeasures Documentation, Release 0.17

5.3.31 Configuration

The following configurations are used by FlexMeasures.

Required settings (e.g. postgres db) are marked with a double star (**). To enable easier quickstart tutorials, continuous
integration use cases and basic usage of FlexMeasures within other projects, these required settings, as well as a few
others, can be set by environment variables — this is also noted per setting. Recommended settings (e.g. mail, redis)
are marked by one star (*).

Note: FlexMeasures is best configured via a config file. The config file for FlexMeasures can be placed in one of two
locations:

• in the user’s home directory (e.g. ~/.flexmeasures.cfg on Unix). In this case, note the dot at the beginning
of the filename!

• in the app’s instance directory (e.g. /path/to/your/flexmeasures/code/instance/flexmeasures.cfg).
The path to that instance directory is shown to you by running flexmeasures (e.g. flexmeasures run) with
required settings missing or otherwise by running flexmeasures shell.

Basic functionality

LOGGING_LEVEL

Level above which log messages are added to the log file. See the logging package in the Python standard library.

Default: logging.WARNING

Note: This setting is also recognized as environment variable.

FLEXMEASURES_MODE

The mode in which FlexMeasures is being run, e.g. “demo” or “play”. This is used to turn on certain extra behaviours,
see Modes for details.

Default: ""

FLEXMEASURES_ALLOW_DATA_OVERWRITE

Whether to allow overwriting existing data when saving data to the database.

Default: False

142 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

FLEXMEASURES_LP_SOLVER

The command to run the scheduling solver. This is the executable command which FlexMeasures calls via the pyomo
library. Potential values might be cbc, cplex, glpk or appsi_highs. Consult their documentation to learn more.
We have tested FlexMeasures with HiGHS and Cbc. Note that you need to install the solver, read more at Install the
linear solver on the server.

Default: "appsi_highs"

FLEXMEASURES_HOSTS_AND_AUTH_START

Configuration used for entity addressing. This contains the domain on which FlexMeasures runs and the first month
when the domain was under the current owner’s administration.

Default: {"flexmeasures.io": "2021-01"}

FLEXMEASURES_PLUGINS

A list of plugins you want FlexMeasures to load (e.g. for custom views or CLI functions). This can be a Python list
(e.g. ["plugin1", "plugin2"]) or a comma-separated string (e.g. "plugin1, plugin2").

Two types of entries are possible here:

• File paths (absolute or relative) to plugins. Each such path needs to point to a folder, which should contain an
__init__.py file where the Blueprint is defined.

• Names of installed Python modules.

Added functionality in plugins needs to be based on Flask Blueprints. See Writing Plugins for more information and
examples.

Default: []

Note: This setting is also recognized as environment variable (since v0.14, which is also the version required to pass
this setting as a string).

FLEXMEASURES_DB_BACKUP_PATH

Relative path to the folder where database backups are stored if that feature is being used.

Default: "migrations/dumps"

FLEXMEASURES_PROFILE_REQUESTS

If True, the processing time of requests are profiled.

The overall time used by requests are logged to the console. In addiition, if pyinstrument is installed, then a profiling
report is made (of time being spent in different function calls) for all Flask API endpoints.

The profiling results are stored in the profile_reports folder in the instance directory.

Note: Profile reports for API endpoints are overwritten on repetition of the same request.

Interesting for developers.

5.3. I want to build new features quickly, not spend days solving basic problems 143

http://www.pyomo.org/
http://www.pyomo.org/
https://pyomo.readthedocs.io/en/stable/solving_pyomo_models.html#supported-solvers
https://highs.dev/
https://coin-or.github.io/Cbc/intro

FlexMeasures Documentation, Release 0.17

Default: False

UI

FLEXMEASURES_PLATFORM_NAME

Name being used in headings and in the menu bar.

For more fine-grained control, this can also be a list, where it’s possible to set the platform name for certain account
roles (as a tuple of view name and list of applicable account roles). In this case, the list is searched from left to right,
and the first fitting name is used.

For example, ("MyMDCApp", ["MDC"]), "MyApp"] would show the name “MyMDCApp” for users connected to
accounts with the account role “MDC”, while all others would see the name “/MyApp”.

Note: This fine-grained control requires FlexMeasures version 0.6.0

Default: "FlexMeasures"

FLEXMEASURES_MENU_LOGO_PATH

A URL path to identify an image being used as logo in the upper left corner (replacing some generic text made from
platform name and the page title). The path can be a complete URL or a relative from the app root.

Default: ""

FLEXMEASURES_EXTRA_CSS_PATH

A URL path to identify a CSS style-sheet to be added to the base template. The path can be a complete URL or a
relative from the app root.

Note: You can also add extra styles for plugins with the usual Blueprint method. That is more elegant but only applies
to the Blueprint’s views.

Default: ""

FLEXMEASURES_ROOT_VIEW

Root view (reachable at “/”). For example "/dashboard".

For more fine-grained control, this can also be a list, where it’s possible to set the root view for certain account roles
(as a tuple of view name and list of applicable account roles). In this case, the list is searched from left to right, and
the first fitting view is shown.

For example, [("metering-dashboard", ["MDC", "Prosumer"]), "default-dashboard"] would route to
“/metering-dashboard” for users connected to accounts with account roles “MDC” or “Prosumer”, while all others
would be routed to “/default-dashboard”.

If this setting is empty or not applicable for the current user, the “/” view will be shown (FlexMeasures’ default dash-
board or a plugin view which was registered at “/”).

144 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Default []

Note: This setting was introduced in FlexMeasures version 0.6.0

FLEXMEASURES_MENU_LISTED_VIEWS

A list of the view names which are listed in the menu.

Note: This setting only lists the names of views, rather than making sure the views exist.

For more fine-grained control, the entries can also be tuples of view names and list of applicable account roles. For
example, the entry ("details": ["MDC", "Prosumer"]) would add the “/details” link to the menu only for users
who are connected to accounts with roles “MDC” or “Prosumer”. For clarity: the title of the menu item would read
“Details”, see also the FLEXMEASURES_LISTED_VIEW_TITLES setting below.

Note: This fine-grained control requires FlexMeasures version 0.6.0

Default: ["dashboard"]

FLEXMEASURES_MENU_LISTED_VIEW_ICONS

A dictionary containing a Font Awesome icon name for each view name listed in the menu. For example,
{"freezer-view": "snowflake-o"} puts a snowflake icon () next to your freezer-view menu item.

Default: {}

Note: This setting was introduced in FlexMeasures version 0.6.0

FLEXMEASURES_MENU_LISTED_VIEW_TITLES

A dictionary containing a string title for each view name listed in the menu. For example, {"freezer-view": "Your
freezer"} lists the freezer-view in the menu as “Your freezer”.

Default: {}

Note: This setting was introduced in FlexMeasures version 0.6.0

5.3. I want to build new features quickly, not spend days solving basic problems 145

FlexMeasures Documentation, Release 0.17

FLEXMEASURES_HIDE_NAN_IN_UI

Whether to hide the word “nan” if any value in metrics tables is NaN.

Default: False

RQ_DASHBOARD_POLL_INTERVAL

Interval in which viewing the queues dashboard refreshes itself, in milliseconds.

Default: 3000 (3 seconds)

FLEXMEASURES_ASSET_TYPE_GROUPS

How to group asset types together, e.g. in a dashboard.

Default: {"renewables": ["solar", "wind"], "EVSE": ["one-way_evse", "two-way_evse"]}

FLEXMEASURES_JS_VERSIONS

Default: {"vega": "5.22.1", "vegaembed": "6.20.8", "vegalite": "5.2.0"}

Timing

FLEXMEASURES_TIMEZONE

Timezone in which the platform operates. This is useful when datetimes are being localized.

Default: "Asia/Seoul"

FLEXMEASURES_JOB_TTL

Time to live for jobs (e.g. forecasting, scheduling) in their respective queue.

A job that is passed this time to live might get cleaned out by Redis’ memory manager.

Default: timedelta(days=1)

FLEXMEASURES_PLANNING_TTL

Time to live for schedule UUIDs of successful scheduling jobs. Set a negative timedelta to persist forever.

Default: timedelta(days=7)

146 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

FLEXMEASURES_JOB_CACHE_TTL

Time to live for the job caching keys in seconds. The default value of 1h responds to the reality that within an hour,
there is not much change, other than the input arguments, that justifies recomputing the schedules.

In an hour, we will have more accurate forecasts available and the situation of the power grid might have changed
(imbalance prices, distribution level congestion, activation of FCR or aFRR reserves, . . .).

Set a negative value to persist forever.

Warning: Keep in mind that unless a proper clean up mechanism is set up, the number of caching keys will grow
with time if the TTL is set to a negative value.

Default: 3600

FLEXMEASURES_DEFAULT_DATASOURCE

The default DataSource of the resulting data from DataGeneration classes.

Default: "FlexMeasures"

FLEXMEASURES_PLANNING_HORIZON

The default horizon for making schedules. API users can set a custom duration if they need to.

Default: timedelta(days=2)

FLEXMEASURES_MAX_PLANNING_HORIZON

The maximum horizon for making schedules. API users are not able to request longer schedules. Can be set to a specific
datetime.timedelta or to an integer number of planning steps, where the duration of a planning step is equal to the
resolution of the applicable power sensor. Set to None to forgo this limitation altoghether.

Default: 2520 (e.g. 7 days for a 4-minute resolution sensor, 105 days for a 1-hour resolution sensor)

Access Tokens

MAPBOX_ACCESS_TOKEN

Token for accessing the MapBox API (for displaying maps on the dashboard and asset pages). You can learn how to
obtain one here

Default: None

Note: This setting is also recognized as environment variable.

5.3. I want to build new features quickly, not spend days solving basic problems 147

https://docs.mapbox.com/help/glossary/access-token/

FlexMeasures Documentation, Release 0.17

SENTRY_SDN

Set tokenized URL, so errors will be sent to Sentry when app.env is not in debug or testing mode. E.g.: https://
<examplePublicKey>@o<something>.ingest.sentry.io/<project-Id>

Default: None

Note: This setting is also recognized as environment variable.

SQLAlchemy

This is only a selection of the most important settings. See the Flask-SQLAlchemy Docs for all possibilities.

SQLALCHEMY_DATABASE_URI (**)

Connection string to the postgres database, format: postgresql://<user>:<password>@<host-address>[:<port>]/
<db>

Default: None

Note: This setting is also recognized as environment variable.

SQLALCHEMY_ENGINE_OPTIONS

Configuration of the SQLAlchemy engine.

Default:

{
"pool_recycle": 299,
"pool_pre_ping": True,
"connect_args": {"options": "-c timezone=utc"},

}

SQLALCHEMY_TEST_DATABASE_URI

When running tests (make test, which runs pytest), the default database URI is set in utils.config_defaults.
TestingConfig. You can use this setting to overwrite that URI and point the tests to an (empty) database of your
choice.

Note: This setting is only supported as an environment variable, not in a config file, and only during testing.

148 Chapter 5. Developer support

https://flask-sqlalchemy.palletsprojects.com/en/master/config

FlexMeasures Documentation, Release 0.17

Security

This is only a selection of the most important settings. See the Flask-Security Docs as well as the Flask-CORS docs
for all possibilities.

SECRET_KEY (**)

Used to sign user sessions and also as extra salt (a.k.a. pepper) for password salting if SECURITY_PASSWORD_SALT is
not set. This is actually part of Flask - but is also used by Flask-Security to sign all tokens.

It is critical this is set to a strong value. For python3 consider using: secrets.token_urlsafe() You can also set
this in a file (which some Flask tutorials advise).

Note: Leave this setting set to None to get more instructions when you attempt to run FlexMeasures.

Default: None

SECURITY_PASSWORD_SALT

Extra password salt (a.k.a. pepper)

Default: None (falls back to SECRET_KEY)

SECURITY_TOKEN_AUTHENTICATION_HEADER

Name of the header which carries the auth bearer token in API requests.

Default: Authorization

SECURITY_TOKEN_MAX_AGE

Maximal age of security tokens in seconds.

Default: 60 * 60 * 6 (six hours)

SECURITY_TRACKABLE

Whether to track user statistics. Turning this on requires certain user fields. We do not use this feature, but we do track
number of logins.

Default: False

5.3. I want to build new features quickly, not spend days solving basic problems 149

https://flask-security-too.readthedocs.io/en/stable/configuration.html
https://flask-cors.readthedocs.io/en/latest/configuration.html

FlexMeasures Documentation, Release 0.17

CORS_ORIGINS

Allowed cross-origins. Set to “*” to allow all. For development (e.g. JavaScript on localhost) you might use “null” in
this list.

Default: []

CORS_RESOURCES:

FlexMeasures resources which get cors protection. This can be a regex, a list of them or a dictionary with all possible
options.

Default: [r"/api/*"]

CORS_SUPPORTS_CREDENTIALS

Allows users to make authenticated requests. If true, injects the Access-Control-Allow-Credentials header in responses.
This allows cookies and credentials to be submitted across domains.

Note: This option cannot be used in conjunction with a “*” origin.

Default: True

Mail

For FlexMeasures to be able to send email to users (e.g. for resetting passwords), you need an email account which can
do that (e.g. GMail).

This is only a selection of the most important settings. See the Flask-Mail Docs for others.

Note: The mail settings are also recognized as environment variables.

MAIL_SERVER (*)

Email name server domain.

Default: "localhost"

MAIL_PORT (*)

SMTP port of the mail server.

Default: 25

150 Chapter 5. Developer support

https://flask-mail.readthedocs.io/en/latest/#configuring-flask-mail

FlexMeasures Documentation, Release 0.17

MAIL_USE_TLS

Whether to use TLS.

Default: False

MAIL_USE_SSL

Whether to use SSL.

Default: False

MAIL_USERNAME (*)

Login name of the mail system user.

Default: None

MAIL_DEFAULT_SENDER (*)

Tuple of shown name of sender and their email address.

Note: Some recipient mail servers will refuse emails for which the shown email address (set under
MAIL_DEFAULT_SENDER) differs from the sender’s real email address (registered to MAIL_USERNAME). Match them
to avoid SMTPRecipientsRefused errors.

Default:

(
"FlexMeasures",
"no-reply@example.com",

)

MAIL_PASSWORD

Password of mail system user.

Default: None

Monitoring

Monitoring potential problems in FlexMeasure’s operations.

5.3. I want to build new features quickly, not spend days solving basic problems 151

FlexMeasures Documentation, Release 0.17

SENTRY_DSN

Set tokenized URL, so errors will be sent to Sentry when app.env is not in debug or testing mode. E.g.: https://
<examplePublicKey>@o<something>.ingest.sentry.io/<project-Id>

Default: None

FLEXMEASURES_SENTRY_CONFIG

A dictionary with values to configure reporting to Sentry. Some options are taken care of by FlexMeasures (e.g.
environment and release), but not all. See here <https://docs.sentry.io/platforms/python/configuration/options/>_ for
a complete list.

Default: {}

FLEXMEASURES_TASK_CHECK_AUTH_TOKEN

Token which external services can use to check on the status of recurring tasks within FlexMeasures.

Default: None

FLEXMEASURES_MONITORING_MAIL_RECIPIENTS

E-mail addresses to send monitoring alerts to from the CLI task flexmeasures monitor tasks. For example
["fred@one.com", "wilma@two.com"]

Default: []

Redis

FlexMeasures uses the Redis database to support our forecasting and scheduling job queues.

Note: The redis settings are also recognized as environment variables.

FLEXMEASURES_REDIS_URL (*)

URL of redis server.

Default: "localhost"

152 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

FLEXMEASURES_REDIS_PORT (*)

Port of redis server.

Default: 6379

FLEXMEASURES_REDIS_DB_NR (*)

Number of the redis database to use (Redis per default has 16 databases, numbered 0-15)

Default: 0

FLEXMEASURES_REDIS_PASSWORD (*)

Password of the redis server.

Default: None

Demonstrations

FLEXMEASURES_PUBLIC_DEMO_CREDENTIALS

When FLEXMEASURES_MODE=demo, this can hold login credentials (demo user email and password, e.g. ("demo at
seita.nl", "flexdemo")), so anyone can log in and try out the platform.

Default: None

Sunset

FLEXMEASURES_API_SUNSET_ACTIVE

Allow control over the effect of sunsetting API versions. Specifically, if True, the endpoints of sunset API versions
will return HTTP status 410 (Gone) status codes. If False, these endpoints will either return HTTP status 410
(Gone) status codes, or work like before (including Deprecation and Sunset headers in their response), depending
on whether the installed FlexMeasures version still contains the endpoint implementations.

Default: False

FLEXMEASURES_API_SUNSET_DATE

Allow to override the default sunset date for your clients.

Default: None (defaults are set internally for each sunset API version, e.g. "2023-05-01" for v2.0)

5.3. I want to build new features quickly, not spend days solving basic problems 153

FlexMeasures Documentation, Release 0.17

FLEXMEASURES_API_SUNSET_LINK

Allow to override the default sunset link for your clients.

Default: None (defaults are set internally for each sunset API version, e.g. "https://flexmeasures.readthedocs.
io/en/v0.13.0/api/v2_0.html" for v2.0)

5.3.32 Redis Queues

Requirements

The hard computation work (e.g. forecasting, scheduling) should happen outside of web requests (asynchronously), in
job queues accessed by worker processes.

This queueing relies on a Redis server, which has to be installed locally, or used on a separate host. In the latter case,
configure Redis details in your FlexMeasures config file.

Here we assume you have access to a Redis server and configured it (see Redis). The FlexMeasures unit tests use
fakeredis to simulate this task queueing, with no configuration required.

Note: See also Running a complete stack with docker-compose for usage of Redis via Docker and a more hands-on
tutorial on the queues.

Run workers

Here is how to run one worker for each kind of job (in separate terminals):

$ flexmeasures jobs run-worker --name our-only-worker --queue forecasting|scheduling

Running multiple workers in parallel might be a great idea.

$ flexmeasures jobs run-worker --name forecaster --queue forecasting
$ flexmeasures jobs run-worker --name scheduler --queue scheduling

You can also clear the job queues:

$ flexmeasures jobs clear-queue --queue forecasting
$ flexmeasures jobs clear-queue --queue scheduling

When the main FlexMeasures process runs (e.g. by flexmeasures run), the queues of forecasting and schedul-
ing jobs can be visited at http://localhost:5000/tasks/forecasting and http://localhost:5000/tasks/
schedules, respectively (by admins).

154 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Inspect the queue and jobs

The first option to inspect the state of the forecasting queue should be via the formidable RQ dashboard. If you have
admin rights, you can access it at your-flexmeasures-url/rq/, so for instance http://localhost:5000/rq/.
You can also start RQ dashboard yourself (but you need to know the redis server credentials):

$ pip install rq-dashboard
$ rq-dashboard --redis-host my.ip.addr.ess --redis-password secret --redis-database 0

RQ dashboard shows you ongoing and failed jobs, and you can see the error messages of the latter, which is very useful.

Finally, you can also inspect the queue and jobs via a console (see the nice RQ documentation), which is more powerful.
Here is an example of inspecting the finished jobs and their results:

from redis import Redis
from rq import Queue
from rq.job import Job
from rq.registry import FinishedJobRegistry

r = Redis("my.ip.addr.ess", port=6379, password="secret", db=2)
q = Queue("forecasting", connection=r)
finished = FinishedJobRegistry(queue=q)

finished_job_ids = finished.get_job_ids()
print("%d jobs finished successfully." % len(finished_job_ids))

job1 = Job.fetch(finished_job_ids[0], connection=r)
print("Result of job %s: %s" % (job1.id, job1.result))

Redis queues on Windows

On Unix, the rq system is automatically set up as part of FlexMeasures’s main setup (the rq dependency).

However, rq is not functional on Windows without the Windows Subsystem for Linux.

On these versions of Windows, FlexMeasures’s queuing system uses an extension of Redis Queue called rq-win. This
is also an automatically installed dependency of FlexMeasures.

However, the Redis server needs to be set up separately. Redis itself does not work on Windows, so it might be easiest
to commission a Redis server in the cloud (e.g. on kamatera.com).

If you want to install Redis on Windows itself, it can be set up on a virtual machine as follows:

• Install Vagrant on Windows and VirtualBox

• Download the vagrant-redis vagrant configuration

• Extract vagrant-redis.zip in any folder, e.g. in c:\vagrant-redis

• Set config.vm.box = "hashicorp/precise64" in the Vagrantfile, and remove the line with config.vm.
box_url

• Run vagrant up in Command Prompt

• In case vagrant up fails because VT-x is not available, enable it in your bios if you can (more debugging tips
here if needed)

5.3. I want to build new features quickly, not spend days solving basic problems 155

https://github.com/Parallels/rq-dashboard
http://python-rq.org/docs/
http://python-rq.org/docs
https://www.vagrantup.com/intro/getting-started/
https://www.virtualbox.org/
https://raw.github.com/ServiceStack/redis-windows/master/downloads/vagrant-redis.zip
https://www.howali.com/2017/05/enable-disable-intel-virtualization-technology-in-bios-uefi.html
https://www.intel.com/content/www/us/en/support/articles/000005486/processors.html
https://forums.virtualbox.org/viewtopic.php?t=92111

FlexMeasures Documentation, Release 0.17

5.3.33 Error monitoring

When you run a FlexMeasures server, you want to stay on top of things going wrong. We added two ways of doing
that:

• You can connect to Sentry, so that all errors will be sent to your Sentry account. Add the token you got from
Sentry in the config setting SENTRY_SDN and you’re up and running!

• Another source of crucial errors are things that did not even happen! For instance, a (bot) user who is supposed
to send data regularly, fails to connect with FlexMeasures. Or, a task to import prices from a day-ahead market,
which you depend on later for scheduling, fails silently.

Let’s look at how to monitor for things not happening in more detail:

Monitoring the time users were last seen

The CLI task flexmeasures monitor last-seen lets you be alerted if a user has contacted your FlexMeasures
instance longer ago than you expect. This is most useful for bot users (a.k.a. scripts).

Here is an example for illustration:

$ flexmeasures monitor last-seen --account-role SubscriberToServiceXYZ --user-role bot --
→˓maximum-minutes-since-last-seen 100

As you see, users are filtered by roles. You might need to add roles before this works as you want.

Todo: Adding roles and assigning them to users and/or accounts is not supported by the CLI or UI yet (besides
flexmeasures add account-role). This is work in progress. Right now, it requires you to add roles on the database
level.

Monitoring task runs

The CLI task flexmeasures monitor latest-run lets you be alerted when tasks have not successfully run at least
so-and-so many minutes ago. The alerts will come in via Sentry, but you can also send them to email addresses with
the config setting FLEXMEASURES_MONITORING_MAIL_RECIPIENTS.

For illustration, here is one example of how we monitor the latest run times of tasks on a server — the below is run in
a cron script every hour and checks if every listed task ran 60, 6 or 1440 minutes ago, respectively:

$ flexmeasures monitor latest-run --task get_weather_forecasts 60 --task get_recent_
→˓meter_data 6 --task import_epex_prices 1440

The first task (get_weather_forecasts) is actually supported within FlexMeasures, while the other two sit in plugins we
wrote.

This task status monitoring is enabled by decorating the functions behind these tasks with:

@task_with_status_report
def my_function():

...

Then, FlexMeasures will log if this task ran, and if it succeeded or failed. The result is in the table latest_task_runs,
and that’s where the flexmeasures monitor latest-run will look.

156 Chapter 5. Developer support

https://github.com/FlexMeasures/flexmeasures/projects/18

FlexMeasures Documentation, Release 0.17

Note: The decorator should be placed right before the function (after all other decorators).

Per default the function name is used as task name. If the number of tasks accumulate (e.g. by using multiple plugins
that each define a task or two), it is useful to come up with more dedicated names. You can add a custom name as
argument to the decorator:

@task_with_status_report("pluginA_myFunction")
def my_function():

...

5.3.34 Modes

FlexMeasures can be run in specific modes (see the FLEXMEASURES_MODE config setting). This is useful for certain
special situations. Two are supported out of the box and we document here how FlexMeasures behaves differently in
these modes.

Demo

In this mode, the server is assumed to be used as a demonstration tool. The following adaptations therefore happen in
the UI:

• [UI] Logged-in users can view queues on the demo server (usually only admins can do that)

• [UI] Demo servers often display login credentials, so visitors can try out functionality. Use the FLEXMEA-
SURES_PUBLIC_DEMO_CREDENTIALS config setting to do this.

Play

In this mode, the server is assumed to be used to run simulations.

• [API] The restoreData endpoint is registered, enabling database resets through the API.

• [UI] On the asset page, the sensors_to_show attribute can be used to show any sensor from any account, rather
than only sensors from assets owned by the user’s organization.

Note: A former feature of play mode is now a separate config setting. To allow overwriting existing data when saving
data to the database, use FLEXMEASURES_ALLOW_DATA_OVERWRITE.

5.3.35 Writing Plugins

You can extend FlexMeasures with functionality like UI pages, API endpoints, CLI functions and custom scheduling
algorithms. This is eventually how energy flexibility services are built on top of FlexMeasures!

In an nutshell, a FlexMeasures plugin adds functionality via one or more Flask Blueprints.

5.3. I want to build new features quickly, not spend days solving basic problems 157

https://flask.palletsprojects.com/en/1.1.x/tutorial/views/

FlexMeasures Documentation, Release 0.17

How to make FlexMeasures load your plugin

Use the config setting FLEXMEASURES_PLUGINS to list your plugin(s).

A setting in this list can:

1. point to a plugin folder containing an __init__.py file

2. be the name of an installed module (i.e. in a Python console import <module_name> would work)

Each plugin defines at least one Blueprint object. These will be registered with the Flask app, so their functionality
(e.g. routes) becomes available.

We’ll discuss an example below.

In that example, we use the first option from above to tell FlexMeasures about the plugin. It is the simplest way to start
playing around.

The second option (the plugin being an importable Python package) allows for more professional software development.
For instance, it is more straightforward in that case to add code hygiene, version management and dependencies (your
plugin can depend on a specific FlexMeasures version and other plugins can depend on yours).

To hit the ground running with that approach, we provide a CookieCutter template. It also includes a few Blueprint
examples and best practices.

Continue reading the Plugin showcase or possibilities to do Plugin Customizations.

5.3.36 Plugin showcase

Here is a showcase file which constitutes a FlexMeasures plugin called our_client.

• We demonstrate adding a view, which can be rendered using the FlexMeasures base templates.

• We also showcase a CLI function which has access to the FlexMeasures app object. It can be called via
flexmeasures our-client test.

We first create the file <some_folder>/our_client/__init__.py. This means that our_client is the plugin
folder and becomes the plugin name.

With the __init__.py below, plus the custom Jinja2 template, our_client is a complete plugin.

__version__ = "2.0"

from flask import Blueprint, render_template, abort

from flask_security import login_required
from flexmeasures.ui.utils.view_utils import render_flexmeasures_template

our_client_bp = Blueprint('our-client', __name__,
template_folder='templates')

Showcase: Adding a view

@our_client_bp.route('/')
@our_client_bp.route('/my-page')
@login_required
def my_page():

msg = "I am a FlexMeasures plugin !"
(continues on next page)

158 Chapter 5. Developer support

https://github.com/FlexMeasures/flexmeasures-plugin-template

FlexMeasures Documentation, Release 0.17

(continued from previous page)

Note that we render via the in-built FlexMeasures way
return render_flexmeasures_template(

"my_page.html",
message=msg,

)

Showcase: Adding a CLI command

import click
from flask import current_app
from flask.cli import with_appcontext

our_client_bp.cli.help = "Our client commands"

@our_client_bp.cli.command("test")
@with_appcontext
def our_client_test():

print(f"I am a CLI command, part of FlexMeasures: {current_app}")

Note: You can overwrite FlexMeasures routing in your plugin. In our example above, we are using the root route /.
FlexMeasures registers plugin routes before its own, so in this case visiting the root URL of your app will display this
plugged-in view (the same you’d see at /my-page).

Note: The __version__ attribute on our module is being displayed in the standard FlexMeasures UI footer, where
we show loaded plugins. Of course, it can also be useful for your own maintenance.

The template would live at <some_folder>/our_client/templates/my_page.html, which works just as other
FlexMeasures templates (they are Jinja2 templates):

{% extends "base.html" %}

{% set active_page = "my-page" %}

{% block title %} Our client dashboard {% endblock %}

{% block divs %}

<!-- This is where your custom content goes... -->

{{ message }}

{% endblock %}

Note: Plugin views can also be added to the FlexMeasures UI menu — just name them in the config setting FLEXMEA-
SURES_MENU_LISTED_VIEWS. In this example, add my-page. This also will make the active_page setting in the
above template useful (highlights the current page in the menu).

5.3. I want to build new features quickly, not spend days solving basic problems 159

FlexMeasures Documentation, Release 0.17

Starting the template with {% extends "base.html" %} integrates your page content into the FlexMeasures UI
structure. You can also extend a different base template. For instance, we find it handy to extend base.html with a
custom base template, to extend the footer, as shown below:

{% extends "base.html" %}

{% block copyright_notice %}

Created by Seita Energy Flexibility,
in cooperation with Our Client
©
<script>var CurrentYear = new Date().getFullYear(); document.write(CurrentYear)
→˓</script>.

{% endblock copyright_notice %}

We’d name this file our_client_base.html. Then, we’d extend our page template from our_client_base.html,
instead of base.html.

Using other code files in your non-package plugin

Say you want to include other Python files in your plugin, importing them in your __init__.py file. With this file-only
version of loading the plugin (if your plugin isn’t imported as a package), this is a bit tricky.

But it can be achieved if you put the plugin path on the import path. Do it like this in your __init__.py:

import os
import sys

HERE = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, HERE)

from my_other_file import my_function

Notes on writing tests for your plugin

Good software practice is to write automatable tests. We encourage you to also do this in your plugin. We do, and our
CookieCutter template for plugins (see above) has simple examples how that can work for the different use cases (i.e.
UI, API, CLI).

However, there are two caveats to look into:

• Your tests need a FlexMeasures app context. FlexMeasure’s app creation function provides a way to inject a list of
plugins directly. The following could be used for instance in your app fixture within the top-level conftest.py
if you are using pytest:

from flexmeasures.app import create as create_flexmeasures_app
from .. import __name__

test_app = create_flexmeasures_app(env="testing", plugins=[f"../"{__name__}])

• Test frameworks collect tests from your code and therefore might import your modules. This can interfere with the
registration of routes on your Blueprint objects during plugin registration. Therefore, we recommend reloading
your route modules, after the Blueprint is defined and before you import them. For example:

160 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

my_plugin_ui_bp: Blueprint = Blueprint(
"MyPlugin-UI",
__name__,
template_folder="my_plugin/ui/templates",
static_folder="my_plugin/ui/static",
url_prefix="/MyPlugin",

)
Now, before we import this dashboard module, in which the "/dashboard" route is␣
→˓attached to my_plugin_ui_bp,
we make sure it's being imported now, *after* the Blueprint's creation.
importlib.reload(sys.modules["my_plugin.my_plugin.ui.views.dashboard"])
from my_plugin.ui.views import dashboard

The packaging path depends on your plugin’s package setup, of course.

5.3.37 Plugin Customizations

Adding your own scheduling algorithm

FlexMeasures comes with in-built scheduling algorithms for often-used use cases. However, you can use your own
algorithm, as well.

The idea is that you’d still use FlexMeasures’ API to post flexibility states and trigger new schedules to be computed
(see Posting flexibility states), but in the background your custom scheduling algorithm is being used.

Let’s walk through an example!

First, we need to write a a class (inhering from the Base Scheduler) with a schedule function which accepts arguments
just like the in-built schedulers (their code is here). The following minimal example gives you an idea of some meta
information you can add for labeling your data, as well as the inputs and outputs of such a scheduling function:

from datetime import datetime, timedelta
import pandas as pd
from pandas.tseries.frequencies import to_offset
from flexmeasures import Scheduler, Sensor

class DummyScheduler(Scheduler):

__author__ = "My Company"
__version__ = "2"

def compute(
self,
*args,
**kwargs

):
"""
Just a dummy scheduler that always plans to consume at maximum capacity.
(Schedulers return positive values for consumption, and negative values for␣

→˓production)
"""
return pd.Series(

(continues on next page)

5.3. I want to build new features quickly, not spend days solving basic problems 161

https://github.com/FlexMeasures/flexmeasures/tree/main/flexmeasures/data/models/planning

FlexMeasures Documentation, Release 0.17

(continued from previous page)

self.sensor.get_attribute("capacity_in_mw"),
index=pd.date_range(self.start, self.end, freq=self.resolution, inclusive=

→˓"left"),
)

def deserialize_config(self):
"""Do not care about any flex config sent in."""
self.config_deserialized = True

Note: It’s possible to add arguments that describe the asset flexibility model and the flexibility (EMS) context in more
detail. For example, for storage assets we support various state-of-charge parameters. For details on flexibility model
and context, see Describing flexibility and the [POST] /sensors/(id)/schedules/trigger endpoint.

Finally, make your scheduler be the one that FlexMeasures will use for certain sensors:

from flexmeasures import Sensor

scheduler_specs = {
"module": "flexmeasures.data.tests.dummy_scheduler", # or a file path, see note␣

→˓below
"class": "DummyScheduler",

}

my_sensor = Sensor.query.filter(Sensor.name == "My power sensor on a flexible asset").
→˓one_or_none()
my_sensor.attributes["custom-scheduler"] = scheduler_specs

From now on, all schedules (see Forecasting & scheduling) which are requested for this sensor should get computed
by your custom function! For later lookup, the data will be linked to a new data source with the name “My Opinion”.

Note: To describe the module, we used an importable module here (actually a custom scheduling function we use to
test this). You can also provide a full file path to the module, e.g. “/path/to/my_file.py”.

Todo: We’re planning to use a similar approach to allow for custom forecasting algorithms, as well.

Deploying your plugin via Docker

You can extend the FlexMeasures Docker image with your plugin’s logic.

Imagine your plugin package (with an __init__.py file, one of the setups we discussed in Plugin showcase) is called
flexmeasures_testplugin. Then, this is a minimal possible Dockerfile — containers based on this will serve
FlexMeasures (see the original Dockerfile in the FlexMeasures repository) with the plugin logic, like endpoints:

FROM lfenergy/flexmeasures

COPY flexmeasures_testplugin/ /app/flexmeasures_testplugin
ENV FLEXMEASURES_PLUGINS="/app/flexmeasures_testplugin"

162 Chapter 5. Developer support

../api/v3_0.html#post--api-v3_0-sensors-(id)-schedules-trigger

FlexMeasures Documentation, Release 0.17

You can of course also add multiple plugins this way.

If you also want to install your requirements, you could for instance add these layers:

COPY requirements/app.in /app/requirements/flexmeasures_testplugin.txt
RUN pip3 install --no-cache-dir -r requirements/flexmeasures_testplugin.txt

Note: No need to install flexmeasures here, as the Docker image we are based on already installed FlexMeasures from
code. If you pip3-install your plugin here (assuming it’s on Pypi), check if it recognizes that FlexMeasures installation
as it should.

Adding your own style sheets

You can style your plugin’s pages in a distinct way by adding your own style-sheet. This happens by overwriting
FlexMeasures styles block. Add to your plugin’s base template (see above):

{% block styles %}
{{ super() }}
<!-- Our client styles -->
<link rel="stylesheet" href="{{ url_for('our_client_bp.static', filename='css/style.

→˓css')}}">
{% endblock %}

This will find css/styles.css if you add that folder and file to your Blueprint’s static folder.

Note: This styling will only apply to the pages defined in your plugin (to pages based on your own base template).
To apply a styling to all other pages which are served by FlexMeasures, consider using the config setting FLEXMEA-
SURES_EXTRA_CSS_PATH.

Adding config settings

FlexMeasures can automatically check for you if any custom config settings, which your plugin is using, are present.
This can be very useful in maintaining installations of FlexMeasures with plugins. Config settings can be registered by
setting the (optional) __settings__ attribute on your plugin module:

__settings__ = {
"MY_PLUGIN_URL": {

"description": "URL used by my plugin for x.",
"level": "error",

},
"MY_PLUGIN_TOKEN": {

"description": "Token used by my plugin for y.",
"level": "warning",
"message_if_missing": "Without this token, my plugin will not do y.",
"parse_as": str,

},
"MY_PLUGIN_COLOR": {

"description": "Color used to override the default plugin color.",
"level": "info",

(continues on next page)

5.3. I want to build new features quickly, not spend days solving basic problems 163

FlexMeasures Documentation, Release 0.17

(continued from previous page)

},
}

Alternatively, use from my_plugin import __settings__ in your plugin module, and create __settings__.py
with:

MY_PLUGIN_URL = {
"description": "URL used by my plugin for x.",
"level": "error",

}
MY_PLUGIN_TOKEN = {

"description": "Token used by my plugin for y.",
"level": "warning",
"message_if_missing": "Without this token, my plugin will not do y.",
"parse_as": str,

}
MY_PLUGIN_COLOR = {

"description": "Color used to override the default plugin color.",
"level": "info",

}

Finally, you might want to override some FlexMeasures configuration settings from within your plugin. Some examples
for possible settings are named on this page, e.g. the custom style (see above) or custom logo (see below). There is a
record_once function on Blueprints which can help with this. An example:

@our_client_bp.record_once
def record_logo_path(setup_state):

setup_state.app.config[
"FLEXMEASURES_MENU_LOGO_PATH"

] = "/path/to/my/logo.svg"

Using a custom favicon icon

The favicon might be an important part of your customisation. You probably want your logo to be used.

First, your blueprint needs to know about a folder with static content (this is fairly common — it’s also where you’d put
your own CSS or JavaScript files):

our_client_bp = Blueprint(
"our_client",
"our_client",
static_folder="our_client/ui/static",

)

Put your icon file in that folder. The exact path may depend on how you set your plugin directories up, but this is how
a blueprint living in its own directory could work.

Then, overwrite the /favicon.ico route which FlexMeasures uses to get the favicon from:

from flask import send_from_directory

@our_client_bp.route("/favicon.ico")
def favicon():

(continues on next page)

164 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

(continued from previous page)

return send_from_directory(
our_client_bp.static_folder,
"img/favicon.png",
mimetype="image/png",

)

Here we assume your favicon is a PNG file. You can also use a classic .ico file, then your mime type probably works
best as image/x-icon.

Validating arguments in your CLI commands with marshmallow

Arguments to CLI commands can be validated using marshmallow. FlexMeasures is using this functionality (via the
MarshmallowClickMixin class) and also defines some custom field schemas. We demonstrate this here, and also
show how you can add your own custom field schema:

from datetime import datetime

import click
from flexmeasures.data.schemas import AwareDateTimeField
from flexmeasures.data.schemas.utils import MarshmallowClickMixin
from marshmallow import fields

class CLIStrField(fields.Str, MarshmallowClickMixin):
"""
String field validator, made usable for CLI functions.
You could also define your own validations here.
"""

@click.command("meet")
@click.option(

"--where",
required=True,
type=CLIStrField(),
help="(Required) Where we meet",

)
@click.option(

"--when",
required=False,
type=AwareDateTimeField(format="iso"), # FlexMeasures already made this field␣

→˓suitable for CLI functions
help="[Optional] When we meet (expects timezone-aware ISO 8601 datetime format)",

)
def schedule_meeting(

where: str,
when: datetime | None = None,

):
print(f"Okay, see you {where} on {when}.")

5.3. I want to build new features quickly, not spend days solving basic problems 165

https://marshmallow.readthedocs.io/

FlexMeasures Documentation, Release 0.17

Customising the login page teaser

FlexMeasures shows an image carousel next to its login form (see ui/templates/admin/login_user.html).

You can overwrite this content by adding your own login template and defining the teaser block yourself, e.g.:

{% extends "admin/login_user.html" %}

{% block teaser %}

<h1>Welcome to my plugin!</h1>

{% endblock %}

Place this template file in the template folder of your plugin blueprint (see above). Your template must have a different
filename than “login_user”, so FlexMeasures will find it properly!

Finally, add this config setting to your FlexMeasures config file (using the template filename you chose, obviously):

SECURITY_LOGIN_USER_TEMPLATE = "my_user_login.html"

5.3.38 Developing for FlexMeasures

This page instructs developers who work on FlexMeasures how to set up the development environment. Furthermore,
we discuss several guidelines and best practices.

Table of contents

• Getting started

• Logfile

• Tests

• Versioning

• Auto-applying formatting and code style suggestions

• Using Visual Studio, including spell checking

• A hint about using notebooks

• A hint for Unix developers

Warning: Are you implementing code based on FlexMeasures, please read note_on_datamodel_transition.

166 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Getting started

Virtual environment

Using a virtual environment is best practice for Python developers. We also strongly recommend using a dedicated
one for your work on FlexMeasures, as our make target (see below) will use pip-sync to install dependencies, which
could interfere with some libraries you already have installed.

• Make a virtual environment: python3.10 -m venv flexmeasures-venv or use a different tool like
mkvirtualenv or virtualenvwrapper. You can also use an Anaconda distribution as base with conda create
-n flexmeasures-venv python=3.10.

• Activate it, e.g.: source flexmeasures-venv/bin/activate

Download FlexMeasures

Clone the FlexMeasures repository from GitHub.

$ git clone https://github.com/FlexMeasures/flexmeasures.git

Dependencies

Go into the flexmeasures folder and install all dependencies including the ones needed for development:

$ cd flexmeasures
$ make install-for-dev

Install the LP solver. On Linux, the HiGHS solver can be installed with:

$ pip install highspy

Alternatively, the CBC solver can be installed with:

$ apt-get install coinor-cbc

Configuration

Most configuration happens in a config file, see Configuration on where it can live and all supported settings.

For now, we let it live in your home directory and we add the first required setting: a secret key:

echo "SECRET_KEY=\"`python3 -c 'import secrets; print(secrets.token_hex(24))'`\"" >> ~/.
→˓flexmeasures.cfg

Also, we add some env settings in an .env file. Create that file in the flexmeasures directory (from where you’ll run
flexmeasures) and enter:

FLASK_ENV="development"
LOGGING_LEVEL="INFO"

The development mode makes sure we don’t need SSL to connect, among other things.

5.3. I want to build new features quickly, not spend days solving basic problems 167

https://conda.io/docs/user-guide/tasks/manage-environments.html
https://github.com/FlexMeasures/flexmeasures.git

FlexMeasures Documentation, Release 0.17

Database

See Postgres database for tips on how to install and upgrade databases (postgres and redis).

Loading data

If you have a SQL Dump file, you can load that:

$ psql -U {user_name} -h {host_name} -d {database_name} -f {file_path}

One other possibility is to add a toy account (which owns some assets and a battery):

$ flexmeasures add toy-account

Run locally

Now, to start the web application, you can run:

$ flexmeasures run

Or:

$ python run-local.py

And access the server at http://localhost:5000

If you added a toy account, you could log in with toy-user@flexmeasures.io, password toy-password.

Otherwise, you need to add some other user first. Here is how we add an admin:

$ flexmeasures add account --name MyCompany
$ flexmeasures add user --username admin --account-id 1 --email admin@mycompany.io --
→˓roles admin

(The account-id you need in the 2nd command is printed by the 1st)

Note: If you are on Windows, then running & developing FlexMeasures will not work 100%. For instance,
the queueing only works if you install rq-win (https://github.com/michaelbrooks/rq-win) manually and the make
tooling is difficult to get to work as well. We recommend to use the Windows Sub-system for Linux (https:
//learn.microsoft.com/en-us/windows/wsl/install) or work via Docker-compose (https://flexmeasures.readthedocs.io/
en/latest/dev/docker-compose.html).

168 Chapter 5. Developer support

http://localhost:5000
https://github.com/michaelbrooks/rq-win
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://flexmeasures.readthedocs.io/en/latest/dev/docker-compose.html
https://flexmeasures.readthedocs.io/en/latest/dev/docker-compose.html

FlexMeasures Documentation, Release 0.17

Logfile

FlexMeasures logs to a file called flexmeasures.log. You’ll find this in the application’s context folder, e.g. where
you called flexmeasures run.

A rolling log file handler is used, so if flexmeasures.log gets to a few megabytes in size, it is copied to flexmea-
sures.log.1 and the original file starts over empty again.

The default logging level is WARNING. To see more, you can update this with the config setting LOGGING_LEVEL, e.g.
to INFO or DEBUG

Tests

You can run automated tests with:

$ make test

which behind the curtains installs dependencies and calls pytest.

However, a test database (postgres) is needed to run these tests. If you have postgres, here is the short version on how
to add the test database:

$ make clean-db db_name=flexmeasures_test db_user=flexmeasures_test
$ # the password for the db user is "flexmeasures_test"

Note: The section Postgres database has more details on using postgres for FlexMeasures.

Alternatively, if you don’t feel like installing postgres for the time being, here is a docker command to provide a test
database:

$ docker run --rm --name flexmeasures-test-db -e POSTGRES_PASSWORD=flexmeasures_test -e␣
→˓POSTGRES_DB=flexmeasures_test -e POSTGRES_USER=flexmeasures_test -p 5432:5432 -v ./ci/
→˓load-psql-extensions.sql:/docker-entrypoint-initdb.d/load-psql-extensions.sql -d␣
→˓postgres:latest

Warning: This assumes that the port 5432 is not being used on your machine (for instance by an existing postgres
database service).

If you want the tests to create a coverage report (printed on the terminal), you can run the pytest command like this:

$ pytest --cov=flexmeasures --cov-config .coveragerc

You can add –cov-report=html, after which a file called htmlcov/index.html is generated. Or, after a test run with
coverage turned on as shown above, you can still generate it in another form:

$ python3 -m coverage [html|lcov|json]

5.3. I want to build new features quickly, not spend days solving basic problems 169

FlexMeasures Documentation, Release 0.17

Versioning

We use setuptool_scm for versioning, which bases the FlexMeasures version on the latest git tag and the commits since
then.

So as a developer, it’s crucial to use git tags for versions only.

We use semantic versioning, and we always include the patch version, not only max and min, so that setuptools_scm
makes the correct guess about the next minor version. Thus, we should use 2.0.0 instead of 2.0.

See to_pypi.sh for more commentary on the development versions.

Our API has its own version, which moves much slower. This is important to explicitly support outside apps who were
coded against older versions.

Auto-applying formatting and code style suggestions

We use Black to format our Python code and Flake8 to enforce the PEP8 style guide and linting. We also run mypy on
many files to do some static type checking.

We do this so real problems are found faster and the discussion about formatting is limited. All of these can be installed
by using pip, but we recommend using them as a pre-commit hook. To activate that behaviour, do:

$ pip install pre-commit
$ pre-commit install

in your virtual environment.

Now each git commit will first run flake8, then black and finally mypy over the files affected by the commit
(pre-commit will install these tools into its own structure on the first run).

This is also what happens automatically server-side when code is committed to a branch (via GitHub Actions), but
having those tests locally as well will help you spot these issues faster.

If flake8, black or mypy propose changes to any file, the commit is aborted (saying that it “failed”). The changes
proposed by black are implemented automatically (you can review them with git diff). Some of them might even
resolve the flake8 warnings :)

Using Visual Studio, including spell checking

Are you using Visual Studio Code? Then the code you just cloned also contains the editor configuration (part of) our
team is using (see .vscode)!

We recommend installing the flake8 and spellright extensions.

For spellright, the FlexMeasures repository contains the project dictionary. Here are steps to link main dictionaries,
which usually work on a Linux system:

$ mkdir $HOME/.config/Code/Dictionaries
$ ln -s /usr/share/hunspell/* ~/.config/Code/Dictionaries

Consult the extension’s Readme for other systems.

170 Chapter 5. Developer support

https://github.com/pypa/setuptools_scm/
https://github.com/ambv/black
https://flake8.pycqa.org
http://mypy-lang.org/

FlexMeasures Documentation, Release 0.17

A hint about using notebooks

If you edit notebooks, make sure results do not end up in git:

$ conda install -c conda-forge nbstripout
$ nbstripout --install

(on Windows, maybe you need to look closer at https://github.com/kynan/nbstripout)

A hint for Unix developers

I added this to my ~/.bashrc, so I only need to type fm to get started and have the ssh agent set up, as well as up-to-date
code and dependencies in place.

addssh(){
eval `ssh-agent -s`
ssh-add ~/.ssh/id_github

}
fm(){

addssh
cd ~/workspace/flexmeasures
git pull # do not use if any production-like app runs from the git code
workon flexmeasures-venv # this depends on how you created your virtual environment
make install-for-dev

}

Note: All paths depend on your local environment, of course.

5.3.39 Developing on the API

The FlexMeasures API is the main way that third-parties can automate their interaction with FlexMeasures, so it’s
highly important.

This is a small guide for creating new versions of the API and its docs.

Warning: This guide was written for API versions below v3.0 and is currently out of date.

Todo: A guide for endpoint design, e.g. using Marshmallow schemas and common validators.

Table of contents

• Introducing a new API version

– Set up new module with routes

– Set up a new blueprint

– New or updated endpoint implementations

5.3. I want to build new features quickly, not spend days solving basic problems 171

https://github.com/kynan/nbstripout

FlexMeasures Documentation, Release 0.17

– Testing

– UI Crud

– Documentation

Introducing a new API version

Larger changes to the API, other than fixes and refactoring, should be done by creating a new API version. In the guide
we’re assuming the new version is v1.1.

Whether we need a new API version or not, doesn’t have a clear set of rules yet. Certainly backward-incompatible
changes should require one, but as you’ll see, there is also certain overhead in creating a new version, so a careful
trade-off is advised.

Note: For the rest of this guide we’ll assume your new API version is v1_1.

Set up new module with routes

In flexmeasures/api create a new module (folder with __init__.py). Copy over the routes.py from the previous
API version. By default we import all routes from the previous version:

from flexmeasures.api.v1 import routes as v1_routes, implementations as v1_
→˓implementations

Set the service listing for this version (or overwrite completely if needed):

v1_1_service_listing = copy.deepcopy(v1_routes.v1_service_listing)
v1_1_service_listing["version"] = "1.1"

Then update and redecorate each API endpoint as follows:

@flexmeasures_api.route("/getService", methods=["GET"])
@as_response_type("GetServiceResponse")
@append_doc_of(v1_routes.get_service)
def get_service():

return v1_implementations.get_service_response(v1_1_service_listing)

Set up a new blueprint

In the new module’s flexmeasures/api/v1_1/__init.py__, copy the contents of flexmeasures/api/v1/
__init.py__ (previous API version). Change all references to the version name in the new file (for example:
flexmeasures_api_v1 should become flexmeasures_api_v1_1).

In flexmeasures/api/__init__.py update the version listing in get_versions() and register a blueprint for the
new api version by adding:

from flexmeasures.api.v1_1 import register_at as v1_1_register_at
v1_1_register_at(app)

172 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

New or updated endpoint implementations

Write functionality of new or updated endpoints in:

flexmeasures/api/v1_1/implementations.py

Utility functions that are commonly shared between endpoint implementations of different versions should go in:

flexmeasures/api/common/utils

where we distinguish between response decorators, request validators and other utils.

Testing

If you changed an endpoint in the new version, write a test for it. Usually, there is no need to copy the tests for unchanged
endpoints, if not a major API version is being released.

Test the entire api or just your new version:

$ pytest -k api
$ pytest -k v1_1

UI Crud

In ui/crud, we support FlexMeasures’ in-built UI with Flask endpoints, which then talk to our internal API. The
routes used there point to an API version. You should consider updating them to point to your new version.

Documentation

In documentation/api start a new specification v1_1.rst with contents like this:

.. _v1_1:

Version 1.1
===========

Summary

.. qrefflask:: flexmeasures.app:create()
:blueprints: flexmeasures_api, flexmeasures_api_v1_1
:order: path
:include-empty-docstring:

API Details

.. autoflask:: flexmeasures.app:create()
:blueprints: flexmeasures_api, flexmeasures_api_v1_1
:order: path
:include-empty-docstring:

5.3. I want to build new features quickly, not spend days solving basic problems 173

FlexMeasures Documentation, Release 0.17

If you are ready to publish the new specifications, enter your changes in documentation/api/change_log.rst and
update the api toctree in documentation/index.rst to include the new version in the table of contents.

You’re not done. Several sections in the API documentation list endpoints as examples. If you want other developers to
use your new API version, make sure those examples reference the latest endpoints. Remember that Sphinx autoflask
likes to prefix the names of endpoints with the blueprint’s name, for example:

.. autoflask:: flexmeasures.app:create()
:endpoints: flexmeasures_api_v1_1.post_meter_data

5.3.40 Continuous integration

Automate deployment via Github actions and Git

At FlexMeasures headquarters, we implemented a specific workflow to automate our deployment. It uses the Github
action workflow (see the .github/workflows directory), which pushes to a remote upstream repository. We use this
workflow to build and deploy the project to our staging server.

Documenting this might be useful for self-hosters, as well. The GitHub Actions workflows are triggered by commits
being pushed to the repository, but it can also inspire your custom deployment script.

We’ll refer to Github Actions as our “CI environment” and our staging server as the “deployment server”.

• In lint-and-test.yml, we set up the app, then run the tests and linters. If testing succeeds and if the commit
was on the main branch, deploy.yml deploys the code from the CI environment to the deployment server.

• Of course, the CI environment needs to properly authenticate at the deployment server.

• With the hooks functionality of Git, a post-receive script can then (re-)start the FlexMeasures app on the deploy-
ment server.

Let’s review these three steps in detail:

Using git to deploy code (remote upstream)

We support deployment of the FlexMeasures project on a staging server via Git checkout.

The deployment uses git’s ability to push code to a remote upstream repository. This repository needs to be installed
on your staging server.

We trigger this deployment in deploy.yml and it’s being done in DEPLOY.sh. There, we add the remote and then push
the current branch to it.

We thus need to tell the deployment environment two things:

• Add the setting STAGING_REMOTE_REPO as an environment variable on the CI environment (e.g. deploy.
yml expects it in the Github repository secrets). An example value is seita@ssh.our-server.com:/home/
seita/flexmeasures-staging/flexmeasures.git. So in this case, ssh.our-server.com is the deploy-
ment server, which we’ll also use below. seita needs to become your ssh username on that server and the rest is
the path to where you want to check out the repo.

• Make sure the env variable BRANCH_NAME is set, e.g. to “main”, so that the CI environment knows what exact
code to push to your deployment server.

174 Chapter 5. Developer support

https://sphinxcontrib-httpdomain.readthedocs.io/en/stable/#module-sphinxcontrib.autohttp.flask

FlexMeasures Documentation, Release 0.17

Authenticate at the deployment server (with an ssh key)

For CI environment and deployment server to interact securely, we of course need to put in place some authentication
measures.

First, they need to know each other. Let the deployment server know it’s okay to talk to the CI environment, by adding
an entry to ~/.ssh/known_hosts. Similarly, you might need to let the CI environment know it’s okay to talk to the
deployment server (e.g. in our Github Actions config, deploy.yml expects this entry in the Github repository secrets
as KNOWN_DEPLOYMENT_HOSTS).

You can create these entries with ssh-keyscan -t rsa <your host>, where host might be github.com or ssh.our-
server.com (see above).

Second, the CI environment needs to authenticate at the deployment server using an SSH key pair.

Use ssh-keygen to create one, using no password.

• Add the private part of this ssh key pair to the CI environment, so that the deployment server can accept the
pushed code. (e.g. as ~/.ssh/id_rsa). In deploy.yml, we expect it as the secret SSH_DEPLOYMENT_KEY,
which adds the key for us.

• Finally, the public part of the key pair should be in ~/.ssh/authorized_keys on your deployment server.

(Re-)start FlexMeasures on the deployment server (install Post-Receive Hook)

Only pushing the code will not actually deploy the updated FlexMeasures into a usable web app on the deployment
server. For this, we need to trigger a script.

Log on to the deployment server (via SSH) and install a script to (re-)start FlexMeasures as a Git Post Receive Hook
in the remote repo where we deployed the code (see above). This hook will be triggered whenever a push is received
from the deployment environment.

The example script below can be a Post Receive Hook (save as hooks/post-receive in your remote origin repo and
update paths). It will force a checkout of the main branch into our working directory, update dependencies, upgrade
the database structure and finally touch the wsgi.py file.

Note: Note that we are not installing FlexMeasures itself (that would require make install-flexmeasures, which
essentially is python setup.py develop), as that is not needed for our base requirement here: to run this checked-
out code with a web server that uses a WSGI file to define the app. Running CLI commands will not work without
installation. Also, installing FlexMeasures requires a version, which is gotten from the git status (via setuptool_scm).
We are working on a checked-out copy of the git code here without git meta information, so installing would fail
anyways.

The last step, touching a wsgi.py file, is often used as a way to soft-restart the running application — here you need to
adapt to your circumstances.

#!/bin/bash

PATH_TO_GIT_WORK_TREE=/path/to/where/you/want/to/checkout/code/to
ACTIVATE_VENV="command-to-activate-your-venv"
PATH_TO_WSGI=/path/to/wsgi/script/for/the/app

echo "CHECKING OUT CODE TO GIT WORK TREE ($PATH_TO_GIT_WORK_TREE) ..."
GIT_WORK_TREE=$PATH_TO_GIT_WORK_TREE git checkout -f

(continues on next page)

5.3. I want to build new features quickly, not spend days solving basic problems 175

FlexMeasures Documentation, Release 0.17

(continued from previous page)

cd $PATH_TO_GIT_WORK_TREE
PATH=$PATH_TO_VENV/bin:$PATH

echo "INSTALLING DEPENDENCIES ..."
make install-deps

echo "UPGRADING DATABASE STRUCTURE ..."
make upgrade-db

echo "RESTARTING APPLICATION ..."
touch $PATH_TO_WSGI

A WSGI file can do various things, as well, but the simplest form is shown below.

from flexmeasures.app import create as create_app

application = create_app()

The web server is told about the WSGI script, but also about the object which represents the application. For instance,
if this script is called wsgi.py, then the relevant argument to the gunicorn server is wsgi:application.

5.3.41 Custom authorization

Our Authorization section describes general authorization handling in FlexMeasures.

If you are creating your own API endpoints for a custom energy flexibility service (on top of FlexMeasures), you
should also get your authorization right. It’s recommended to get familiar with the decorators we provide. Here are
some pointers, but feel free to read more in the flexmeasures.auth package.

In short, we recommend to use the @permission_required_for_context decorator (more explanation below).

FlexMeasures also supports role-based decorators, e.g. @account_roles_required. These authorization decorators
are more straightforward to use than the @permission_required_for_context decorator. However, they are a bit
crude as they do not distinguish on what the context is, nor do they qualify on the required permission(e.g. read versus
write).1

Finally, all decorators available through Flask-Security-Too can be used, e.g. @auth_required (that’s technically only
checking authentication) or @permissions_required.

Permission-based authorization

Via permissions, it’s possible to define authorization access to data, distinguishing between create, read, update and
delete access. It’s a finer model than simply allowing per role.

The data models codify under which conditions a user can have certain permissions to work with their data. You, as
the endpoint author, need to make sure this is checked. Here is an example (taken from the decorator docstring):

@app.route("/resource/<resource_id>", methods=["GET"])
@use_kwargs(

{"the_resource": ResourceIdField(data_key="resource_id")},
(continues on next page)

1 Some authorization features are not possible for endpoints decorated in this way. For instance, we have an admin-reader role who should be
able to read but not write everything — with only role-based decorators we can not allow this user to read (as we don’t know what permission the
endpoint requires).

176 Chapter 5. Developer support

https://flask-security-too.readthedocs.io/en/stable/patterns.html#authentication-and-authorization

FlexMeasures Documentation, Release 0.17

(continued from previous page)

location="path",
)
@permission_required_for_context("read", ctx_arg_name="the_resource")
@as_json
def view(resource_id: int, resource: Resource):

return dict(name=resource.name)

As you see, there is some sorcery with @use_kwargs going on before we check the permissions. That decorator is
relaying to a Marshmallow field definition. Here, ResourceIdField is a definition which de-serializes an ID (passed
in as a request parameter) into a Resource instance. This instance can then be asked if the current user may read it.
That last part is what @permission_required_for_context is doing. You can find these Marshmallow fields in
flexmeasures.api.common.schemas.

Account roles

Another way to implement custom authorization is to define custom account roles. E.g. if several services run on one
FlexMeasures server, each service could define a “MyService-subscriber” account role.

To make sure that only users of such accounts can use the endpoints:

@flexmeasures_ui.route("/bananas")
@account_roles_required("MyService-subscriber")
def bananas_view:

pass

Note: This endpoint decorator lists required roles, so the authenticated user’s account needs to have each role. You
can also use the @account_roles_accepted decorator. Then the user’s account only needs to have at least one of
the roles.

User roles

There are also decorators to check user roles. Here is an example:

@flexmeasures_ui.route("/bananas")
@roles_required("account-admin")
def bananas_view:

pass

Note: You can also use the @roles_accepted decorator.

5.3. I want to build new features quickly, not spend days solving basic problems 177

https://webargs.readthedocs.io
https://marshmallow.readthedocs.io/

FlexMeasures Documentation, Release 0.17

5.3.42 Running a complete stack with docker-compose

To install FlexMeasures, plus the libraries and databases it depends on, on your computer is some work, and can have
unexpected hurdles, e.g. depending on the operating system. A nice alternative is to let that happen within Docker.
The whole stack can be run via Docker compose, saving the developer much time.

For this, we assume you are in the directory (in the FlexMeasures git repository) housing docker-compose.yml.

Note: The minimum Docker version is 17.09 and for docker-compose we tested successfully at version 1.25. You can
check your versions with docker[-compose] --version.

Note: The command might also be docker compose (no dash), for instance if you are using Docker Desktop.

Build the compose stack

Run this:

$ docker-compose build

This pulls the images you need, and re-builds the FlexMeasures ones from code. If you change code, re-running this
will re-build that image.

This compose script can also serve as an inspiration for using FlexMeasures in modern cloud environments (like Ku-
bernetes). For instance, you might want to not build the FlexMeasures image from code, but simply pull the image
from DockerHub.

If you wanted, you could stop building from source, and directly use the official flexmeasures image for the server and
worker container (set image: lfenergy/flexmeasures in the file docker-compose.yml).

Run the compose stack

Start the stack like this:

$ docker-compose up

Warning: This might fail if ports 5000 (Flask) or 6379 (Redis) are in use on your system. Stop these processes
before you continue.

Check docker ps or docker-compose ps to see if your containers are running:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS ␣
→˓ PORTS NAMES
beb9bf567303 flexmeasures_server "bash -c 'flexmeasur..." 44 seconds ago Up 38␣
→˓seconds (health: starting) 0.0.0.0:5000->5000/tcp flexmeasures-server-1
e36cd54a7fd5 flexmeasures_worker "flexmeasures jobs r..." 44 seconds ago Up 5␣
→˓seconds 5000/tcp flexmeasures-worker-1
c9985de27f68 postgres "docker-entrypoint.s..." 45 seconds ago Up 40␣
→˓seconds 5432/tcp flexmeasures-test-db-1

(continues on next page)

178 Chapter 5. Developer support

https://docs.docker.com/compose/
https://github.com/FlexMeasures/flexmeasures
https://docs.docker.com/desktop

FlexMeasures Documentation, Release 0.17

(continued from previous page)

03582d37230e postgres "docker-entrypoint.s..." 45 seconds ago Up 40␣
→˓seconds 5432/tcp flexmeasures-dev-db-1
792ec3d86e71 redis "docker-entrypoint.s..." 45 seconds ago Up 40␣
→˓seconds 0.0.0.0:6379->6379/tcp flexmeasures-queue-db-1

The FlexMeasures server container has a health check implemented, which is reflected in this output and you can see
which ports are available on your machine to interact.

You can use the terminal or docker-compose logs to look at output. docker inspect <container> and docker
exec -it <container> bash can be quite useful to dive into details. We’ll see the latter more in this tutorial.

Configuration

You can pass in your own configuration (e.g. for MapBox access token, or db URI, see below) like we described in
Configuration and customization — put a file flexmeasures.cfg into a local folder called flexmeasures-instance
(the volume should be already mapped).

In case your configuration loads FlexMeasures plugins that have additional dependencies, you can add a require-
ments.txt file to the same local folder. The dependencies listed in that file will be freshly installed each time you
run docker-compose up.

Data

The postgres database is a test database with toy data filled in when the flexmeasures container starts. You could also
connect it to some other database (on your PC, in the cloud), by setting a different SQLALCHEMY_DATABASE_URI in the
config.

Seeing it work: Running the toy tutorial

A good way to see if these containers work well together, and maybe to inspire how to use them for your own purposes,
is the Toy example: Scheduling a battery, from scratch.

The flexmeasures-server container already creates the toy account when it starts (see its initial command). We’ll now
walk through the rest of the toy tutorial, with one twist at the end, when we create the battery schedule.

Let’s go into the flexmeasures-worker container:

$ docker exec -it flexmeasures-worker-1 bash

There, we’ll now add the price data, as described in Add some price data. Copy the commands from that section and
run them in the container’s bash session, to create the prices and add them to the FlexMeasures DB.

Next, we put a scheduling job in the worker’s queue. This only works because we have the Redis container running —
the toy tutorial doesn’t have it. The difference is that we’re adding --as-job:

$ flexmeasures add schedule for-storage --sensor-id 2 --consumption-price-sensor 1 \
--start ${TOMORROW}T07:00+01:00 --duration PT12H --soc-at-start 50% \
--roundtrip-efficiency 90% --as-job

We should now see in the output of docker logs flexmeasures-worker-1 something like the following:

Running Scheduling Job d3e10f6d-31d2-46c6-8308-01ede48f8fdd: discharging, from 2022-07-
→˓06 07:00:00+01:00 to 2022-07-06 19:00:00+01:00

5.3. I want to build new features quickly, not spend days solving basic problems 179

FlexMeasures Documentation, Release 0.17

So the job had been queued in Redis, was then picked up by the worker process, and the result should be in our SQL
database container. Let’s check!

We’ll not go into the server container this time, but simply send a command:

$ TOMORROW=$(date --date="next day" '+%Y-%m-%d')
$ docker exec -it flexmeasures-server-1 bash -c "flexmeasures show beliefs --sensor-id 2␣
→˓--start ${TOMORROW}T07:00:00+01:00 --duration PT12H"

The charging/discharging schedule should be there:

0.5MW

0.0MW

-0.5MW

10 20 30 40
discharging

Like in the original toy tutorial, we can also check in the server container’s web UI (username is “toy-
user@flexmeasures.io”, password is “toy-password”):

180 Chapter 5. Developer support

http://localhost:5000/sensors/1/
mailto:toy-user@flexmeasures.io
mailto:toy-user@flexmeasures.io

FlexMeasures Documentation, Release 0.17

Scripting with the Docker stack

A very important aspect of this stack is if it can be put to interesting use. For this, developers need to be able to script
things — like we just did with the toy tutorial.

Note that instead of starting a console in the containers, we can also send commands to them right away. For instance,
we sent the complete flexmeasures show beliefs command and then viewed the output on our own machine.
Likewise, we send the pytest command to run the unit tests (see below).

Used this way, and in combination with the powerful list of CLI Commands, this FlexMeasures Docker stack is script-
able for interesting applications and simulations!

Running tests

You can run tests in the flexmeasures docker container, using the database service test-db in the compose file (per
default, we are using the dev-db database service).

After you’ve started the compose stack with docker-compose up, run:

$ docker exec -it -e SQLALCHEMY_TEST_DATABASE_URI="postgresql://fm-test-db-user:fm-test-
→˓db-pass@test-db:5432/fm-test-db" flexmeasures-server-1 pytest

This rounds up the developer experience offered by running FlexMeasures in Docker. Now you can develop FlexMea-
sures and also run your tests. If you develop plugins, you could extend the command being used, e.g. bash -c "cd
/path/to/my/plugin && pytest".

5.3.43 Dependency Management

Requirements

FlexMeasures is built on the shoulder of giants, namely other open source libraries. Look into the requirements folder
to see what is required to run FlexMeasures (app.in) or to test it, or to build this documentation.

The .in files specify our general demands, and in .txt files, we keep a set of pinned dependency versions, so we can all
work on the same background (crucial to compare behavior of installations to each other).

To install these pinned requirements, run:

$ make install-for-dev

Check out Makefile for other useful commands, but this should get you going.

To upgrade the pinned versions, we can run:

$ make upgrade-deps

5.3. I want to build new features quickly, not spend days solving basic problems 181

FlexMeasures Documentation, Release 0.17

Python versions

In addition, we support a range of Python versions (as you can see in the requirements folder.

Now — you probably have only one Python version installed. Let’s say you add a dependency, or update the minimum
required version. How to update the pinned sets of requirements across all Python versions?

$ cd ci; ./update-packages.sh

This script will use docker to do these upgrades per Python version.

Still, we’d also like to be able to test FlexMeasures across all these versions. We’ve added that capability to our CI
pipeline (GitHub Actions), so you could clone it an make a PR, in order to run them.

flexmeasures.api FlexMeasures API routes and implementations.
flexmeasures.app Starting point of the Flask application.
flexmeasures.auth Authentication and authorization policies and helpers.
flexmeasures.cli CLI functions for FlexMeasures hosts.
flexmeasures.data Models & schemata, as well as business logic (queries

& services).
flexmeasures.ui Backoffice user interface & charting support.
flexmeasures.utils Utilities for the FlexMeasures project.

5.3.44 flexmeasures.api

Modules

flexmeasures.api.common Functionality common to all API versions.
flexmeasures.api.dev Endpoints under development.
flexmeasures.api.play Endpoints to support "play" mode, data restoration
flexmeasures.api.sunset A place to keep all routes to endpoints that previously

existed and are now sunset.
flexmeasures.api.v3_0 FlexMeasures API v3

flexmeasures.api.common

Modules

flexmeasures.api.common.implementations

flexmeasures.api.common.responses

flexmeasures.api.common.routes

flexmeasures.api.common.schemas

flexmeasures.api.common.utils

182 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

flexmeasures.api.common.implementations

Functions

flexmeasures.api.common.implementations.get_task_run()

Get latest task runs. This endpoint returns output conforming to the task monitoring tool (bobbydams/py-pinger)

flexmeasures.api.common.implementations.ping()

flexmeasures.api.common.implementations.post_task_run()

Post that a task has been (attempted to) run. Form fields to send in: name: str, status: bool [defaults to True],
datetime: datetime [defaults to now]

flexmeasures.api.common.responses

Functions

flexmeasures.api.common.responses.already_received_and_successfully_processed(message: str)
→ Tuple[dict,
int] |
Tuple[dict, int,
dict]

flexmeasures.api.common.responses.conflicting_resolutions(message: str)→ Tuple[dict, int] |
Tuple[dict, int, dict]

flexmeasures.api.common.responses.deprecated_api_version(message: str)→ Tuple[dict, int] |
Tuple[dict, int, dict]

flexmeasures.api.common.responses.fallback_schedule_redirect(message: str, location: str)→
Tuple[dict, int] | Tuple[dict, int, dict]

flexmeasures.api.common.responses.incomplete_event(requested_event_id, requested_event_type,
message)→ Tuple[dict, int] | Tuple[dict, int, dict]

flexmeasures.api.common.responses.invalid_datetime(message: str)→ Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.invalid_domain(message: str)→ Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.invalid_flex_config(message: str)→ Tuple[dict, int] | Tuple[dict,
int, dict]

flexmeasures.api.common.responses.invalid_horizon(message: str)→ Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.invalid_market()→ Tuple[dict, int] | Tuple[dict, int, dict]

flexmeasures.api.common.responses.invalid_message_type(message_type: str)→ Tuple[dict, int] |
Tuple[dict, int, dict]

flexmeasures.api.common.responses.invalid_method(request_method)→ Tuple[dict, int] | Tuple[dict, int,
dict]

5.3. I want to build new features quickly, not spend days solving basic problems 183

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

flexmeasures.api.common.responses.invalid_period(message: str)→ Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.invalid_ptu_duration(message: str)→ Tuple[dict, int] | Tuple[dict,
int, dict]

flexmeasures.api.common.responses.invalid_replacement(message: str)→ Tuple[dict, int] | Tuple[dict,
int, dict]

flexmeasures.api.common.responses.invalid_resolution_str(message: str)→ Tuple[dict, int] |
Tuple[dict, int, dict]

flexmeasures.api.common.responses.invalid_role(requested_access_role: str)→ Tuple[dict, int] |
Tuple[dict, int, dict]

flexmeasures.api.common.responses.invalid_sender(required_permissions: List[str] | None = None)→
Tuple[dict, int] | Tuple[dict, int, dict]

Signify that the sender is invalid to perform the request. Fits well with 403 errors. Optionally tell the user which
permissions they should have.

flexmeasures.api.common.responses.invalid_source(message: str)→ Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.invalid_timezone(message: str)→ Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.invalid_unit(quantity: str | None, units: Sequence[str] | Tuple[str] |
None)→ Tuple[dict, int] | Tuple[dict, int, dict]

flexmeasures.api.common.responses.is_response_tuple(value)→ bool
Check if an object qualifies as a ResponseTuple

flexmeasures.api.common.responses.no_backup(message: str)→ Tuple[dict, int] | Tuple[dict, int, dict]

flexmeasures.api.common.responses.no_message_type(message: str)→ Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.outdated_event_id(requested_event_id, existing_event_id)→
Tuple[dict, int] | Tuple[dict, int, dict]

flexmeasures.api.common.responses.pluralize(usef_role_name: str)→ str
Adding a trailing ‘s’ works well for USEF roles.

flexmeasures.api.common.responses.power_value_too_big(message: str)→ Tuple[dict, int] | Tuple[dict,
int, dict]

flexmeasures.api.common.responses.power_value_too_small(message: str)→ Tuple[dict, int] |
Tuple[dict, int, dict]

flexmeasures.api.common.responses.ptus_incomplete(message: str)→ Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.request_processed(message: str)→ Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.required_info_missing(fields: Sequence[str], message: str = '')→
Tuple[dict, int] | Tuple[dict, int, dict]

184 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

flexmeasures.api.common.responses.unapplicable_resolution(message: str)→ Tuple[dict, int] |
Tuple[dict, int, dict]

flexmeasures.api.common.responses.unknown_prices(message: str)→ Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.unknown_schedule(message: str)→ Tuple[dict, int] | Tuple[dict, int,
dict]

flexmeasures.api.common.responses.unrecognized_asset(message: str)→ Tuple[dict, int] | Tuple[dict,
int, dict]

flexmeasures.api.common.responses.unrecognized_backup(message: str)→ Tuple[dict, int] | Tuple[dict,
int, dict]

flexmeasures.api.common.responses.unrecognized_connection_group(message: str)→ Tuple[dict, int]
| Tuple[dict, int, dict]

flexmeasures.api.common.responses.unrecognized_event(requested_event_id, requested_event_type)→
Tuple[dict, int] | Tuple[dict, int, dict]

flexmeasures.api.common.responses.unrecognized_event_type(requested_event_type)→ Tuple[dict, int]
| Tuple[dict, int, dict]

flexmeasures.api.common.responses.unrecognized_market(requested_market)→ Tuple[dict, int] |
Tuple[dict, int, dict]

flexmeasures.api.common.responses.unrecognized_sensor(lat: float | None = None, lng: float | None =
None)→ Tuple[dict, int] | Tuple[dict, int, dict]

Classes

class flexmeasures.api.common.responses.BaseMessage(base_message='')
Set a base message to which extra info can be added by calling the wrapped function with additional string
arguments. This is a decorator implemented as a class.

__init__(base_message='')

flexmeasures.api.common.routes

Functions

flexmeasures.api.common.routes.get_ping()

flexmeasures.api.common.routes.get_task_run()

flexmeasures.api.common.routes.post_task_run()

5.3. I want to build new features quickly, not spend days solving basic problems 185

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

flexmeasures.api.common.schemas

Modules

flexmeasures.api.common.schemas.
generic_assets
flexmeasures.api.common.schemas.
sensor_data
flexmeasures.api.common.schemas.sensors

flexmeasures.api.common.schemas.users

flexmeasures.api.common.schemas.generic_assets

Classes

class flexmeasures.api.common.schemas.generic_assets.AssetIdField(*, strict: bool = False,
**kwargs)

Field that represents a generic asset ID. It de-serializes from the asset id to an asset instance.

_deserialize(asset_id: int, attr, obj, **kwargs)→ GenericAsset
Deserialize value. Concrete Field classes should implement this method.

Parameters
• value – The value to be deserialized.

• attr – The attribute/key in data to be deserialized.

• data – The raw input data passed to the Schema.load.

• kwargs – Field-specific keyword arguments.

Raises
ValidationError – In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.

Changed in version 3.0.0: Added **kwargs to signature.

_serialize(asset: GenericAsset, attr, data, **kwargs)→ int
Return a string if self.as_string=True, otherwise return this field’s num_type.

186 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

flexmeasures.api.common.schemas.sensor_data

Functions

flexmeasures.api.common.schemas.sensor_data.select_schema_to_ensure_list_of_floats(values:
list[float]
| float,
_)→
fields.List
| Single-
Value-
Field

Allows both a single float and a list of floats. Always returns a list of floats.

Meant to improve user experience by not needing to make a list out of a single item, such that:

{
“values”: [3.7]

}

can be written as:

{
“values”: 3.7

}

Either will be de-serialized to [3.7].

Note that serialization always results in a list of floats. This ensures that we are not requiring the same flexibility
from users who are retrieving data.

Classes

class flexmeasures.api.common.schemas.sensor_data.GetSensorDataSchema(*, only:
types.StrSequenceOrSet |
None = None, exclude:
types.StrSequenceOrSet
= (), many: bool = False,
context: dict | None =
None, load_only:
types.StrSequenceOrSet
= (), dump_only:
types.StrSequenceOrSet
= (), partial: bool |
types.StrSequenceOrSet |
None = None, unknown:
str | None = None)

static load_data_and_make_response(sensor_data_description: dict)→ dict
Turn the de-serialized and validated data description into a response.

Specifically, this function: - queries data according to the given description - converts to a single deter-
ministic belief per event - ensures the response respects the requested time frame - converts values to the
requested unit - converts values to the requested resolution

5.3. I want to build new features quickly, not spend days solving basic problems 187

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

class flexmeasures.api.common.schemas.sensor_data.PostSensorDataSchema(*, only:
types.StrSequenceOrSet
| None = None, exclude:
types.StrSequenceOrSet
= (), many: bool =
False, context: dict |
None = None,
load_only:
types.StrSequenceOrSet
= (), dump_only:
types.StrSequenceOrSet
= (), partial: bool |
types.StrSequenceOrSet
| None = None,
unknown: str | None =
None)

This schema includes data, so it can be used for POST requests or GET responses.

TODO: For the GET use case, look at api/common/validators.py::get_data_downsampling_allowed
(sets a resolution parameter which we can pass to the data collection function).

check_resolution_compatibility_of_sensor_data(data, **kwargs)
Ensure event frequency is compatible with the sensor’s event resolution.

For a sensor recording instantaneous values, any event frequency is compatible. For a sensor recording non-
instantaneous values, the event frequency must fit the sensor’s event resolution. Currently, only upsampling
is supported (e.g. converting hourly events to 15-minute events).

static load_bdf(sensor_data: dict)→ BeliefsDataFrame
Turn the de-serialized and validated data into a BeliefsDataFrame.

static possibly_convert_units(data)
Convert values if needed, to fit the sensor’s unit. Marshmallow runs this after validation.

static possibly_upsample_values(data)
Upsample the data if needed, to fit to the sensor’s resolution. Marshmallow runs this after validation.

post_load_sequence(data: dict, **kwargs)→ BeliefsDataFrame
If needed, upsample and convert units, then deserialize to a BeliefsDataFrame.

188 Chapter 5. Developer support

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

class flexmeasures.api.common.schemas.sensor_data.SensorDataDescriptionSchema(*, only:
types.StrSequenceOrSet
| None =
None, exclude:
types.StrSequenceOrSet
= (), many:
bool = False,
context: dict |
None = None,
load_only:
types.StrSequenceOrSet
= (),
dump_only:
types.StrSequenceOrSet
= (), partial:
bool |
types.StrSequenceOrSet
| None =
None,
unknown: str |
None = None)

Schema describing sensor data (specifically, the sensor and the timing of the data).

check_schema_unit_against_sensor_unit(data, **kwargs)
Allows units compatible with that of the sensor. For example, a sensor with W units allows data to be posted
with units: - W, kW, MW, etc. (i.e. units with different prefixes) - J/s, Nm/s, etc. (i.e. units that can be
converted using some multiplier) - Wh, kWh, etc. (i.e. units that represent a stock delta, which knowing
the duration can be converted to a flow) For compatible units, the SensorDataSchema converts values to
the sensor’s unit.

class flexmeasures.api.common.schemas.sensor_data.SingleValueField(*, allow_nan: bool = False,
as_string: bool = False,
**kwargs)

Field that both de-serializes and serializes a single value to a list of floats (length 1).

_deserialize(value, attr, obj, **kwargs)→ list[float]
Deserialize value. Concrete Field classes should implement this method.

Parameters
• value – The value to be deserialized.

• attr – The attribute/key in data to be deserialized.

• data – The raw input data passed to the Schema.load.

• kwargs – Field-specific keyword arguments.

Raises
ValidationError – In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.

Changed in version 3.0.0: Added **kwargs to signature.

5.3. I want to build new features quickly, not spend days solving basic problems 189

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

FlexMeasures Documentation, Release 0.17

_serialize(value, attr, data, **kwargs)→ list[float]
Return a string if self.as_string=True, otherwise return this field’s num_type.

flexmeasures.api.common.schemas.sensors

Classes

class flexmeasures.api.common.schemas.sensors.SensorField(entity_type: str = 'sensor', fm_scheme:
str = 'fm1', *args, **kwargs)

Field that de-serializes to a Sensor, and serializes a Sensor into an entity address (string).

__init__(entity_type: str = 'sensor', fm_scheme: str = 'fm1', *args, **kwargs)

Parameters
• entity_type – “sensor” (in the future, possibly also another type of resource that is as-

signed an entity address)

• fm_scheme – “fm0” or “fm1”

_deserialize(value, attr, obj, **kwargs)→ Sensor
De-serialize to a Sensor.

_serialize(value: Sensor, attr, data, **kwargs)
Serialize to an entity address.

class flexmeasures.api.common.schemas.sensors.SensorIdField(*, strict: bool = False, **kwargs)
Field that represents a sensor ID. It de-serializes from the sensor id to a sensor instance.

_deserialize(sensor_id: int, attr, obj, **kwargs)→ Sensor
Deserialize value. Concrete Field classes should implement this method.

Parameters
• value – The value to be deserialized.

• attr – The attribute/key in data to be deserialized.

• data – The raw input data passed to the Schema.load.

• kwargs – Field-specific keyword arguments.

Raises
ValidationError – In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.

Changed in version 3.0.0: Added **kwargs to signature.

_serialize(sensor: Sensor, attr, data, **kwargs)→ int
Return a string if self.as_string=True, otherwise return this field’s num_type.

190 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

Exceptions

exception flexmeasures.api.common.schemas.sensors.EntityAddressValidationError(message: str
| list | dict,
field_name:
str =
'_schema',
data:
Mapping[str,
Any] | Iter-
able[Mapping[str,
Any]] | None
= None,
valid_data:
list[dict[str,
Any]] |
dict[str, Any]
| None =
None,
**kwargs)

flexmeasures.api.common.schemas.users

Classes

class flexmeasures.api.common.schemas.users.AccountIdField(*, strict: bool = False, **kwargs)
Field that represents an account ID. It deserializes from the account id to an account instance.

_deserialize(account_id: str, attr, obj, **kwargs)→ Account
Deserialize value. Concrete Field classes should implement this method.

Parameters
• value – The value to be deserialized.

• attr – The attribute/key in data to be deserialized.

• data – The raw input data passed to the Schema.load.

• kwargs – Field-specific keyword arguments.

Raises
ValidationError – In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.

Changed in version 3.0.0: Added **kwargs to signature.

_serialize(account: Account, attr, data, **kwargs)→ int
Return a string if self.as_string=True, otherwise return this field’s num_type.

classmethod load_current()

Use this with the load_default arg to __init__ if you want the current user’s account by default.

5.3. I want to build new features quickly, not spend days solving basic problems 191

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

class flexmeasures.api.common.schemas.users.UserIdField(*args, **kwargs)
Field that represents a user ID. It deserializes from the user id to a user instance.

__init__(*args, **kwargs)

_deserialize(user_id: int, attr, obj, **kwargs)→ User
Deserialize value. Concrete Field classes should implement this method.

Parameters
• value – The value to be deserialized.

• attr – The attribute/key in data to be deserialized.

• data – The raw input data passed to the Schema.load.

• kwargs – Field-specific keyword arguments.

Raises
ValidationError – In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.

Changed in version 3.0.0: Added **kwargs to signature.

_serialize(user: User, attr, data, **kwargs)→ int
Return a string if self.as_string=True, otherwise return this field’s num_type.

flexmeasures.api.common.utils

Modules

flexmeasures.api.common.utils.api_utils

flexmeasures.api.common.utils.args_parsing

flexmeasures.api.common.utils.
deprecation_utils
flexmeasures.api.common.utils.validators

flexmeasures.api.common.utils.api_utils

Functions

flexmeasures.api.common.utils.api_utils.catch_timed_belief_replacements(error: IntegrityError)
Catch IntegrityErrors due to a UniqueViolation on the TimedBelief primary key.

Return a more informative message.

192 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

flexmeasures.api.common.utils.api_utils.enqueue_forecasting_jobs(forecasting_jobs: list[Job] |
None = None)

Enqueue forecasting jobs.

Parameters
forecasting_jobs – list of forecasting Jobs for redis queues.

flexmeasures.api.common.utils.api_utils.save_and_enqueue(data: BeliefsDataFrame |
List[BeliefsDataFrame], forecasting_jobs:
list[Job] | None = None,
save_changed_beliefs_only: bool = True)
→ ResponseTuple

flexmeasures.api.common.utils.api_utils.unique_ever_seen(iterable: Sequence, selector: Sequence)
Return unique iterable elements with corresponding lists of selector elements, preserving order.

>>> a, b = unique_ever_seen([[10, 20], [10, 20], [20, 40]], [1, 2, 3])
>>> print(a)
[[10, 20], [20, 40]]
>>> print(b)
[[1, 2], 3]

flexmeasures.api.common.utils.api_utils.upsample_values(value_groups: List[List[float]] | List[float],
from_resolution: timedelta, to_resolution:
timedelta)→ List[List[float]] | List[float]

Upsample the values (in value groups) to a smaller resolution. from_resolution has to be a multiple of
to_resolution

flexmeasures.api.common.utils.args_parsing

Functions

flexmeasures.api.common.utils.args_parsing.handle_error(error, req, schema, *, error_status_code,
error_headers)

Replacing webargs’s error parser, so we can throw custom Exceptions.

flexmeasures.api.common.utils.args_parsing.load_data(request, schema)
We allow parameters to come from either GET args or POST JSON, as validators can be attached to either.

flexmeasures.api.common.utils.args_parsing.validation_error_handler(error: FMValidationError)
Handles errors during parsing. Aborts the current HTTP request and responds with a 422 error. FMValidation-
Error attributes “result” and “status” are packaged in the response.

flexmeasures.api.common.utils.deprecation_utils

Functions

5.3. I want to build new features quickly, not spend days solving basic problems 193

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float

FlexMeasures Documentation, Release 0.17

flexmeasures.api.common.utils.deprecation_utils.deprecate_blueprint(blueprint: Blueprint,
deprecation_date:
pd.Timestamp | str | None =
None, deprecation_link: str
| None = None,
sunset_date: pd.Timestamp
| str | None = None,
sunset_link: str | None =
None, **kwargs)

Deprecates every route on a blueprint by adding the “Deprecation” header with a deprecation date.

Also logs a warning when a deprecated endpoint is called.

>>> from flask import Flask, Blueprint
>>> app = Flask('some_app')
>>> deprecated_bp = Blueprint('API version 1', 'v1_bp')
>>> app.register_blueprint(deprecated_bp, url_prefix='/v1')
>>> deprecate_blueprint(

deprecated_bp,
deprecation_date="2022-12-14",
deprecation_link="https://flexmeasures.readthedocs.io/some-deprecation-

→˓notice",
sunset_date="2023-02-01",
sunset_link="https://flexmeasures.readthedocs.io/some-sunset-notice",

)

Parameters
• blueprint – The blueprint to be deprecated

• deprecation_date – date indicating when the API endpoint was deprecated, used for the
“Deprecation” header if no date is given, defaults to “true” see https://datatracker.ietf.org/
doc/html/draft-ietf-httpapi-deprecation-header#section-2-1

• deprecation_link – url providing more information about the deprecation

• sunset_date – date indicating when the API endpoint is likely to become unresponsive

• sunset_link – url providing more information about the sunset

References

• Deprecation header: https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header

• Sunset header: https://www.rfc-editor.org/rfc/rfc8594

flexmeasures.api.common.utils.deprecation_utils.deprecate_fields(fields: str | list[str],
deprecation_date:
pd.Timestamp | str | None =
None, deprecation_link: str |
None = None, sunset_date:
pd.Timestamp | str | None =
None, sunset_link: str | None =
None)

Deprecates a field (or fields) on a route by adding the “Deprecation” header with a deprecation date.

194 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header#section-2-1
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header#section-2-1
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header
https://www.rfc-editor.org/rfc/rfc8594
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

Also logs a warning when a deprecated field is used.

>>> from flask_classful import route
>>> @route("/item/", methods=["POST"])

@use_kwargs(
{

"color": ColorField,
"length": LengthField,

}
)
def post_item(color, length):

deprecate_field(
"color",
deprecation_date="2022-12-14",
deprecation_link="https://flexmeasures.readthedocs.io/some-deprecation-

→˓notice",
sunset_date="2023-02-01",
sunset_link="https://flexmeasures.readthedocs.io/some-sunset-notice",

)

Parameters
• fields – The fields (as a list of strings) to be deprecated

• deprecation_date – date indicating when the field was deprecated, used for the “Depre-
cation” header if no date is given, defaults to “true” see https://datatracker.ietf.org/doc/html/
draft-ietf-httpapi-deprecation-header#section-2-1

• deprecation_link – url providing more information about the deprecation

• sunset_date – date indicating when the field is likely to become unresponsive

• sunset_link – url providing more information about the sunset

References

• Deprecation header: https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header

• Sunset header: https://www.rfc-editor.org/rfc/rfc8594

flexmeasures.api.common.utils.deprecation_utils.override_from_config(setting: Any,
config_setting_name: str)
→ Any

Override setting by config setting, unless the latter is None or is missing.

flexmeasures.api.common.utils.deprecation_utils.sunset_blueprint(blueprint,
api_version_being_sunset: str,
sunset_link: str,
api_version_upgrade_to: str =
'3.0', rollback_possible: bool =
True, **kwargs)

Sunsets every route on a blueprint by returning 410 (Gone) responses, if sunset is active.

Whether the sunset is active can be toggled using the config setting “FLEXMEA-
SURES_API_SUNSET_ACTIVE”. If the sunset is inactive, this function will not affect any requests in
this blueprint. If the endpoint implementations have been removed, set rollback_possible=False.

5.3. I want to build new features quickly, not spend days solving basic problems 195

https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header#section-2-1
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header#section-2-1
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header
https://www.rfc-editor.org/rfc/rfc8594
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

Errors will be logged by utils.error_utils.error_handling_router.

flexmeasures.api.common.utils.validators

Functions

flexmeasures.api.common.utils.validators.optional_duration_accepted(default_duration:
timedelta)

Decorator which specifies that a GET or POST request accepts an optional duration. It parses relevant form data
and sets the “duration” keyword param.

Example:

@app.route(‘/getDeviceMessage’) @optional_duration_accepted(timedelta(hours=6)) def
get_device_message(duration):

return ‘Here is your message’

The message may specify a duration to overwrite the default duration of 6 hours.

flexmeasures.api.common.utils.validators.parse_duration(duration_str: str, start: datetime | None =
None)→ timedelta | Duration | None

Parses the ‘duration’ string into a Duration object. If needed, try deriving the timedelta from the actual time span
(e.g. in case duration is 1 year). If the string is not a valid ISO 8601 time interval, return None.

TODO: Deprecate for DurationField.

flexmeasures.api.common.utils.validators.parse_horizon(horizon_str: str)→ Tuple[timedelta | None,
bool]

Validates whether a horizon string represents a valid ISO 8601 (repeating) time interval.

Examples:

horizon = “PT6H” horizon = “R/PT6H” horizon = “-PT10M”

Returns horizon as timedelta and a boolean indicating whether the repetitive indicator “R/” was used. If hori-
zon_str could not be parsed with various methods, then horizon will be None

Functionality common to all API versions.

Functions

flexmeasures.api.common.register_at(app: Flask)
This can be used to register this blueprint together with other api-related things

flexmeasures.api.dev

Modules

flexmeasures.api.dev.sensors

196 Chapter 5. Developer support

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

flexmeasures.api.dev.sensors

Functions

flexmeasures.api.dev.sensors.get_sensor_or_abort(id: int)→ Sensor
Util function to help the GET requests. Will be obsolete..

Classes

class flexmeasures.api.dev.sensors.AssetAPI

This view exposes asset attributes through API endpoints under development. These endpoints are not yet part
of our official API, but support the FlexMeasures UI.

get(id: int, asset: GenericAsset)
GET from /asset/<id>

class flexmeasures.api.dev.sensors.SensorAPI

This view exposes sensor attributes through API endpoints under development. These endpoints are not yet part
of our official API, but support the FlexMeasures UI.

get(id: int, sensor: Sensor)
GET from /sensor/<id>

get_chart(id: int, sensor: Sensor, **kwargs)
GET from /sensor/<id>/chart

Optional fields
• “event_starts_after” (see the timely-beliefs documentation)

• “event_ends_before” (see the timely-beliefs documentation)

• “beliefs_after” (see the timely-beliefs documentation)

• “beliefs_before” (see the timely-beliefs documentation)

• “include_data” (if true, chart specs include the data; if false, use the GET
/api/dev/sensor/(id)/chart_data/ endpoint to fetch data)

• “chart_type” (currently ‘bar_chart’ and ‘daily_heatmap’ are supported types)

• “width” (an integer number of pixels; without it, the chart will be scaled to the full width of the con-
tainer (hint: use <div style="width: 100%;"> to set a div width to 100%)

• “height” (an integer number of pixels; without it, FlexMeasures sets a default, currently 300)

get_chart_annotations(id: int, sensor: Sensor, **kwargs)
GET from /sensor/<id>/chart_annotations

Annotations for use in charts (in case you have the chart specs already).

get_chart_data(id: int, sensor: Sensor, **kwargs)
GET from /sensor/<id>/chart_data

Data for use in charts (in case you have the chart specs already).

Optional fields
• “event_starts_after” (see the timely-beliefs documentation)

• “event_ends_before” (see the timely-beliefs documentation)

5.3. I want to build new features quickly, not spend days solving basic problems 197

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
../api/dev.html#get--api-dev-sensor-(id)-chart_data-
../api/dev.html#get--api-dev-sensor-(id)-chart_data-
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors

FlexMeasures Documentation, Release 0.17

• “beliefs_after” (see the timely-beliefs documentation)

• “beliefs_before” (see the timely-beliefs documentation)

• “resolution” (see resolutions)

• “most_recent_beliefs_only” (if true, returns the most recent belief for each event; if false, returns each
belief for each event; defaults to true)

Endpoints under development. Use at your own risk.

Functions

flexmeasures.api.dev.register_at(app: Flask)
This can be used to register FlaskViews.

flexmeasures.api.play

Modules

flexmeasures.api.play.implementations

flexmeasures.api.play.routes

flexmeasures.api.play.implementations

Functions

flexmeasures.api.play.implementations.restore_data_response()

flexmeasures.api.play.routes

Functions

flexmeasures.api.play.routes.restore_data()

API endpoint to restore the database to one of the saved backups.

Example request
This message restores the database to a backup named demo_v0.

{
"backup": "demo_v0"

}

Example response
This message indicates that the backup has been restored without any error.

198 Chapter 5. Developer support

https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors
https://github.com/SeitaBV/timely-beliefs/blob/main/timely_beliefs/docs/timing.md/#events-and-sensors

FlexMeasures Documentation, Release 0.17

{
"message": "Request has been processed. Database restored to demo_v0.",
"status": "PROCESSED"

}

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
NO_BACKUP, UNRECOGNIZED_BACKUP

Status 401
UNAUTHORIZED

Status 405
INVALID_METHOD

Endpoints to support “play” mode, data restoration

Functions

flexmeasures.api.play.register_at(app: Flask)
This can be used to register this blueprint together with other api-related things

flexmeasures.api.sunset

Modules

flexmeasures.api.sunset.routes

flexmeasures.api.sunset.routes

Functions

flexmeasures.api.sunset.routes.implementation_gone()

A place to keep all routes to endpoints that previously existed and are now sunset.

5.3. I want to build new features quickly, not spend days solving basic problems 199

FlexMeasures Documentation, Release 0.17

Functions

flexmeasures.api.sunset.register_at(app: Flask)
This can be used to register this blueprint together with other api-related things

flexmeasures.api.v3_0

Modules

flexmeasures.api.v3_0.accounts

flexmeasures.api.v3_0.assets

flexmeasures.api.v3_0.health

flexmeasures.api.v3_0.public

flexmeasures.api.v3_0.sensors

flexmeasures.api.v3_0.users

flexmeasures.api.v3_0.accounts

Classes

class flexmeasures.api.v3_0.accounts.AccountAPI

get(id: int, account: Account)
API endpoint to get an account.

This endpoint retrieves an account, given its id. Only admins, consultants and users belonging to the account
itself can use this endpoint.

Example response

{
'id': 1,
'name': 'Test Account'
'account_roles': [1, 3],
'consultancy_account_id': 2,

}

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

200 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

Status 200
PROCESSED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

index()

API endpoint to list all accounts accessible to the current user.

This endpoint returns all accessible accounts. Accessible accounts are your own account and accounts you
are a consultant for, or all accounts for admins.

Example response
An example of one account being returned:

[
{

'id': 1,
'name': 'Test Account'
'account_roles': [1, 3],
'consultancy_account_id': 2,

}
]

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

5.3. I want to build new features quickly, not spend days solving basic problems 201

FlexMeasures Documentation, Release 0.17

flexmeasures.api.v3_0.assets

Classes

class flexmeasures.api.v3_0.assets.AssetAPI

This API view exposes generic assets. Under development until it replaces the original Asset API.

delete(id: int, asset: GenericAsset)
Delete an asset given its identifier.

This endpoint deletes an existing asset, as well as all sensors and measurements recorded for it.

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 204
DELETED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

fetch_one(id, asset)
Fetch a given asset.

This endpoint gets an asset.

Example response

{
"generic_asset_type_id": 2,
"name": "Test battery",
"id": 1,
"latitude": 10,
"longitude": 100,
"account_id": 1,

}

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

202 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

Status 200
PROCESSED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

get_chart(id: int, asset: GenericAsset, **kwargs)
GET from /assets/<id>/chart

get_chart_data(id: int, asset: GenericAsset, **kwargs)
GET from /assets/<id>/chart_data

Data for use in charts (in case you have the chart specs already).

index(account: Account)
List all assets owned by a certain account.

This endpoint returns all accessible assets for the account of the user. The account_id query parameter can
be used to list assets from a different account.

Example response
An example of one asset being returned:

[
{

"id": 1,
"name": "Test battery",
"latitude": 10,
"longitude": 100,
"account_id": 2,
"generic_asset_type_id": 1

}
]

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

5.3. I want to build new features quickly, not spend days solving basic problems 203

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

patch(asset_data: dict, id: int, db_asset: GenericAsset)
Update an asset given its identifier.

This endpoint sets data for an existing asset. Any subset of asset fields can be sent.

The following fields are not allowed to be updated: - id - account_id

Example request

{
"latitude": 11.1,
"longitude": 99.9,

}

Example response
The whole asset is returned in the response:

{
"generic_asset_type_id": 2,
"id": 1,
"latitude": 11.1,
"longitude": 99.9,
"name": "Test battery",
"account_id": 2,

}

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
UPDATED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

204 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

post(asset_data: dict)
Create new asset.

This endpoint creates a new asset.

Example request

{
"name": "Test battery",
"generic_asset_type_id": 2,
"account_id": 2,
"latitude": 40,
"longitude": 170.3,

}

The newly posted asset is returned in the response.

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 201
CREATED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

public()

Return all public assets.

This endpoint returns all public assets.

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

5.3. I want to build new features quickly, not spend days solving basic problems 205

https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

Status 422
UNPROCESSABLE_ENTITY

flexmeasures.api.v3_0.health

Classes

class flexmeasures.api.v3_0.health.HealthAPI

is_ready()

Get readiness status

Example response:

{
'database_sql': True,
'database_redis': False

}

flexmeasures.api.v3_0.public

Functions

flexmeasures.api.v3_0.public.quickref_directive(content)
Adapted from sphinxcontrib/autohttp/flask_base.py:quickref_directive.

Classes

class flexmeasures.api.v3_0.public.ServicesAPI

index()

API endpoint to get a service listing for this version.

Resheader Content-Type
application/json

Status 200
PROCESSED

flexmeasures.api.v3_0.sensors

Classes

class flexmeasures.api.v3_0.sensors.SensorAPI

delete(id: int, sensor: Sensor)
Delete a sensor given its identifier.

This endpoint deletes an existing sensor, as well as all measurements recorded for it.

Reqheader Authorization
The authentication token

206 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 204
DELETED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

fetch_one(id, sensor)
Fetch a given sensor.

This endpoint gets a sensor.

Example response

{
"name": "some gas sensor",
"unit": "m3/h",
"entity_address": "ea1.2023-08.localhost:fm1.1",
"event_resolution": "PT10M",
"generic_asset_id": 4,
"timezone": "UTC",
"id": 2

}

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

5.3. I want to build new features quickly, not spend days solving basic problems 207

FlexMeasures Documentation, Release 0.17

get_data(sensor_data_description: dict)
Get sensor data from FlexMeasures.

Example request

{
"sensor": "ea1.2021-01.io.flexmeasures:fm1.1",
"start": "2021-06-07T00:00:00+02:00",
"duration": "PT1H",
"resolution": "PT15M",
"unit": "m3/h"

}

The unit has to be convertible from the sensor’s unit.

Optional fields
• “resolution” (see Frequency and resolution)

• “horizon” (see Tracking the recording time of beliefs)

• “prior” (see Tracking the recording time of beliefs)

• “source” (see Sources)

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

get_schedule(sensor: Sensor, job_id: str, duration: timedelta, **kwargs)
Get a schedule from FlexMeasures.

Optional fields
• “duration” (6 hours by default; can be increased to plan further into the future)

Example response
This message contains a schedule indicating to consume at various power rates from 10am UTC onwards
for a duration of 45 minutes.

208 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta

FlexMeasures Documentation, Release 0.17

{
"values": [

2.15,
3,
2

],
"start": "2015-06-02T10:00:00+00:00",
"duration": "PT45M",
"unit": "MW"

}

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_TIMEZONE, INVALID_DOMAIN, INVALID_UNIT, UN-
KNOWN_SCHEDULE, UNRECOGNIZED_CONNECTION_GROUP

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 405
INVALID_METHOD

Status 422
UNPROCESSABLE_ENTITY

index(account: Account)
API endpoint to list all sensors of an account.

This endpoint returns all accessible sensors. Accessible sensors are sensors in the same account as the
current user. Only admins can use this endpoint to fetch sensors from a different account (by using the
account_id query parameter).

Example response
An example of one sensor being returned:

[
{

"entity_address": "ea1.2021-01.io.flexmeasures.company:fm1.42",
"event_resolution": PT15M,
"generic_asset_id": 1,
"name": "Gas demand",
"timezone": "Europe/Amsterdam",
"unit": "m3/h"

(continues on next page)

5.3. I want to build new features quickly, not spend days solving basic problems 209

FlexMeasures Documentation, Release 0.17

(continued from previous page)

"id": 2
}

]

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

patch(sensor_data: dict, id: int, sensor: Sensor)
Update a sensor given its identifier.

This endpoint updates the descriptive data of an existing sensor.

Any subset of sensor fields can be sent. However, the following fields are not allowed to be updated: - id -
generic_asset_id - entity_address

Only admin users have rights to update the sensor fields. Be aware that changing unit, event resolution and
knowledge horizon should currently only be done on sensors without existing belief data (to avoid a serious
mismatch), or if you really know what you are doing.

Example request

{
"name": "POWER",

}

Example response
The whole sensor is returned in the response:

{
"name": "some gas sensor",
"unit": "m3/h",
"entity_address": "ea1.2023-08.localhost:fm1.1",
"event_resolution": "PT10M",
"generic_asset_id": 4,
"timezone": "UTC",

(continues on next page)

210 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

(continued from previous page)

"id": 2
}

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
UPDATED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

post(sensor_data: dict)
Create new asset.

This endpoint creates a new Sensor.

Example request

{
"name": "power",
"event_resolution": "PT1H",
"unit": "kWh",
"generic_asset_id": 1,

}

Example response
The whole sensor is returned in the response:

{
"name": "power",
"unit": "kWh",
"entity_address": "ea1.2023-08.localhost:fm1.1",
"event_resolution": "PT1H",
"generic_asset_id": 1,
"timezone": "UTC",
"id": 2

}

Reqheader Authorization
The authentication token

5.3. I want to build new features quickly, not spend days solving basic problems 211

https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 201
CREATED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

post_data(bdf: BeliefsDataFrame)
Post sensor data to FlexMeasures.

Example request

{
"sensor": "ea1.2021-01.io.flexmeasures:fm1.1",
"values": [-11.28, -11.28, -11.28, -11.28],
"start": "2021-06-07T00:00:00+02:00",
"duration": "PT1H",
"unit": "m3/h"

}

The above request posts four values for a duration of one hour, where the first event start is at the given start
time, and subsequent events start in 15 minute intervals throughout the one hour duration.

The sensor is the one with ID=1. The unit has to be convertible to the sensor’s unit. The resolution of
the data has to match the sensor’s required resolution, but FlexMeasures will attempt to upsample lower
resolutions. The list of values may include null values.

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

212 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

Status 422
UNPROCESSABLE_ENTITY

trigger_schedule(sensor: Sensor, start_of_schedule: datetime, duration: timedelta, belief_time: datetime |
None = None, flex_model: dict | None = None, flex_context: dict | None = None,
**kwargs)

Trigger FlexMeasures to create a schedule.

Trigger FlexMeasures to create a schedule for this sensor. The assumption is that this sensor is the power
sensor on a flexible asset.

In this request, you can describe:

• the schedule’s main features (when does it start, what unit should it report, prior to what time can we
assume knowledge)

• the flexibility model for the sensor (state and constraint variables, e.g. current state of charge of a
battery, or connection capacity)

• the flexibility context which the sensor operates in (other sensors under the same EMS which are
relevant, e.g. prices)

For details on flexibility model and context, see Describing flexibility. Below, we’ll also list some examples.

Note: This endpoint does not support to schedule an EMS with multiple flexible sensors at once. This will
happen in another endpoint. See https://github.com/FlexMeasures/flexmeasures/issues/485. Until then, it
is possible to call this endpoint for one flexible endpoint at a time (considering already scheduled sensors
as inflexible).

The length of the schedule can be set explicitly through the ‘duration’ field. Otherwise, it is set by the config
setting FLEXMEASURES_PLANNING_HORIZON , which defaults to 48 hours. If the flex-model contains
targets that lie beyond the planning horizon, the length of the schedule is extended to accommodate them.
Finally, the schedule length is limited by max_planning_horizon_config, which defaults to 2520 steps of
the sensor’s resolution. Targets that exceed the max planning horizon are not accepted.

The appropriate algorithm is chosen by FlexMeasures (based on asset type). It’s also possible to use custom
schedulers and custom flexibility models, see Plugin Customizations.

If you have ideas for algorithms that should be part of FlexMeasures, let us know: https://flexmeasures.io/
get-in-touch/

Example request A
This message triggers a schedule for a storage asset, starting at 10.00am, at which the state of charge (soc)
is 12.1 kWh.

{
"start": "2015-06-02T10:00:00+00:00",
"flex-model": {

"soc-at-start": 12.1,
"soc-unit": "kWh"

}
}

Example request B
This message triggers a 24-hour schedule for a storage asset, starting at 10.00am, at which the state of
charge (soc) is 12.1 kWh, with a target state of charge of 25 kWh at 4.00pm. The global minimum and
maximum soc are set to 10 and 25 kWh, respectively. To guarantee a minimum SOC in the period prior

5.3. I want to build new features quickly, not spend days solving basic problems 213

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://github.com/FlexMeasures/flexmeasures/issues/485
https://flexmeasures.io/get-in-touch/
https://flexmeasures.io/get-in-touch/

FlexMeasures Documentation, Release 0.17

to 4.00pm, local minima constraints are imposed (via soc-minima) at 2.00pm and 3.00pm, for 15kWh and
20kWh, respectively. Roundtrip efficiency for use in scheduling is set to 98%. Storage efficiency is set to
99.99%, denoting the state of charge left after each time step equal to the sensor’s resolution. Aggregate
consumption (of all devices within this EMS) should be priced by sensor 9, and aggregate production should
be priced by sensor 10, where the aggregate power flow in the EMS is described by the sum over sensors
13, 14 and 15 (plus the flexible sensor being optimized, of course). Note that, if forecasts for sensors 13,
14 and 15 are not available, a schedule cannot be computed.

{
"start": "2015-06-02T10:00:00+00:00",
"duration": "PT24H",
"flex-model": {

"soc-at-start": 12.1,
"soc-unit": "kWh",
"soc-targets": [

{
"value": 25,
"datetime": "2015-06-02T16:00:00+00:00"

},
],
"soc-minima" : [

{
"value": 15,
"datetime" : "2015-06-02T14:00:00+00:00"

},
{

"value": 20,
"datetime" : "2015-06-02T15:00:00+00:00"

}
],
"soc-min": 10,
"soc-max": 25,
"roundtrip-efficiency": 0.98,
"storage-efficiency": 0.9999,
"power-capacity" : "25kW"

},
"flex-context": {

"consumption-price-sensor": 9,
"production-price-sensor": 10,
"inflexible-device-sensors": [13, 14, 15],
"site-power-capacity": "100kW",
"site-production-capacity": "80kW",
"site-consumption-capacity": "100kW"

}
}

Example response
This message indicates that the scheduling request has been processed without any error. A scheduling job
has been created with some Universally Unique Identifier (UUID), which will be picked up by a worker.
The given UUID may be used to obtain the resulting schedule: see /sensors/<id>/schedules/<uuid>.

{
"status": "PROCESSED",

(continues on next page)

214 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

(continued from previous page)

"schedule": "364bfd06-c1fa-430b-8d25-8f5a547651fb",
"message": "Request has been processed."

}

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_DATA

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 405
INVALID_METHOD

Status 422
UNPROCESSABLE_ENTITY

flexmeasures.api.v3_0.users

Classes

class flexmeasures.api.v3_0.users.UserAPI

get(id: int, user: User)
API endpoint to get a user.

This endpoint gets a user. Only admins or the members of the same account can use this endpoint.

Example response

{
'account_id': 1,
'active': True,
'email': 'test_prosumer@seita.nl',
'flexmeasures_roles': [1, 3],
'id': 1,
'timezone': 'Europe/Amsterdam',
'username': 'Test Prosumer User'

}

Reqheader Authorization
The authentication token

5.3. I want to build new features quickly, not spend days solving basic problems 215

https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

index(account: Account, include_inactive: bool = False)
API endpoint to list all users of an account.

This endpoint returns all accessible users. By default, only active users are returned. The include_inactive
query parameter can be used to also fetch inactive users. Accessible users are users in the same account as
the current user. Only admins can use this endpoint to fetch users from a different account (by using the
account_id query parameter).

Example response
An example of one user being returned:

[
{

'active': True,
'email': 'test_prosumer@seita.nl',
'account_id': 13,
'flexmeasures_roles': [1, 3],
'id': 1,
'timezone': 'Europe/Amsterdam',
'username': 'Test Prosumer User'

}
]

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST

216 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

patch(id: int, user: User, **user_data)
API endpoint to patch user data.

This endpoint sets data for an existing user. It has to be used by the user themselves, admins or account-
admins (of the same account). Any subset of user fields can be sent. If the user is not an (account-)admin,
they can only edit a few of their own fields.

The following fields are not allowed to be updated at all:
• id

• account_id

Example request

{
"active": false,

}

Example response
The following user fields are returned:

{
'account_id': 1,
'active': True,
'email': 'test_prosumer@seita.nl',
'flexmeasures_roles': [1, 3],
'id': 1,
'timezone': 'Europe/Amsterdam',
'username': 'Test Prosumer User'

}

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
UPDATED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

5.3. I want to build new features quickly, not spend days solving basic problems 217

https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

reset_user_password(id: int, user: User)
API endpoint to reset the user’s current password, cookies and auth tokens, and to email a password reset
link to the user.

Reset the user’s password, and send them instructions on how to reset the password. This endpoint is useful
from a security standpoint, in case of worries the password might be compromised. It sets the current
password to something random, invalidates cookies and auth tokens, and also sends an email for resetting
the password to the user.

Users can reset their own passwords. Only admins can use this endpoint to reset passwords of other users.

Reqheader Authorization
The authentication token

Reqheader Content-Type
application/json

Resheader Content-Type
application/json

Status 200
PROCESSED

Status 400
INVALID_REQUEST, REQUIRED_INFO_MISSING, UNEXPECTED_PARAMS

Status 401
UNAUTHORIZED

Status 403
INVALID_SENDER

Status 422
UNPROCESSABLE_ENTITY

FlexMeasures API v3

Functions

flexmeasures.api.v3_0.register_at(app: Flask)
This can be used to register this blueprint together with other api-related things

FlexMeasures API routes and implementations.

218 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

Functions

flexmeasures.api.get_versions()→ dict
Public endpoint to list API versions.

flexmeasures.api.register_at(app: Flask)
This can be used to register this blueprint together with other api-related things

flexmeasures.api.request_auth_token()

API endpoint to get a fresh authentication access token. Be aware that this fresh token has a limited lifetime
(which depends on the current system setting SECURITY_TOKEN_MAX_AGE).

Pass the email parameter to identify the user. Pass the password parameter to authenticate the user (if not already
authenticated in current session)

5.3.45 flexmeasures.app

Starting point of the Flask application.

Functions

flexmeasures.app.create(env: str | None = None, path_to_config: str | None = None, plugins: list[str] | None =
None)→ Flask

Create a Flask app and configure it.

Set the environment by setting FLASK_ENV as environment variable (also possible in .env). Or, overwrite any
FLASK_ENV setting by passing an env in directly (useful for testing for instance).

A path to a config file can be passed in (otherwise a config file will be searched in the home or instance directo-
ries).

Also, a list of plugins can be set. Usually this works as a config setting, but this is useful for automated testing.

5.3.46 flexmeasures.auth

Modules

flexmeasures.auth.decorators Auth decorators for endpoints
flexmeasures.auth.error_handling Auth error handling.
flexmeasures.auth.policy Tooling & docs for implementing our auth policy

flexmeasures.auth.decorators

Auth decorators for endpoints

5.3. I want to build new features quickly, not spend days solving basic problems 219

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

Functions

flexmeasures.auth.decorators.account_roles_accepted(*account_roles)
Decorator which specifies that a user’s account must have at least one of the specified roles (or must be an admin).
Example:

@app.route(‘/postMeterData’) @account_roles_accepted(‘Prosumer’, ‘MDC’) def
post_meter_data():

return ‘Meter data posted’

The current user’s account must have either the Prosumer role or MDC role in order to use the service.

Parameters
account_roles – The possible roles.

flexmeasures.auth.decorators.account_roles_required(*account_roles)
Decorator which specifies that a user’s account must have all the specified roles. Example:

@app.route('/dashboard')
@account_roles_required('Prosumer', 'App-subscriber')
def dashboard():

return 'Dashboard'

The current user’s account must have both the Prosumer role and App-subscriber role in order to view the page.

Parameters
roles – The required roles.

flexmeasures.auth.decorators.permission_required_for_context(permission: str, ctx_arg_pos: int |
None = None, ctx_arg_name: str |
None = None, ctx_loader: Callable |
None = None, pass_ctx_to_loader:
bool = False)

This decorator can be used to make sure that the current user has the necessary permission to access the context.
The permission needs to be a known permission and is checked with principal descriptions from the context’s
access control list (see AuthModelMixin.__acl__). This decorator will first load the context (see below for details)
and then call check_access to make sure the current user has the permission.

A 403 response is raised if there is no principal for the required permission. A 401 response is raised if the user
is not authenticated at all.

We will now explain how to load a context, and give an example:

The context needs to be an AuthModelMixin and is found . . . - by loading it via the ctx_loader callable; -
otherwise:

• by the keyword argument ctx_arg_name;

• and/or by a position in the non-keyword arguments (ctx_arg_pos).

If nothing is passed, the context lookup defaults to ctx_arg_pos=0.

Let’s look at an example. Usually, you’d place a marshmallow field further up in the decorator chain, e.g.:

@app.route(“/resource/<resource_id>”, methods=[“GET”]) @use_kwargs(

{“the_resource”: ResourceIdField(data_key=”resource_id”)}, location=”path”,

) @permission_required_for_context(“read”, ctx_arg_name=”the_resource”) @as_json def
view(resource_id: int, the_resource: Resource):

220 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

return dict(name=the_resource.name)

Note that in this example, ResourceIdField._deserialize() turns the id parameter into a Resource context (if pos-
sible).

The ctx_loader:

The ctx_loader can be a function without arguments or it takes the context loaded from the arguments
as input (using pass_ctx_to_loader=True). A special case is useful when the arguments contain the
context ID (not the instance). Then, the loader can be a subclass of AuthModelMixin, and this deco-
rator will look up the instance.

Using both arg name and position:

Using both ctx_arg_name and ctx_arg_pos arguments is useful when Marshmallow de-serializes to
a dict and you are using use_args. In this case, the context lookup applies first ctx_arg_pos, then
ctx_arg_name.

Let’s look at a slightly more complex example where we combine both special cases from above. We parse a
dictionary from the input with a Marshmallow schema, in which a context ID can be found which we need to
instantiate:

@app.route(“/resource”, methods=[“POST”]) @use_args(resource_schema) @permis-
sion_required_for_context(

“create-children”, ctx_arg_pos=1, ctx_arg_name=”resource_id”, ctx_loader=Resource,
pass_ctx_to_loader=True

) def post(self, resource_data: dict):

Note that in this example, resource_data is the input parsed by resource_schema, “resource_id” is one of the
parameters in this schema, and Resource is a subclass of AuthModelMixin.

flexmeasures.auth.decorators.roles_accepted(*roles)
As in Flask-Security, but also accept admin

flexmeasures.auth.decorators.roles_required(*roles)
As in Flask-Security, but wave through if user is admin

flexmeasures.auth.error_handling

Auth error handling.

Beware: There is a historical confusion of naming between authentication and authorization.
Names of Responses have to be kept as they were called in original W3 protocols. See explanation below.

Functions

flexmeasures.auth.error_handling.unauthenticated_handler(mechanisms: list | None = None, headers:
dict | None = None)

Handler for authentication problems. :param mechanisms: a list of which authentication mechanisms were tried.
:param headers: a dict of headers to return. We respond with json if the request doesn’t say otherwise. Also,
other FlexMeasures packages can define that they want to wrap JSON responses and/or render HTML error
pages (for non-JSON requests) in custom ways — by registering unauthenticated_handler_api & unauthenti-
cated_handler_html, respectively.

flexmeasures.auth.error_handling.unauthenticated_handler_e(e)
Swallow error. Useful for classical Flask error handler registration.

5.3. I want to build new features quickly, not spend days solving basic problems 221

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

flexmeasures.auth.error_handling.unauthorized_handler(func: Callable | None = None, params: list |
None = None)

Handler for authorization problems. :param func: the Flask-Security-Too decorator, if relevant, and params are
its parameters.

We respond with json if the request doesn’t say otherwise. Also, other FlexMeasures packages can define that
they want to wrap JSON responses and/or render HTML error pages (for non-JSON requests) in custom ways —
by registering unauthorized_handler_api & unauthorized_handler_html, respectively.

flexmeasures.auth.error_handling.unauthorized_handler_e(e)
Swallow error. Useful for classical Flask error handler registration.

flexmeasures.auth.policy

Tooling & docs for implementing our auth policy

Functions

flexmeasures.auth.policy.check_access(context: AuthModelMixin, permission: str)
Check if current user can access this auth context if this permission is required, either with admin rights or
principal(s).

Raises 401 or 403 otherwise.

flexmeasures.auth.policy.check_account_membership(user, principal: str)→ bool

flexmeasures.auth.policy.check_account_role(user, principal: str)→ bool

flexmeasures.auth.policy.check_user_identity(user, principal: str)→ bool

flexmeasures.auth.policy.check_user_role(user, principal: str)→ bool

flexmeasures.auth.policy.user_has_admin_access(user, permission: str)→ bool

flexmeasures.auth.policy.user_matches_principals(user, principals: str | Tuple[str] | List[str |
Tuple[str]])→ bool

Tests if the user matches all passed principals. Returns False if no principals are passed.

Classes

class flexmeasures.auth.policy.AuthModelMixin

Authentication and authorization policies and helpers.

Functions

flexmeasures.auth.register_at(app: Flask)

222 Chapter 5. Developer support

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

5.3.47 flexmeasures.cli

Modules

flexmeasures.cli.data_add CLI commands for populating the database
flexmeasures.cli.data_delete CLI commands for removing data
flexmeasures.cli.data_edit CLI commands for editing data
flexmeasures.cli.data_show CLI commands for listing database contents and classes
flexmeasures.cli.db_ops CLI commands for saving, resetting, etc of the database
flexmeasures.cli.jobs CLI commands for controlling jobs
flexmeasures.cli.monitor CLI commands for monitoring functionality.
flexmeasures.cli.utils Utils for FlexMeasures CLI

flexmeasures.cli.data_add

CLI commands for populating the database

Functions

flexmeasures.cli.data_add.check_errors(errors: dict[str, list[str]])

flexmeasures.cli.data_add.check_timezone(timezone)

flexmeasures.cli.data_add.launch_editor(filename: str)→ dict
Launch editor to create/edit a json object

flexmeasures.cli.data_add.parse_source(source)

flexmeasures.cli.data_delete

CLI commands for removing data

flexmeasures.cli.data_edit

CLI commands for editing data

Functions

flexmeasures.cli.data_edit.parse_attribute_value(attribute_null_value: bool, attribute_float_value:
float | None = None, attribute_bool_value: bool |
None = None, attribute_str_value: str | None =
None, attribute_int_value: int | None = None,
attribute_list_value: str | None = None,
attribute_dict_value: str | None = None)→ float |
int | bool | str | list | dict | None

Parse attribute value.

flexmeasures.cli.data_edit.single_true(iterable)→ bool

5.3. I want to build new features quickly, not spend days solving basic problems 223

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

flexmeasures.cli.data_show

CLI commands for listing database contents and classes

Functions

flexmeasures.cli.data_show.list_items(item_type)
Show available items of a specific type.

flexmeasures.cli.db_ops

CLI commands for saving, resetting, etc of the database

flexmeasures.cli.jobs

CLI commands for controlling jobs

Functions

flexmeasures.cli.jobs.handle_worker_exception(job, exc_type, exc_value, traceback)
Just a fallback, usually we would use the per-queue handler.

flexmeasures.cli.jobs.parse_queue_list(queue_names_str: str)→ list[Queue]
Parse a | separated string of queue names against the app.queues dict.

The app.queues dict is expected to have queue names as keys, and rq.Queue objects as values.

Parameters
queue_names_str – a string with queue names separated by the | character

Returns
a list of Queue objects.

flexmeasures.cli.monitor

CLI commands for monitoring functionality.

Functions

flexmeasures.cli.monitor.send_lastseen_monitoring_alert(users: list[User], last_seen_delta:
timedelta, alerted_users: bool,
account_role: str | None = None,
user_role: str | None = None)

Tell monitoring recipients and Sentry about user(s) we haven’t seen in a while.

flexmeasures.cli.monitor.send_task_monitoring_alert(task_name: str, msg: str, latest_run:
LatestTaskRun | None = None, custom_msg: str |
None = None)

Send any monitoring message per Sentry and per email. Also log an error.

224 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

flexmeasures.cli.utils

Utils for FlexMeasures CLI

Functions

flexmeasures.cli.utils.get_timerange_from_flag(last_hour: bool = False, last_day: bool = False,
last_7_days: bool = False, last_month: bool = False,
last_year: bool = False, timezone:
~pytz.tzinfo.BaseTzInfo = <DstTzInfo 'Asia/Seoul'
LMT+8:28:00 STD>)→ tuple[datetime, datetime]

This function returns a time range [start,end] of the last-X period. See input parameters for more details.

Parameters
• last_hour (bool) – flag to get the time range of the last finished hour.

• last_day (bool) – flag to get the time range for yesterday.

• last_7_days (bool) – flag to get the time range of the previous 7 days.

• last_month (bool) – flag to get the time range of last calendar month

• last_year (bool) – flag to get the last completed calendar year

• timezone – timezone object to represent

Returns
start:datetime, end:datetime

Classes

class flexmeasures.cli.utils.DeprecatedDefaultGroup(*args, **kwargs)
Invokes a default subcommand, and shows a deprecation message.

Also adds the invoked_default boolean attribute to the context. A group callback can use this information to
figure out if it’s being executed directly (invoking the default subcommand) or because the execution flow passes
onwards to a subcommand. By default it’s None, but it can be the name of the default subcommand to execute.

import click
from flexmeasures.cli.utils import DeprecatedDefaultGroup

@click.group(cls=DeprecatedDefaultGroup, default="bar", deprecation_message=
→˓"renamed to `foo bar`.")
def foo(ctx):

if ctx.invoked_default:
click.echo("foo")

@foo.command()
def bar():

click.echo("bar")

$ flexmeasures foo
DeprecationWarning: renamed to `foo bar`.
foo
bar

(continues on next page)

5.3. I want to build new features quickly, not spend days solving basic problems 225

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

(continued from previous page)

$ flexmeasures foo bar
bar

__init__(*args, **kwargs)

get_command(ctx, cmd_name)
Given a context and a command name, this returns a Command object if it exists or returns None.

class flexmeasures.cli.utils.MsgStyle

Stores the text styles for the different events

Styles options are the attributes of the click.style which can be found [here](https://click.palletsprojects.com/en/
8.1.x/api/#click.style).

CLI functions for FlexMeasures hosts.

Functions

flexmeasures.cli.is_running()→ bool
True if we are running one of the custom FlexMeasures CLI commands.

We use this in combination with authorization logic, e.g. we assume that only sysadmins run commands there,
but also we consider forecasting & scheduling jobs to be in that realm, as well.

This tooling might not live forever, as we could evolve into a more sophisticated auth model for these cases. For
instance, these jobs are queued by the system, but caused by user actions (sending data), and then they are run
by the system.

See also: the run_as_cli test fixture, which uses the (non-public) PRETEND_RUNNING_AS_CLI env setting.

flexmeasures.cli.register_at(app: Flask)

5.3.48 flexmeasures.data

Modules

flexmeasures.data.config Database configuration utils
flexmeasures.data.models Data models for FlexMeasures
flexmeasures.data.queries Data query functions
flexmeasures.data.schemas Data schemas (Marshmallow)
flexmeasures.data.scripts Useful scripts
flexmeasures.data.services Business logic
flexmeasures.data.transactional These, and only these, functions should help you with

treating your own code in the context of one database
transaction.

flexmeasures.data.utils Utils around the data models and db sessions

226 Chapter 5. Developer support

https://click.palletsprojects.com/en/8.1.x/api/#click.style
https://click.palletsprojects.com/en/8.1.x/api/#click.style
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

flexmeasures.data.config

Database configuration utils

Functions

flexmeasures.data.config.commit_and_start_new_session(app: Flask)
Use this when a script wants to save a state before continuing Not tested well, just a starting point - not recom-
mended anyway for any logic used by views or tasks. Maybe session.flush() can help you there.

flexmeasures.data.config.configure_db_for(app: Flask)
Call this to configure the database and the tools we use on it for the Flask app. This should only be called once
in the app’s lifetime.

flexmeasures.data.config.init_db()

Initialise the database object

flexmeasures.data.models

Modules

flexmeasures.data.models.annotations

flexmeasures.data.models.charts

flexmeasures.data.models.data_sources

flexmeasures.data.models.forecasting

flexmeasures.data.models.generic_assets

flexmeasures.data.models.
legacy_migration_utils

This module is part of our data model migration (see
https://github.com/SeitaBV/flexmeasures/projects/9).

flexmeasures.data.models.parsing_utils

flexmeasures.data.models.planning

flexmeasures.data.models.reporting

flexmeasures.data.models.task_runs

flexmeasures.data.models.time_series

flexmeasures.data.models.user

flexmeasures.data.models.validation_utils

flexmeasures.data.models.weather

5.3. I want to build new features quickly, not spend days solving basic problems 227

https://github.com/SeitaBV/flexmeasures/projects/9

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.annotations

Functions

flexmeasures.data.models.annotations.get_or_create_annotation(annotation: Annotation)→
Annotation

Add annotation to db session if it doesn’t exist in the session already.

Return the old annotation object if it exists (and expunge the new one). Otherwise, return the new one.

flexmeasures.data.models.annotations.to_annotation_frame(annotations: list[Annotation])→
DataFrame

Transform a list of annotations into a DataFrame.

We don’t use a BeliefsDataFrame here, because they are designed for quantitative data only.

Classes

class flexmeasures.data.models.annotations.AccountAnnotationRelationship(**kwargs)
Links annotations to accounts.

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

class flexmeasures.data.models.annotations.Annotation(**kwargs)
An annotation is a nominal value that applies to a specific time or time span.

Examples of annotation types:
• user annotation: annotation.type == “label” and annotation.source.type == “user”

• unresolved alert: annotation.type == “alert”

• resolved alert: annotation.type == “label” and annotation.source.type == “alerting script”

• organisation holiday: annotation.type == “holiday” and annotation.source.type == “user”

• public holiday: annotation.type == “holiday” and annotation.source.name == “workalendar”

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

228 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.17

classmethod add(df: DataFrame, annotation_type: str, expunge_session: bool = False, allow_overwrite:
bool = False, bulk_save_objects: bool = False, commit_transaction: bool = False)→
list[Annotation]

Add a data frame describing annotations to the database and return the Annotation objects.

Parameters
• df – Data frame describing annotations. Expects the following columns (or multi-index

levels): - start - end or duration - content - belief_time - source

• annotation_type – One of the possible Enum values for annotation.type

• expunge_session – if True, all non-flushed instances are removed from the session before
adding annotations. Expunging can resolve problems you might encounter with states of
objects in your session. When using this option, you might want to flush newly-created
objects which are not annotations (e.g. a sensor or data source object).

• allow_overwrite – if True, new objects are merged if False, objects are added to the
session or bulk saved

• bulk_save_objects – if True, objects are bulk saved with session.bulk_save_objects(),
which is quite fast but has several caveats, see: https://docs.sqlalchemy.org/orm/
persistence_techniques.html#bulk-operations-caveats if False, objects are added to the ses-
sion with session.add_all()

• commit_transaction – if True, the session is committed if False, you can still add other
data to the session and commit it all within an atomic transaction

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

class flexmeasures.data.models.annotations.GenericAssetAnnotationRelationship(**kwargs)
Links annotations to generic assets.

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

class flexmeasures.data.models.annotations.SensorAnnotationRelationship(**kwargs)
Links annotations to sensors.

5.3. I want to build new features quickly, not spend days solving basic problems 229

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.sqlalchemy.org/orm/persistence_techniques.html#bulk-operations-caveats
https://docs.sqlalchemy.org/orm/persistence_techniques.html#bulk-operations-caveats

FlexMeasures Documentation, Release 0.17

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

flexmeasures.data.models.charts

Modules

flexmeasures.data.models.charts.
belief_charts
flexmeasures.data.models.charts.defaults

flexmeasures.data.models.charts.belief_charts

Functions

flexmeasures.data.models.charts.belief_charts.bar_chart(sensor: Sensor, event_starts_after:
datetime | None = None,
event_ends_before: datetime | None =
None, **override_chart_specs: dict)

flexmeasures.data.models.charts.belief_charts.chart_for_multiple_sensors(sensors_to_show:
list['Sensor',
list['Sensor']],
event_starts_after:
datetime | None =
None,
event_ends_before:
datetime | None =
None, **over-
ride_chart_specs:
dict)

flexmeasures.data.models.charts.belief_charts.create_circle_layer(sensors: list[Sensor],
event_start_field_definition:
dict,
event_value_field_definition:
dict, sensor_field_definition:
dict, shared_tooltip: list)

230 Chapter 5. Developer support

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.charts.belief_charts.create_fall_dst_transition_layer(timezone,
mark,
event_value_field_definition,
event_start_field_definition,
tooltip, split:
str)→ dict

Special layer for showing data during the daylight savings time transition in fall.

flexmeasures.data.models.charts.belief_charts.create_line_layer(sensors: list[Sensor],
event_start_field_definition: dict,
event_value_field_definition:
dict, sensor_field_definition:
dict)

flexmeasures.data.models.charts.belief_charts.create_rect_layer(event_start_field_definition: dict,
event_value_field_definition:
dict, shared_tooltip: list)

flexmeasures.data.models.charts.belief_charts.daily_heatmap(sensor: Sensor, event_starts_after:
datetime | None = None,
event_ends_before: datetime | None =
None, **override_chart_specs: dict)

flexmeasures.data.models.charts.belief_charts.determine_shared_sensor_type(sensors:
list[Sensor])→
str

flexmeasures.data.models.charts.belief_charts.determine_shared_unit(sensors: list[Sensor])→
str

flexmeasures.data.models.charts.belief_charts.heatmap(sensor: Sensor, event_starts_after: datetime |
None = None, event_ends_before: datetime |
None = None, split: str = 'weekly',
**override_chart_specs: dict)

flexmeasures.data.models.charts.belief_charts.weekly_heatmap(sensor: Sensor, event_starts_after:
datetime | None = None,
event_ends_before: datetime | None
= None, **override_chart_specs:
dict)

flexmeasures.data.models.charts.defaults

Functions

flexmeasures.data.models.charts.defaults.apply_chart_defaults(fn)

flexmeasures.data.models.charts.defaults.merge_vega_lite_specs(child: dict, parent: dict)→ dict
Merge nested dictionaries, with child inheriting values from parent.

Child values are updated with parent values if they exist. In case a field is a string and that field is updated with
some dict, the string is moved inside the dict under a field defined in vega_lite_field_mapping. For example,
‘title’ becomes ‘text’ and ‘mark’ becomes ‘type’.

5.3. I want to build new features quickly, not spend days solving basic problems 231

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

Functions

flexmeasures.data.models.charts.chart_type_to_chart_specs(chart_type: str, **kwargs)→ dict
Create chart specs of a given chart type, using FlexMeasures defaults for settings like width and height.

Parameters
chart_type – Name of a variable defining chart specs or a function returning chart specs. The
chart specs can be a dictionary or an Altair chart specification. - In case of a dictionary, the creator
needs to ensure that the dictionary contains valid specs - In case of an Altair chart specification,
Altair validates for you

Returns
A dictionary containing a vega-lite chart specification

flexmeasures.data.models.data_sources

Classes

class flexmeasures.data.models.data_sources.DataGenerator(config: dict | None = None,
save_config=True,
save_parameters=False, **kwargs)

__init__(config: dict | None = None, save_config=True, save_parameters=False, **kwargs)→ None
Base class for the Schedulers, Reporters and Forecasters.

The configuration config stores static parameters, parameters that, if changed, trigger the creation of a new
DataSource. Dynamic parameters, such as the start date, can go into the parameters. See docstring of the
method DataGenerator.compute for more details. Nevertheless, the parameter save_parameters can be set
to True if some parameters need to be saved to the DB. In that case, the method _clean_parameters is
called to remove any field that is not to be persisted, e.g. time parameters which are already contained in
the TimedBelief.

Create a new DataGenerator with a certain configuration. There are two alternatives to define the parame-
ters:

1. Serialized through the keyword argument config.

2. Deserialized, passing each parameter as keyword arguments.

The configuration is validated using the schema _config_schema, to be defined by the subclass.

config cannot contain the key config at its top level, otherwise it could conflict with the constructor keyword
argument config when passing the config as deserialized attributes.

Example:

The configuration requires two parameters for the PV and consumption sensors.

Option 1:
dg = DataGenerator(config = {

“sensor_pv” : 1, “sensor_consumption” : 2

})

Option 2:
sensor_pv = Sensor.query.get(1) sensor_consumption = Sensor.query.get(2)

dg = DataGenerator(sensor_pv = sensor_pv,
sensor_consumption = sensor_consumption)

232 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

Parameters
• config – serialized config parameters, defaults to None

• save_config – whether to save the config into the data source attributes

• save_parameters – whether to save the parameters into the data source attributes

_clean_parameters(parameters: dict)→ dict
Use this function to clean up the parameters dictionary from the fields that are not to be persisted to the DB
as data source attributes (when save_parameters=True), e.g. because they are already stored as TimedBelief
properties, or otherwise.

Example:

An DataGenerator has the following parameters: [“start”, “end”, “field1”, “field2”] and we want
just “field1” and “field2” to be persisted.

Parameters provided to the compute method (input of the method _clean_parameters): parameters
= {

“start” : “2023-01-01T00:00:00+02:00”, “end” : “2023-01-02T00:00:00+02:00”,
“field1” : 1, “field2” : 2

}

Parameters persisted to the DB (output of the method _clean_parameters): parameters = {“field1”
: 1,”field2” : 2}

compute(parameters: dict | None = None, **kwargs)→ List[Dict[str, Any]]
The configuration parameters stores dynamic parameters, parameters that, if changed, DO NOT trigger the
creation of a new DataSource. Static parameters, such as the topology of an energy system, can go into
config.

parameters cannot contain the key parameters at its top level, otherwise it could conflict with keyword
argument parameters of the method compute when passing the parameters as deserialized attributes.

Parameters
parameters – serialized parameters parameters, defaults to None

property data_source: DataSource

DataSource property derived from the source_info: source_type (scheduler, forecaster or reporter), model
(e.g AggregatorReporter) and attributes. It looks for a data source in the database the marges the source_info
and, in case of not finding any, it creates a new one. This property gets created once and it’s cached for the
rest of the lifetime of the DataGenerator object.

classmethod get_data_source_info()→ dict
Create and return the data source info, from which a data source lookup/creation is possible.

See for instance get_data_source_for_job().

class flexmeasures.data.models.data_sources.DataSource(name=None, type=None, user=None,
attributes=None, **kwargs)

Each data source is a data-providing entity.

__init__(name=None, type=None, user=None, attributes=None, **kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

5.3. I want to build new features quickly, not spend days solving basic problems 233

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

property description

Extended description

For example:

>>> DataSource("Seita", type="forecaster", model="naive", version="1.2").
→˓description
<<< "Seita's naive model v1.2.0"

get_attribute(attribute: str, default: Any | None = None)→ Any
Looks for the attribute in the DataSource’s attributes column.

id

property label

Human-readable label (preferably not starting with a capital letter, so it can be used in a sentence).

name: str

flexmeasures.data.models.forecasting

Modules

flexmeasures.data.models.forecasting.
exceptions
flexmeasures.data.models.forecasting.
model_spec_factory
flexmeasures.data.models.forecasting.
model_specs
flexmeasures.data.models.forecasting.utils

flexmeasures.data.models.forecasting.exceptions

Exceptions

exception flexmeasures.data.models.forecasting.exceptions.InvalidHorizonException

exception flexmeasures.data.models.forecasting.exceptions.NotEnoughDataException

flexmeasures.data.models.forecasting.model_spec_factory

Functions

234 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.forecasting.model_spec_factory.configure_regressors_for_nearest_weather_sensor(sensor:
Sen-
sor,
query_window,
hori-
zon,
re-
gres-
sor_transformation,
trans-
form_to_normal)
→
List[TBSeriesSpecs]

For Assets, we use weather data as regressors. Here, we configure them.

5.3. I want to build new features quickly, not spend days solving basic problems 235

https://docs.python.org/3/library/typing.html#typing.List

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.forecasting.model_spec_factory.create_initial_model_specs(sensor:
~flexmea-
sures.data.models.time_series.Sensor,
fore-
cast_start:
~date-
time.datetime,
fore-
cast_end:
~date-
time.datetime,
fore-
cast_horizon:
~date-
time.timedelta,
ex_post_horizon:
~date-
time.timedelta
| None
= None,
trans-
form_to_normal:
bool =
True,
use_regressors:
bool =
True,
use_periodicity:
bool =
True,
cus-
tom_model_params:
dict |
None =
None,
time_series_class:
type |
None =
<class
'flexmea-
sures.data.models.time_series.TimedBelief'>)
→
ModelSpecs

Generic model specs for all asset types (also for markets and weather sensors) and horizons. Fills in training,
testing periods, lags. Specifies input and regressor data. Does not fill in which model to actually use. TODO:
check if enough data is available both for lagged variables and regressors TODO: refactor assets and markets to
store a list of pandas offset or timedelta instead of booleans for

seasonality, because e.g. although solar and building assets both have daily seasonality, only the
former is insensitive to daylight savings. Therefore: solar periodicity is 24 hours, while building
periodicity is 1 calendar day.

236 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.forecasting.model_spec_factory.get_normalization_transformation_from_sensor_attributes(sensor:
Sen-
sor)
→
Trans-
for-
ma-
tion
|
None

Transform data to be normal, using the BoxCox transformation. Lambda parameter is chosen according to the
asset type.

Classes

class flexmeasures.data.models.forecasting.model_spec_factory.TBSeriesSpecs(search_params:
dict, name: str,
time_series_class:
type | None =
<class 'flexmea-
sures.data.models.time_series.TimedBelief'>,
search_fnc: str =
'search',
original_tz:
~datetime.tzinfo |
None = <UTC>,
fea-
ture_transformation:
~timeto-
model.transforming.ReversibleTransformation
| None = None,
post_load_processing:
~timeto-
model.transforming.Transformation
| None = None,
resam-
pling_config:
~typing.Dict[str,
~typing.Any] |
None = None,
interpola-
tion_config:
~typing.Dict[str,
~typing.Any] |
None = None)

Compatibility for using timetomodel.SeriesSpecs with timely_beliefs.BeliefsDataFrames.

This implements _load_series such that <time_series_class>.search is called, with the parameters in
search_params. The search function is expected to return a BeliefsDataFrame.

5.3. I want to build new features quickly, not spend days solving basic problems 237

https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

__init__(search_params: dict, name: str, time_series_class: type | None = <class
'flexmeasures.data.models.time_series.TimedBelief'>, search_fnc: str = 'search', original_tz:
~datetime.tzinfo | None = <UTC>, feature_transformation:
~timetomodel.transforming.ReversibleTransformation | None = None, post_load_processing:
~timetomodel.transforming.Transformation | None = None, resampling_config: ~typing.Dict[str,
~typing.Any] | None = None, interpolation_config: ~typing.Dict[str, ~typing.Any] | None = None)

_load_series()→ Series
Subclasses overwrite this function to get the raw data. This method is responsible to call any
post_load_processing at the right place.

check_data(df: DataFrame)
Raise error if data is empty or contains nan values. Here, other than in load_series, we can show the query,
which is quite helpful.

flexmeasures.data.models.forecasting.model_specs

Modules

flexmeasures.data.models.forecasting.
model_specs.linear_regression
flexmeasures.data.models.forecasting.
model_specs.naive

flexmeasures.data.models.forecasting.model_specs.linear_regression

Functions

flexmeasures.data.models.forecasting.model_specs.linear_regression.ols_specs_configurator(**kwargs)
Create and customize initial specs with OLS. See model_spec_factory for param docs.

flexmeasures.data.models.forecasting.model_specs.naive

Functions

flexmeasures.data.models.forecasting.model_specs.naive.naive_specs_configurator(**kwargs)
Create and customize initial specs with OLS. See model_spec_factory for param docs.

Classes

class flexmeasures.data.models.forecasting.model_specs.naive.Naive(*args, **kwargs)
Naive prediction model for a single input feature that simply throws back the given feature. Under the hood, it
uses linear regression by ordinary least squares, trained with points (0,0) and (1,1).

__init__(*args, **kwargs)

238 Chapter 5. Developer support

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.forecasting.utils

Functions

flexmeasures.data.models.forecasting.utils.check_data_availability(old_sensor_model,
old_time_series_data_model,
forecast_start: datetime,
forecast_end: datetime,
query_window:
Tuple[datetime, datetime],
horizon: timedelta)

Check if enough data is available in the database in the first place, for training window and lagged variables.
Otherwise, suggest new forecast period. TODO: we could also check regressor data, if we get regressor specs
passed in here.

flexmeasures.data.models.forecasting.utils.create_lags(n_lags: int, sensor: Sensor, horizon:
timedelta, resolution: timedelta,
use_periodicity: bool)→ List[timedelta]

List the lags for this asset type, using horizon and resolution information.

flexmeasures.data.models.forecasting.utils.get_query_window(training_start: datetime, forecast_end:
datetime, lags: List[timedelta])→
Tuple[datetime, datetime]

Derive query window from start and end date, as well as lags (if any). This makes sure we have enough data for
lagging and forecasting.

flexmeasures.data.models.forecasting.utils.set_training_and_testing_dates(forecast_start:
datetime, train-
ing_and_testing_period:
timedelta |
Tuple[datetime,
datetime])→
Tuple[datetime,
datetime]

If needed (if training_and_testing_period is a timedelta), derive training_start and testing_end from forecast-
ing_start, otherwise simply return training_and_testing_period.

|------forecast_horizon/belief_horizon------| | |-------resolution-------| belief_time event_start
event_end

|--resolution--|–resolution–|--resolution--|–resolution–|--resolution--|–resolution–|

|---------forecast_horizon--------| | | | | | belief_time event_start | | | | | |

|---------forecast_horizon--------| | | | | belief_time event_start | | | | |

|---------forecast_horizon--------| | | |
belief_time event_start | | | |

|--------max_lag-------|——–training_and_testing_period———|---------------forecast_period--------------|
query_start training_start | | testing_end/forecast_start | forecast_end

------min_lag-----			---------forecast_horizon--------		
belief_time event_start					
		---------forecast_horizon--------			
	belief_time event_start				

5.3. I want to build new features quickly, not spend days solving basic problems 239

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

FlexMeasures Documentation, Release 0.17

| | | |---------forecast_horizon--------|
| | | belief_time event_start |

|--query_window--|

Functions

flexmeasures.data.models.forecasting.lookup_model_specs_configurator(model_search_term: str =
'linear-OLS')→
Callable[[...],
Tuple[ModelSpecs, str,
str]]

This function maps a model-identifying search term to a model configurator function, which can make model
meta data. Why use a string? It might be stored on RQ jobs. It might also leave more freedom, we can then map
multiple terms to the same model or vice versa (e.g. when different versions exist).

Model meta data in this context means a tuple of:
• timetomodel.ModelSpecs. To fill in those specs, a configurator should accept: - old_sensor:

Union[Asset, Market, WeatherSensor], - start: datetime, # Start of forecast period - end: datetime,
End of forecast period - horizon: timedelta, # Duration between time of forecasting and time which
is forecast - ex_post_horizon: timedelta = None, - custom_model_params: dict = None, # overwrite
forecasting params, useful for testing or experimentation

• a model_identifier (useful in case the model_search_term was generic, e.g. “latest”)

• a fallback_model_search_term: a string which the forecasting machinery can use to choose
a different model (using this mapping again) in case of failure.

So to implement a model, write such a function and decide here which search term(s) map(s) to it.

flexmeasures.data.models.generic_assets

Functions

flexmeasures.data.models.generic_assets.assets_share_location(assets: List[GenericAsset])→
bool

Return True if all assets in this list are located on the same spot. TODO: In the future, we might soften this to
compare if assets are in the same “housing” or “site”.

flexmeasures.data.models.generic_assets.create_generic_asset(generic_asset_type: str, **kwargs)
→ GenericAsset

Create a GenericAsset and assigns it an id.

Parameters
• generic_asset_type – “asset”, “market” or “weather_sensor”

• kwargs – should have values for keys “name”, and: - “asset_type_name” or “as-
set_type” when generic_asset_type is “asset” - “market_type_name” or “market_type” when
generic_asset_type is “market” - “weather_sensor_type_name” or “weather_sensor_type”
when generic_asset_type is “weather_sensor” - alternatively, “sensor_type” is also fine

Returns
the created GenericAsset

240 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.generic_assets.get_center_location_of_assets(user: User | None)→
Tuple[float, float]

Find the center position between all generic assets of the user’s account.

Classes

class flexmeasures.data.models.generic_assets.GenericAsset(**kwargs)
An asset is something that has economic value.

Examples of tangible assets: a house, a ship, a weather station. Examples of intangible assets: a market, a
country, a copyright.

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

add_annotations(df: DataFrame, annotation_type: str, commit_transaction: bool = False)
Add a data frame describing annotations to the database, and assign the annotations to this asset.

property asset_type: GenericAssetType

This property prepares for dropping the “generic” prefix later

chart(chart_type: str = 'chart_for_multiple_sensors', event_starts_after: datetime | None = None,
event_ends_before: datetime | None = None, beliefs_after: datetime | None = None, beliefs_before:
datetime | None = None, source: DataSource | List[DataSource] | int | List[int] | str | List[str] | None =
None, include_data: bool = False, dataset_name: str | None = None, **kwargs)→ dict

Create a vega-lite chart showing sensor data.

Parameters
• chart_type – currently only “bar_chart” # todo: where can we properly list the available

chart types?

• event_starts_after – only return beliefs about events that start after this datetime (in-
clusive)

• event_ends_before – only return beliefs about events that end before this datetime (in-
clusive)

• beliefs_after – only return beliefs formed after this datetime (inclusive)

• beliefs_before – only return beliefs formed before this datetime (inclusive)

• source – search only beliefs by this source (pass the DataSource, or its name or id) or list
of sources

• include_data – if True, include data in the chart, or if False, exclude data

• dataset_name – optionally name the dataset used in the chart (the default name is sen-
sor_<id>)

Returns
JSON string defining vega-lite chart specs

5.3. I want to build new features quickly, not spend days solving basic problems 241

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

count_annotations(annotation_starts_after: datetime | None = None, annotations_after: datetime | None =
None, annotation_ends_before: datetime | None = None, annotations_before: datetime
| None = None, source: DataSource | List[DataSource] | int | List[int] | str | List[str] |
None = None, annotation_type: str | None = None)→ int

Count the number of annotations assigned to this asset.

classmethod get_timerange(sensors: List['Sensor'])→ Dict[str, datetime]
Time range for which sensor data exists.

Parameters
sensors – sensors to check

Returns
dictionary with start and end, for example: {

’start’: datetime.datetime(2020, 12, 3, 14, 0, tzinfo=pytz.utc), ‘end’: date-
time.datetime(2020, 12, 3, 14, 30, tzinfo=pytz.utc)

}

great_circle_distance(**kwargs)
Query great circle distance (unclear if in km or in miles).

Can be called with an object that has latitude and longitude properties, for example:

great_circle_distance(object=asset)

Can also be called with latitude and longitude parameters, for example:

great_circle_distance(latitude=32, longitude=54) great_circle_distance(lat=32, lng=54)

Requires the following Postgres extensions: earthdistance and cube.

property has_energy_sensors: bool

True if at least one energy sensor is attached

property has_power_sensors: bool

True if at least one power sensor is attached

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

search_annotations(annotations_after: datetime | None = None, annotations_before: datetime | None =
None, source: DataSource | List[DataSource] | int | List[int] | str | List[str] | None =
None, annotation_type: str | None = None, include_account_annotations: bool =
False, as_frame: bool = False)→ List[Annotation] | DataFrame

Return annotations assigned to this asset, and optionally, also those assigned to the asset’s account.

The returned annotations do not include any annotations on public accounts.

Parameters
• annotations_after – only return annotations that end after this datetime (exclusive)

• annotations_before – only return annotations that start before this datetime (exclusive)

242 Chapter 5. Developer support

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List

FlexMeasures Documentation, Release 0.17

search_beliefs(sensors: List['Sensor'] | None = None, event_starts_after: datetime | None = None,
event_ends_before: datetime | None = None, beliefs_after: datetime | None = None,
beliefs_before: datetime | None = None, horizons_at_least: timedelta | None = None,
horizons_at_most: timedelta | None = None, source: DataSource | List[DataSource] | int |
List[int] | str | List[str] | None = None, most_recent_beliefs_only: bool = True,
most_recent_events_only: bool = False, as_json: bool = False)→ BeliefsDataFrame | str

Search all beliefs about events for all sensors of this asset

If you don’t set any filters, you get the most recent beliefs about all events.

Parameters
• sensors – only return beliefs about events registered by these sensors

• event_starts_after – only return beliefs about events that start after this datetime (in-
clusive)

• event_ends_before – only return beliefs about events that end before this datetime (in-
clusive)

• beliefs_after – only return beliefs formed after this datetime (inclusive)

• beliefs_before – only return beliefs formed before this datetime (inclusive)

• horizons_at_least – only return beliefs with a belief horizon equal or greater than this
timedelta (for example, use timedelta(0) to get ante knowledge time beliefs)

• horizons_at_most – only return beliefs with a belief horizon equal or less than this
timedelta (for example, use timedelta(0) to get post knowledge time beliefs)

• source – search only beliefs by this source (pass the DataSource, or its name or id) or list
of sources

• most_recent_events_only – only return (post knowledge time) beliefs for the most re-
cent event (maximum event start)

• as_json – return beliefs in JSON format (e.g. for use in charts) rather than as Beliefs-
DataFrame

Returns
dictionary of BeliefsDataFrames or JSON string (if as_json is True)

property sensors_to_show: list['Sensor' | list['Sensor']]

Sensors to show, as defined by the sensors_to_show attribute.

Sensors to show are defined as a list of sensor ids, which is set by the “sensors_to_show” field of the asset’s
“attributes” column. Valid sensors either belong to the asset itself, to other assets in the same account, or
to public assets. In play mode, sensors from different accounts can be added. In case the field is missing,
defaults to two of the asset’s sensors.

Sensor ids can be nested to denote that sensors should be ‘shown together’, for example, layered rather than
vertically concatenated. How to interpret ‘shown together’ is technically left up to the function returning
chart specs, as are any restrictions regarding what sensors can be shown together, such as: - whether they
should share the same unit - whether they should share the same name - whether they should belong to
different assets

For example, this denotes showing sensors 42 and 44 together:

sensors_to_show = [40, 35, 41, [42, 44], 43, 45]

property timerange: Dict[str, datetime]

Time range for which sensor data exists.

5.3. I want to build new features quickly, not spend days solving basic problems 243

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime

FlexMeasures Documentation, Release 0.17

Returns
dictionary with start and end, for example: {

’start’: datetime.datetime(2020, 12, 3, 14, 0, tzinfo=pytz.utc), ‘end’: date-
time.datetime(2020, 12, 3, 14, 30, tzinfo=pytz.utc)

}

property timerange_of_sensors_to_show: Dict[str, datetime]

Time range for which sensor data exists, for sensors to show.

Returns
dictionary with start and end, for example: {

’start’: datetime.datetime(2020, 12, 3, 14, 0, tzinfo=pytz.utc), ‘end’: date-
time.datetime(2020, 12, 3, 14, 30, tzinfo=pytz.utc)

}

property timezone: str

Timezone relevant to the asset.

If a timezone is not given as an attribute of the asset, it is taken from one of its sensors.

class flexmeasures.data.models.generic_assets.GenericAssetType(**kwargs)
An asset type defines what type an asset belongs to.

Examples of asset types: WeatherStation, Market, CP, EVSE, WindTurbine, SolarPanel, Building.

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

flexmeasures.data.models.legacy_migration_utils

This module is part of our data model migration (see https://github.com/SeitaBV/flexmeasures/projects/9). It will
become obsolete when Assets, Markets and WeatherSensors can no longer be initialized.

244 Chapter 5. Developer support

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/SeitaBV/flexmeasures/projects/9

FlexMeasures Documentation, Release 0.17

Functions

flexmeasures.data.models.legacy_migration_utils.copy_old_sensor_attributes(old_sensor,
old_sensor_type_attributes:
List[str],
old_sensor_attributes:
List[str],
old_sensor_type:
AssetType |
MarketType |
WeatherSen-
sorType = None)
→ dict

Parameters
• old_sensor – an Asset, Market or WeatherSensor instance

• old_sensor_type_attributes – names of attributes of the old sensor’s type that should
be copied

• old_sensor_attributes – names of attributes of the old sensor that should be copied

• old_sensor_type – the old sensor’s type

Returns
dictionary containing an “attributes” dictionary with attribute names and values

flexmeasures.data.models.legacy_migration_utils.get_old_model_type(kwargs: dict,
old_sensor_type_class:
Type[AssetType | MarketType
| WeatherSensorType],
old_sensor_type_name_key:
str, old_sensor_type_key:
str)→ AssetType |
MarketType |
WeatherSensorType

Parameters
• kwargs – keyword arguments used to initialize a new Asset, Market or WeatherSensor

• old_sensor_type_class – AssetType, MarketType, or WeatherSensorType

• old_sensor_type_name_key – “asset_type_name”, “market_type_name”, or
“weather_sensor_type_name”

• old_sensor_type_key – “asset_type”, “market_type”, or “sensor_type” (instead of
“weather_sensor_type”), i.e. the name of the class attribute for the db.relationship to the
type’s class

Returns
the old sensor’s type

5.3. I want to build new features quickly, not spend days solving basic problems 245

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.parsing_utils

Functions

flexmeasures.data.models.parsing_utils.parse_source_arg(source: DataSource | int | str |
Sequence[DataSource] | Sequence[int] |
Sequence[str] | None)→ list[DataSource] |
None

Parse the “source” argument by looking up DataSources corresponding to any given ids or names.

Passes None as is (i.e. no source argument is given). Accepts ids and names as list or tuples, always converting
them to a list.

flexmeasures.data.models.planning

Modules

flexmeasures.data.models.planning.battery

flexmeasures.data.models.planning.
charging_station
flexmeasures.data.models.planning.
exceptions
flexmeasures.data.models.planning.
linear_optimization
flexmeasures.data.models.planning.process

flexmeasures.data.models.planning.storage

flexmeasures.data.models.planning.utils

flexmeasures.data.models.planning.battery

Functions

flexmeasures.data.models.planning.battery.schedule_battery(*args, **kwargs)

flexmeasures.data.models.planning.charging_station

Functions

flexmeasures.data.models.planning.charging_station.schedule_charging_station(*args,
**kwargs)

246 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.planning.exceptions

Exceptions

exception flexmeasures.data.models.planning.exceptions.InfeasibleProblemException

exception flexmeasures.data.models.planning.exceptions.MissingAttributeException

exception flexmeasures.data.models.planning.exceptions.UnknownForecastException

exception flexmeasures.data.models.planning.exceptions.UnknownMarketException

exception flexmeasures.data.models.planning.exceptions.UnknownPricesException

exception flexmeasures.data.models.planning.exceptions.WrongTypeAttributeException

flexmeasures.data.models.planning.linear_optimization

Functions

flexmeasures.data.models.planning.linear_optimization.device_scheduler(device_constraints:
List[DataFrame],
ems_constraints:
DataFrame,
commitment_quantities:
List[Series], commit-
ment_downwards_deviation_price:
List[Series] |
List[float], commit-
ment_upwards_deviation_price:
List[Series] |
List[float],
initial_stock: float = 0)
→ Tuple[List[Series],
float, SolverResults,
ConcreteModel]

This generic device scheduler is able to handle an EMS with multiple devices, with various types of constraints
on the EMS level and on the device level, and with multiple market commitments on the EMS level. A typical
example is a house with many devices. The commitments are assumed to be with regard to the flow of energy to
the device (positive for consumption, negative for production). The solver minimises the costs of deviating from
the commitments.

Device constraints are on a device level. Handled constraints (listed by column name):
max: maximum stock assuming an initial stock of zero (e.g. in MWh or boxes) min: minimum stock
assuming an initial stock of zero equal: exact amount of stock (we do this by clamping min and max)
efficiency: amount of stock left at the next datetime (the rest is lost) derivative max: maximum flow (e.g.
in MW or boxes/h) derivative min: minimum flow derivative equals: exact amount of flow (we do this by
clamping derivative min and derivative max) derivative down efficiency: conversion efficiency of flow out
of a device (flow out : stock decrease) derivative up efficiency: conversion efficiency of flow into a device
(stock increase : flow in)

EMS constraints are on an EMS level. Handled constraints (listed by column name):
derivative max: maximum flow derivative min: minimum flow

Commitments are on an EMS level. Parameter explanations:

5.3. I want to build new features quickly, not spend days solving basic problems 247

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float

FlexMeasures Documentation, Release 0.17

commitment_quantities: amounts of flow specified in commitments (both previously ordered and
newly requested)

• e.g. in MW or boxes/h

commitment_downwards_deviation_price: penalty for downwards deviations of the flow
• e.g. in EUR/MW or EUR/(boxes/h)

• either a single value (same value for each flow value) or a Series (different value for each flow
value)

commitment_upwards_deviation_price: penalty for upwards deviations of the flow

All Series and DataFrames should have the same resolution.

For now, we pass in the various constraints and prices as separate variables, from which we make a MultiIndex
DataFrame. Later we could pass in a MultiIndex DataFrame directly.

flexmeasures.data.models.planning.process

Classes

class flexmeasures.data.models.planning.process.ProcessScheduler(sensor, start, end, resolution,
belief_time: datetime | None =
None, round_to_decimals: int |
None = 6, flex_model: dict |
None = None, flex_context: dict
| None = None,
return_multiple: bool = False)

block_invalid_starting_times_for_whole_process_scheduling(process_type: ProcessType,
time_restrictions: Series,
duration: timedelta, rows_to_fill:
int)→ Series

Blocks time periods where the process cannot be schedule into, making
sure no other time restrictions runs in the middle of the activation of the process

More technically, this function applying an erosion of the time_restrictions array with a block of length
duration.

Then, the condition if time_restrictions.sum() == len(time_restrictions):, makes sure that at least we have
a spot to place the process.

For example:

time_restriction = [1 0 0 1 1 1 0 0 1 0]

applying a dilation with duration = 2 time_restriction = [1 0 1 1 1 1 0 1 1 1]

We can only fit a block of duration = 2 in the positions 1 and 6. sum(start_time_restrictions) == 8, while
the len(time_restriction) == 10, which means we have 10-8=2 positions.

Parameters
• process_type – INFLEXIBLE, SHIFTABLE or BREAKABLE

• time_restrictions – boolean time series indicating time periods in which the process
cannot be scheduled.

• duration – (datetime) duration of the length

248 Chapter 5. Developer support

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

• rows_to_fill – (int) time periods that the process lasts

Returns
filtered time restrictions

compute()→ pd.Series | None
Schedule a process, defined as a power and a duration, within the specified time window. To schedule a
battery, please, refer to the StorageScheduler.

For example, this scheduler can plan the start of a process of type SHIFTABLE that lasts 5h and requires
a power of 10kW. In that case, the scheduler will find the best (as to minimize/maximize the cost) hour to
start the process.

This scheduler supports three types of process_types:
• INFLEXIBLE: this process needs to be scheduled as soon as possible.

• BREAKABLE: this process can be divisible in smaller consumption periods.

• SHIFTABLE: this process can start at any time within the specified time window.

The resulting schedule provides the power flow at each time period.

Parameters

consumption_price_sensor: it defines the utility (economic, environmental,) in each
time period. It has units of quantity/energy, for example, EUR/kWh.

power: nominal power of the process. duration: time that the process last.

optimization_direction: objective of the scheduler, to maximize or minimize. time_restrictions: time
periods in which the process cannot be schedule to. process_type: INFLEXIBLE, BREAKABLE or
SHIFTABLE.

returns
The computed schedule.

compute_breakable(schedule: Series, optimization_direction: OptimizationDirection, time_restrictions:
Series, cost: DataFrame, rows_to_fill: int, power: float)→ None

Break up schedule and divide it over the time slots with the largest utility (max/min cost depending on
optimization_direction).

compute_inflexible(schedule: Series, time_restrictions: Series, rows_to_fill: int, power: float)→ None
Schedule process as early as possible.

compute_shiftable(schedule: Series, optimization_direction: OptimizationDirection, time_restrictions:
Series, cost: DataFrame, rows_to_fill: int, power: float)→ None

Schedules a block of consumption/production of rows_to_fill periods to maximize a utility.

deserialize_flex_config()

Deserialize flex_model using the schema ProcessSchedulerFlexModelSchema and flex_context using Flex-
ContextSchema

5.3. I want to build new features quickly, not spend days solving basic problems 249

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.planning.storage

Functions

flexmeasures.data.models.planning.storage.add_storage_constraints(start: datetime, end: datetime,
resolution: timedelta,
soc_at_start: float,
soc_targets: list[dict[str,
datetime | float]] | pd.Series |
None, soc_maxima:
list[dict[str, datetime | float]] |
pd.Series | None, soc_minima:
list[dict[str, datetime | float]] |
pd.Series | None, soc_max:
float, soc_min: float)→
pd.DataFrame

Collect all constraints for a given storage device in a DataFrame that the device_scheduler can interpret.

Parameters
• start – Start of the schedule.

• end – End of the schedule.

• resolution – Timedelta used to resample the forecasts to the resolution of the schedule.

• soc_at_start – State of charge at the start time.

• soc_targets – Exact targets for the state of charge at each time.

• soc_maxima – Maximum state of charge at each time.

• soc_minima – Minimum state of charge at each time.

• soc_max – Maximum state of charge at all times.

• soc_min – Minimum state of charge at all times.

Returns
Constraints (StorageScheduler.COLUMNS) for a storage device, at each time step (index). See
device_scheduler for possible column names.

flexmeasures.data.models.planning.storage.build_device_soc_targets(targets: list[dict[str, datetime
| float]] | pd.Series,
soc_at_start: float,
start_of_schedule: datetime,
end_of_schedule: datetime,
resolution: timedelta)→
pd.Series

flexmeasures.data.models.planning.storage.build_device_soc_values(soc_values: list[dict[str,
datetime | float]] | pd.Series,
soc_at_start: float,
start_of_schedule: datetime,
end_of_schedule: datetime,
resolution: timedelta)→
pd.Series

Utility function to create a Pandas series from SOC values we got from the flex-model.

Should set NaN anywhere where there is no target.

250 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

FlexMeasures Documentation, Release 0.17

SOC values should be indexed by their due date. For example, for quarter-hourly targets between 5 and 6
AM: >>> df = pd.Series(data=[1, 2, 2.5, 3], index=pd.date_range(datetime(2010,1,1,5), datetime(2010,1,1,6),
freq=timedelta(minutes=15), inclusive=”right”)) >>> print(df)

2010-01-01 05:15:00 1.0 2010-01-01 05:30:00 2.0 2010-01-01 05:45:00 2.5 2010-01-01 06:00:00 3.0
Freq: 15T, dtype: float64

TODO: this function could become the deserialization method of a new SOCValueSchema (targets, plural),
which wraps SOCValueSchema.

flexmeasures.data.models.planning.storage.check_and_convert_power_capacity(power_capacity:
ur.Quantity | float
| int)→ float

Check if the power_capacity is of type ur.Quantity, float or int and converts the Quantity to MW.

flexmeasures.data.models.planning.storage.create_constraint_violations_message(constraint_violations:
list)→ str

Create a human-readable message with the constraint_violations.

Parameters
constraint_violations – list with the constraint violations

Returns
human-readable message

flexmeasures.data.models.planning.storage.get_pattern_match_word(word: str)→ str
Get a regex pattern to match a word

The conditions to delimit a word are:
• start of line

• whitespace

• end of line

• word boundary

• arithmetic operations

Returns
regex expression

flexmeasures.data.models.planning.storage.prepend_serie(serie: Series, value)→ Series
Prepend a value to a time series series

Parameters
• serie – serie containing the timed values

• value – value to place in the first position

flexmeasures.data.models.planning.storage.sanitize_expression(expression: str, columns: list)→
tuple[str, list]

Wrap column in commas to accept arbitrary column names (e.g. with spaces).

Parameters
• expression – expression to sanitize

• columns – list with the name of the columns of the input data for the expression.

5.3. I want to build new features quickly, not spend days solving basic problems 251

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.17

Returns
sanitized expression and columns (variables) used in the expression

flexmeasures.data.models.planning.storage.validate_constraint(constraints_df: pd.DataFrame,
lhs_expression: str, inequality: str,
rhs_expression: str,
round_to_decimals: int | None =
6)→ list[dict]

Validate the feasibility of a given set of constraints.

Parameters
• constraints_df – DataFrame with the constraints

• lhs_expression – left-hand side of the inequality expression following pd.eval format. No
need to use the syntax column to reference column, just use the column name.

• inequality – inequality operator, one of (‘<=’, ‘<’, ‘>=’, ‘>’, ‘==’, ‘!=’).

• rhs_expression – right-hand side of the inequality expression following pd.eval format.
No need to use the syntax column to reference column, just use the column name.

• round_to_decimals – Number of decimals to round off to before validating constraints.

Returns
List of constraint violations, specifying their time, constraint and violation.

flexmeasures.data.models.planning.storage.validate_storage_constraints(constraints:
DataFrame,
soc_at_start: float,
soc_min: float,
soc_max: float,
resolution: timedelta)
→ list[dict]

Check that the storage constraints are fulfilled, e.g min <= equals <= max.

A. Global validation
A.1) min >= soc_min A.2) max <= soc_max

B. Validation in the same time frame
B.1) min <= max B.2) min <= equals B.3) equals <= max

C. Validation in different time frames
C.1) equals(t) - equals(t-1) <= derivative_max(t) C.2) derivative_min(t) <= equals(t) - equals(t-1) C.3)
min(t) - max(t-1) <= derivative_max(t) C.4) max(t) - min(t-1) >= derivative_min(t) C.5) equals(t) -
max(t-1) <= derivative_max(t) C.6) derivative_min(t) <= equals(t) - min(t-1)

Parameters
• constraints – dataframe containing the constraints of a storage device

• soc_at_start – State of charge at the start time.

• soc_min – Minimum state of charge at all times.

• soc_max – Maximum state of charge at all times.

• resolution – Constant duration between the start of each time step.

Returns
List of constraint violations, specifying their time, constraint and violation.

252 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

Classes

class flexmeasures.data.models.planning.storage.MetaStorageScheduler(sensor, start, end,
resolution, belief_time:
datetime | None = None,
round_to_decimals: int |
None = 6, flex_model:
dict | None = None,
flex_context: dict | None =
None, return_multiple:
bool = False)

This class defines the constraints of a schedule for a storage device from the flex-model, flex-context, and sensor
and asset attributes

_prepare(skip_validation: bool = False)→ tuple

This function prepares the required data to compute the schedule:
• price data

• device constraint

• ems constraints

Parameters
skip_validation – If True, skip validation of constraints specified in the data.

Returns
Input data for the scheduler

compute_schedule()→ pd.Series | None
Schedule a battery or Charge Point based directly on the latest beliefs regarding market prices within the
specified time window. For the resulting consumption schedule, consumption is defined as positive values.

Deprecated method in v0.14. As an alternative, use MetaStorageScheduler.compute().

deserialize_flex_config()

Deserialize storage flex model and the flex context against schemas. Before that, we fill in values from
wider context, if possible. Mostly, we allow several fields to come from sensor attributes. TODO: this
work could maybe go to the schema as a pre-load hook (if we pass in the sensor to schema initialization)

Note: Before we apply the flex config schemas, we need to use the flex config identifiers with hyphens,
(this is how they are represented to outside, e.g. by the API), after deserialization we use internal
schema names (with underscores).

ensure_soc_min_max()

Make sure we have min and max SOC. If not passed directly, then get default from sensor or targets.

persist_flex_model()

Store new soc info as GenericAsset attributes

possibly_extend_end()

Extend schedule period in case a target exceeds its end.

The schedule’s duration is possibly limited by the server config setting ‘FLEXMEA-
SURES_MAX_PLANNING_HORIZON’.

todo: when deserialize_flex_config becomes a single schema for the whole scheduler,
this function would become a class method with a @post_load decorator.

5.3. I want to build new features quickly, not spend days solving basic problems 253

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

class flexmeasures.data.models.planning.storage.StorageFallbackScheduler(sensor, start, end,
resolution,
belief_time: datetime
| None = None,
round_to_decimals:
int | None = 6,
flex_model: dict |
None = None,
flex_context: dict |
None = None,
return_multiple:
bool = False)

compute(skip_validation: bool = False)→ Series | List[Dict[str, Any]] | None

Schedule a battery or Charge Point by just starting to charge, discharge, or do neither,
depending on the first target state of charge and the capabilities of the Charge Point. For the resulting
consumption schedule, consumption is defined as positive values.

Note that this ignores any cause of the infeasibility.

Parameters
skip_validation – If True, skip validation of constraints specified in the data.

Returns
The computed schedule.

class flexmeasures.data.models.planning.storage.StorageScheduler(sensor, start, end, resolution,
belief_time: datetime | None =
None, round_to_decimals: int |
None = 6, flex_model: dict |
None = None, flex_context: dict
| None = None,
return_multiple: bool = False)

compute(skip_validation: bool = False)→ Series | List[Dict[str, Any]] | None
Schedule a battery or Charge Point based directly on the latest beliefs regarding market prices within the
specified time window. For the resulting consumption schedule, consumption is defined as positive values.

Parameters
skip_validation – If True, skip validation of constraints specified in the data.

Returns
The computed schedule.

compute_schedule()→ pd.Series | None
Schedule a battery or Charge Point based directly on the latest beliefs regarding market prices within the
specified time window. For the resulting consumption schedule, consumption is defined as positive values.

Deprecated method in v0.14. As an alternative, use MetaStorageScheduler.compute().

fallback_scheduler_class

alias of StorageFallbackScheduler

254 Chapter 5. Developer support

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.planning.utils

Functions

flexmeasures.data.models.planning.utils.add_tiny_price_slope(prices: DataFrame, col_name: str =
'event_value', d: float = 0.001)→
DataFrame

Add tiny price slope to col_name to represent e.g. inflation as a simple linear price increase. This is meant to
break ties, when multiple time slots have equal prices, in favour of acting sooner. We penalise the future with at
most d times the price spread (1 per thousand by default).

flexmeasures.data.models.planning.utils.fallback_charging_policy(sensor: Sensor,
device_constraints:
DataFrame, start: datetime,
end: datetime, resolution:
timedelta)→ Series

This fallback charging policy is to just start charging or discharging, or do neither, depending on the first target
state of charge and the capabilities of the Charge Point. Note that this ignores any cause of the infeasibility and,
while probably a decent policy for Charge Points, should not be considered a robust policy for other asset types.

flexmeasures.data.models.planning.utils.get_market(sensor: Sensor)→ Sensor
Get market sensor from the sensor’s attributes.

flexmeasures.data.models.planning.utils.get_power_values(query_window: Tuple[datetime,
datetime], resolution: timedelta,
beliefs_before: datetime | None, sensor:
Sensor)→ ndarray

Get measurements or forecasts of an inflexible device represented by a power sensor.

If the requested schedule lies in the future, the returned data will consist of (the most recent) forecasts (if any
exist). If the requested schedule lies in the past, the returned data will consist of (the most recent) measurements
(if any exist). The latter amounts to answering “What if we could have scheduled under perfect foresight?”.

Parameters
• query_window – datetime window within which events occur (equal to the scheduling win-

dow)

• resolution – timedelta used to resample the forecasts to the resolution of the schedule

• beliefs_before – datetime used to indicate we are interested in the state of knowledge at
that time

• sensor – power sensor representing an energy flow out of the device

Returns
power measurements or forecasts (consumption is positive, production is negative)

flexmeasures.data.models.planning.utils.get_prices(query_window: Tuple[datetime, datetime],
resolution: timedelta, beliefs_before: datetime |
None, price_sensor: Sensor | None = None,
sensor: Sensor | None = None,
allow_trimmed_query_window: bool = True)→
Tuple[DataFrame, Tuple[datetime, datetime]]

Check for known prices or price forecasts.

5.3. I want to build new features quickly, not spend days solving basic problems 255

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

FlexMeasures Documentation, Release 0.17

If so allowed, the query window is trimmed according to the available data. If not allowed, prices are extended
to the edges of the query window: - The first available price serves as a naive backcast. - The last available price
serves as a naive forecast.

flexmeasures.data.models.planning.utils.idle_after_reaching_target(schedule: Series, target:
Series, initial_state: float =
0)→ Series

Stop planned (dis)charging after target is reached (or constraint is met).

flexmeasures.data.models.planning.utils.initialize_df(columns: List[str], start: datetime, end:
datetime, resolution: timedelta, inclusive: str
= 'left')→ DataFrame

flexmeasures.data.models.planning.utils.initialize_index(start: date | datetime | str, end: date |
datetime | str, resolution: timedelta | str,
inclusive: str = 'left')→ DatetimeIndex

flexmeasures.data.models.planning.utils.initialize_series(data: Series | List[float] | ndarray | float
| None, start: datetime, end: datetime,
resolution: timedelta, inclusive: str =
'left')→ Series

Classes

class flexmeasures.data.models.planning.Scheduler(sensor, start, end, resolution, belief_time: datetime
| None = None, round_to_decimals: int | None = 6,
flex_model: dict | None = None, flex_context: dict |
None = None, return_multiple: bool = False)

Superclass for all FlexMeasures Schedulers.

A scheduler currently computes the schedule for one flexible asset. TODO: extend to multiple flexible assets.

The scheduler knows the power sensor of the flexible asset. It also knows the basic timing parameter of the
schedule (start, end, resolution), including the point in time when knowledge can be assumed to be available
(belief_time).

Furthermore, the scheduler needs to have knowledge about the asset’s flexibility model (under what constraints
can the schedule be optimized?) and the system’s flexibility context (which other sensors are relevant, e.g.
prices). These two flexibility configurations are usually fed in from outside, so the scheduler should check them.
The deserialize_flex_config function can be used for that.

__init__(sensor, start, end, resolution, belief_time: datetime | None = None, round_to_decimals: int | None
= 6, flex_model: dict | None = None, flex_context: dict | None = None, return_multiple: bool =
False)

Initialize a new Scheduler.

TODO: We might adapt the class design, so that a Scheduler object is initialized with configuration
parameters,

and can then be used multiple times (via compute()) to compute schedules of different kinds, e.g.
If we started later (put in a later start), what would the schedule be? If we could change set points
less often (put in a coarser resolution), what would the schedule be? If we knew what was going
to happen (put in a later belief_time), what would the schedule have been?

For now, we don’t see the best separation between config and state parameters (esp. within flex models)
E.g. start and flex_model[soc_at_start] are intertwined.

256 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

compute()→ Series | List[Dict[str, Any]] | None
Overwrite with the actual computation of your schedule.

compute_schedule()→ Series | None
Overwrite with the actual computation of your schedule.

Deprecated method in v0.14. As an alternative, use Scheduler.compute().

deserialize_config()

Check all configurations we have, throwing either ValidationErrors or ValueErrors. Other code can decide
if/how to handle those.

deserialize_flex_config()

Check if the flex model and flex context are valid. Should be overwritten.

Ideas: - Apply a schema to check validity (see in-built flex model schemas) - Check for inconsistencies
between settings (can also happen in Marshmallow) - fill in missing values from the scheduler’s knowledge
(e.g. sensor attributes)

Raises ValidationErrors or ValueErrors.

deserialize_timing_config()

Check if the timing of the schedule is valid. Raises ValueErrors.

classmethod get_data_source_info()→ dict
Create and return the data source info, from which a data source lookup/creation is possible. See for instance
get_data_source_for_job().

persist_flex_model()

If useful, (parts of) the flex model can be persisted here, e.g. as asset attributes, sensor attributes or as
sensor data (beliefs).

flexmeasures.data.models.reporting

Modules

flexmeasures.data.models.reporting.
aggregator
flexmeasures.data.models.reporting.
pandas_reporter
flexmeasures.data.models.reporting.profit

flexmeasures.data.models.reporting.aggregator

Classes

class flexmeasures.data.models.reporting.aggregator.AggregatorReporter(config: dict | None =
None,
save_config=True,
save_parameters=False,
**kwargs)

This reporter applies an aggregation function to multiple sensors

5.3. I want to build new features quickly, not spend days solving basic problems 257

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

_compute_report(start: datetime, end: datetime, input: List[Dict[str, Any]], output: List[Dict[str, Any]],
resolution: timedelta | None = None, belief_time: datetime | None = None)→
List[Dict[str, Any]]

This method merges all the BeliefDataFrames into a single one, dropping all indexes but event_start, and
applies an aggregation function over the columns.

flexmeasures.data.models.reporting.pandas_reporter

Classes

class flexmeasures.data.models.reporting.pandas_reporter.PandasReporter(config: dict | None =
None,
save_config=True,
save_parameters=False,
**kwargs)

This reporter applies a series of pandas methods on

_apply_transformations()

Convert the series using the given list of transformation specs, which is called in the order given.

Each transformation specs should include a ‘method’ key specifying a method name of a Pandas DataFrame.

Optionally, ‘args’ and ‘kwargs’ keys can be specified to pass on arguments or keyword arguments to the
given method.

All data exchange is made through the dictionary self.data. The superclass Reporter already fetches Be-
liefsDataFrames of the sensors and saves them in the self.data dictionary fields sensor_<sensor_id>. In
case you need to perform complex operations on dataframes, you can split the operations in several steps
and saving the intermediate results using the parameters df_input and df_output for the input and output
dataframes, respectively.

Example:

The example below converts from hourly meter readings in kWh to electricity demand in kW.
transformations = [

{“method”: “diff”}, {“method”: “shift”, “kwargs”: {“periods”: -1}}, {“method”: “head”, “args”:
[-1]},

],

_clean_belief_dataframe(bdf: BeliefsDataFrame, belief_time: datetime)→ BeliefsDataFrame
Add missing indexes to build a proper BeliefDataFrame.

_clean_belief_series(belief_series: BeliefsSeries, belief_time: datetime)→ BeliefsDataFrame
Create a BeliefDataFrame from a BeliefsSeries creating the necessary indexes.

_compute_report(**kwargs)→ List[Dict[str, Any]]
This method applies the transformations and outputs the dataframe defined in final_df_output field of the
report_config.

_parameters_schema: Schema | None = <PandasReporterParametersSchema(many=False)>

_process_pandas_args(args: list, method: str)→ list
This method applies the function get_object_or_literal to all the arguments to detect where to replace a
string “@<object-name>” with the actual object stored in self.data[“<object-name>”].

258 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.17

_process_pandas_kwargs(kwargs: dict, method: str)→ dict
This method applies the function get_object_or_literal to all the keyword arguments to detect where to
replace a string “@<object-name>” with the actual object stored in self.data[“<object-name>”].

fetch_data(start: datetime, end: datetime, input: dict, resolution: timedelta | None = None, belief_time:
datetime | None = None)

Fetches the time_beliefs from the database

get_object_or_literal(value: Any, method: str)→ Any
This method allows using the dataframes as inputs of the Pandas methods that are run in the transformations.
Make sure that they have been created before accessed.

This works by putting the symbol @ in front of the name of the dataframe that we want to reference. For
instance, to reference the dataframe test_df, which lives in self.data, we would do @test_df.

This functionality is disabled for methods eval`and `query to avoid interfering their internal behaviour given
that they also use @ to allow using local variables.

Example: >>> self.get_object_or_literal([“@df_wind”, “@df_solar”], “sum”) [<BeliefsDataFrame for
Wind Turbine sensor>, <BeliefsDataFrame for Solar Panel sensor>]

flexmeasures.data.models.reporting.profit

Classes

class flexmeasures.data.models.reporting.profit.ProfitOrLossReporter(config: dict | None =
None, save_config=True,
save_parameters=False,
**kwargs)

Compute the profit or loss due to energy/power flow.

Given power/energy and price sensors, this reporter computes the profit (revenue - cost) or losses (cost - revenue)
of a power/energy flow under a certain tariff.

Sign convention (by default)

Power flows:
(+) production (-) consumption

Profit:
(+) gains (-) losses

This sign convention can be adapted to your needs:
• The power/energy convention can be inverted by setting the sensor attribute consumption_is_positive

to True.

• The output (gains/losses) sign can be inverted by setting the reporter config attribute loss_is_positive
to False.

_compute_report(start: datetime, end: datetime, input: List[Dict[str, Any]], output: List[Dict[str, Any]],
belief_time: datetime | None = None)→ List[Dict[str, Any]]

Parameters
• start – start time of the report

5.3. I want to build new features quickly, not spend days solving basic problems 259

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

• end – end time of the report

• input – description of the power/energy sensor, e.g. input=[{“sensor”: 42}]

• output – description of the output sensors where to save the report to. Specify multiple
output sensors with different resolutions to save the results in multiple time frames (e.g.
hourly, daily), e.g. output = [{“sensor” : 43}, {“sensor” : 44]}]

• belief_time – datetime used to indicate we are interested in the state of knowledge at
that time. It is used to filter input, and to assign a recording time to output.

Classes

class flexmeasures.data.models.reporting.Reporter(config: dict | None = None, save_config=True,
save_parameters=False, **kwargs)

Superclass for all FlexMeasures Reporters.

_clean_parameters(parameters: dict)→ dict
Use this function to clean up the parameters dictionary from the fields that are not to be persisted to the DB
as data source attributes (when save_parameters=True), e.g. because they are already stored as TimedBelief
properties, or otherwise.

Example:

An DataGenerator has the following parameters: [“start”, “end”, “field1”, “field2”] and we want
just “field1” and “field2” to be persisted.

Parameters provided to the compute method (input of the method _clean_parameters): parameters
= {

“start” : “2023-01-01T00:00:00+02:00”, “end” : “2023-01-02T00:00:00+02:00”,
“field1” : 1, “field2” : 2

}

Parameters persisted to the DB (output of the method _clean_parameters): parameters = {“field1”
: 1,”field2” : 2}

_compute(**kwargs)→ List[Dict[str, Any]]
This method triggers the creation of a new report.

The same object can generate multiple reports with different start, end, resolution and belief_time values.

_compute_report(**kwargs)→ List[Dict[str, Any]]
Overwrite with the actual computation of your report.

Returns BeliefsDataFrame
report as a BeliefsDataFrame.

260 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.task_runs

Classes

class flexmeasures.data.models.task_runs.LatestTaskRun(**kwargs)
” Log the (latest) running of a task. This is intended to be used for live monitoring. For a full analysis, there are
log files.

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

static record_run(task_name: str, status: bool)
Record the latest task run (overwriting previous ones). If the row is not yet in the table, create it first. Does
not commit.

flexmeasures.data.models.time_series

Classes

class flexmeasures.data.models.time_series.Sensor(name, generic_asset=None,
generic_asset_id=None, attributes=None,
**kwargs)

A sensor measures events.

__init__(name, generic_asset=None, generic_asset_id=None, attributes=None, **kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

chart(chart_type: str = 'bar_chart', event_starts_after: datetime_type | None = None, event_ends_before:
datetime_type | None = None, beliefs_after: datetime_type | None = None, beliefs_before:
datetime_type | None = None, source: DataSource | list[DataSource] | int | list[int] | str | list[str] |
None = None, most_recent_beliefs_only: bool = True, include_data: bool = False,
include_sensor_annotations: bool = False, include_asset_annotations: bool = False,
include_account_annotations: bool = False, dataset_name: str | None = None, **kwargs)→ dict

Create a vega-lite chart showing sensor data.

Parameters

5.3. I want to build new features quickly, not spend days solving basic problems 261

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

• chart_type – currently only “bar_chart” # todo: where can we properly list the available
chart types?

• event_starts_after – only return beliefs about events that start after this datetime (in-
clusive)

• event_ends_before – only return beliefs about events that end before this datetime (in-
clusive)

• beliefs_after – only return beliefs formed after this datetime (inclusive)

• beliefs_before – only return beliefs formed before this datetime (inclusive)

• source – search only beliefs by this source (pass the DataSource, or its name or id) or list
of sources

• most_recent_beliefs_only – only return the most recent beliefs for each event from
each source (minimum belief horizon)

• include_data – if True, include data in the chart, or if False, exclude data

• include_sensor_annotations – if True and include_data is True, include sensor anno-
tations in the chart, or if False, exclude these

• include_asset_annotations – if True and include_data is True, include asset annota-
tions in the chart, or if False, exclude them

• include_account_annotations – if True and include_data is True, include account
annotations in the chart, or if False, exclude them

• dataset_name – optionally name the dataset used in the chart (the default name is sen-
sor_<id>)

Returns
JSON string defining vega-lite chart specs

check_required_attributes(attributes: list[str | tuple[str, Type | tuple[Type, ...]]])
Raises if any attribute in the list of attributes is missing, or has the wrong type.

Parameters
attributes – List of either an attribute name or a tuple of an attribute name and its allowed
type (the allowed type may also be a tuple of several allowed types)

event_resolution: timedelta

classmethod find_closest(generic_asset_type_name: str, sensor_name: str, n: int = 1, **kwargs)→
'Sensor' | list['Sensor'] | None

Returns the closest n sensors within a given asset type (as a list if n > 1). Parses latitude and longitude
values stated in kwargs.

Can be called with an object that has latitude and longitude properties, for example:

sensor = Sensor.find_closest(“weather station”, “wind speed”, object=generic_asset)

Can also be called with latitude and longitude parameters, for example:

sensor = Sensor.find_closest(“weather station”, “temperature”, latitude=32, longitude=54) sensor
= Sensor.find_closest(“weather station”, “temperature”, lat=32, lng=54)

Finally, pass in an account_id parameter if you want to query an account other than your own. This only
works for admins. Public assets are always queried.

262 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

get_attribute(attribute: str, default: Any | None = None)→ Any
Looks for the attribute on the Sensor. If not found, looks for the attribute on the Sensor’s GenericAsset. If
not found, returns the default.

id

property is_strictly_non_negative: bool

Return True if this sensor strictly records non-negative values.

property is_strictly_non_positive: bool

Return True if this sensor strictly records non-positive values.

knowledge_horizon_fnc: str

knowledge_horizon_par: dict

latest_state(source: DataSource | list[DataSource] | int | list[int] | str | list[str] | None = None)→
tb.BeliefsDataFrame

Search the most recent event for this sensor, and return the most recent ex-post belief.

Parameters
source – search only beliefs by this source (pass the DataSource, or its name or id) or list of
sources

make_hashable()→ tuple
Returns a tuple with the properties subject to change In principle all properties (except ID) of a given sensor
could be changed, but not all changes are relevant to warrant reanalysis (e.g. scheduling or forecasting).

property measures_energy: bool

True if this sensor’s unit is measuring energy

property measures_energy_price: bool

True if this sensors’ unit is measuring energy prices

property measures_power: bool

True if this sensor’s unit is measuring power

name: str

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

search_annotations(annotation_starts_after: datetime_type | None = None, annotations_after:
datetime_type | None = None, annotation_ends_before: datetime_type | None = None,
annotations_before: datetime_type | None = None, source: DataSource |
list[DataSource] | int | list[int] | str | list[str] | None = None,
include_asset_annotations: bool = False, include_account_annotations: bool =
False, as_frame: bool = False)→ list[Annotation] | pd.DataFrame

Return annotations assigned to this sensor, and optionally, also those assigned to the sensor’s asset and the
asset’s account.

Parameters

5.3. I want to build new features quickly, not spend days solving basic problems 263

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.17

• annotations_after – only return annotations that end after this datetime (exclusive)

• annotations_before – only return annotations that start before this datetime (exclusive)

search_beliefs(event_starts_after: datetime_type | None = None, event_ends_before: datetime_type | None
= None, beliefs_after: datetime_type | None = None, beliefs_before: datetime_type | None
= None, horizons_at_least: timedelta | None = None, horizons_at_most: timedelta | None
= None, source: DataSource | list[DataSource] | int | list[int] | str | list[str] | None = None,
most_recent_beliefs_only: bool = True, most_recent_events_only: bool = False,
most_recent_only: bool = None, one_deterministic_belief_per_event: bool = False,
one_deterministic_belief_per_event_per_source: bool = False, resolution: str | timedelta =
None, as_json: bool = False)→ tb.BeliefsDataFrame | str

Search all beliefs about events for this sensor.

If you don’t set any filters, you get the most recent beliefs about all events.

Parameters
• event_starts_after – only return beliefs about events that start after this datetime (in-

clusive)

• event_ends_before – only return beliefs about events that end before this datetime (in-
clusive)

• beliefs_after – only return beliefs formed after this datetime (inclusive)

• beliefs_before – only return beliefs formed before this datetime (inclusive)

• horizons_at_least – only return beliefs with a belief horizon equal or greater than this
timedelta (for example, use timedelta(0) to get ante knowledge time beliefs)

• horizons_at_most – only return beliefs with a belief horizon equal or less than this
timedelta (for example, use timedelta(0) to get post knowledge time beliefs)

• source – search only beliefs by this source (pass the DataSource, or its name or id) or list
of sources

• most_recent_beliefs_only – only return the most recent beliefs for each event from
each source (minimum belief horizon)

• most_recent_events_only – only return (post knowledge time) beliefs for the most re-
cent event (maximum event start)

• one_deterministic_belief_per_event – only return a single value per event (no
probabilistic distribution and only 1 source)

• one_deterministic_belief_per_event_per_source – only return a single value per
event per source (no probabilistic distribution)

• as_json – return beliefs in JSON format (e.g. for use in charts) rather than as Beliefs-
DataFrame

Returns
BeliefsDataFrame or JSON string (if as_json is True)

property timerange: dict[str, datetime]

Time range for which sensor data exists.

Returns
dictionary with start and end, for example: {

’start’: datetime.datetime(2020, 12, 3, 14, 0, tzinfo=pytz.utc), ‘end’: date-
time.datetime(2020, 12, 3, 14, 30, tzinfo=pytz.utc)

264 Chapter 5. Developer support

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime

FlexMeasures Documentation, Release 0.17

}

timezone: str

unit: str

class flexmeasures.data.models.time_series.TimedBelief(sensor, source, **kwargs)
A timed belief holds a precisely timed record of a belief about an event.

It also records the source of the belief, and the sensor that the event pertains to.

__init__(sensor, source, **kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

classmethod add(bdf: BeliefsDataFrame, expunge_session: bool = False, allow_overwrite: bool = False,
bulk_save_objects: bool = False, commit_transaction: bool = False)

Add a BeliefsDataFrame as timed beliefs in the database.

Parameters
• bdf – the BeliefsDataFrame to be persisted

• expunge_session – if True, all non-flushed instances are removed from the session before
adding beliefs. Expunging can resolve problems you might encounter with states of objects
in your session. When using this option, you might want to flush newly-created objects
which are not beliefs (e.g. a sensor or data source object).

• allow_overwrite – if True, new objects are merged if False, objects are added to the
session or bulk saved

• bulk_save_objects – if True, objects are bulk saved with session.bulk_save_objects(),
which is quite fast but has several caveats, see: https://docs.sqlalchemy.org/orm/
persistence_techniques.html#bulk-operations-caveats if False, objects are added to the ses-
sion with session.add_all()

• commit_transaction – if True, the session is committed if False, you can still add other
data to the session and commit it all within an atomic transaction

belief_horizon: timedelta

cumulative_probability: float

event_start: datetime

event_value: float

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

5.3. I want to build new features quickly, not spend days solving basic problems 265

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.sqlalchemy.org/orm/persistence_techniques.html#bulk-operations-caveats
https://docs.sqlalchemy.org/orm/persistence_techniques.html#bulk-operations-caveats
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

FlexMeasures Documentation, Release 0.17

classmethod search(sensors: Sensor | int | str | list[Sensor | int | str], sensor: Sensor = None,
event_starts_after: datetime_type | None = None, event_ends_before: datetime_type |
None = None, beliefs_after: datetime_type | None = None, beliefs_before:
datetime_type | None = None, horizons_at_least: timedelta | None = None,
horizons_at_most: timedelta | None = None, source: DataSource | list[DataSource] |
int | list[int] | str | list[str] | None = None, user_source_ids: int | list[int] | None =
None, source_types: list[str] | None = None, exclude_source_types: list[str] | None =
None, most_recent_beliefs_only: bool = True, most_recent_events_only: bool =
False, most_recent_only: bool = None, one_deterministic_belief_per_event: bool =
False, one_deterministic_belief_per_event_per_source: bool = False, resolution: str |
timedelta = None, sum_multiple: bool = True)→ tb.BeliefsDataFrame | dict[str,
tb.BeliefsDataFrame]

Search all beliefs about events for the given sensors.

If you don’t set any filters, you get the most recent beliefs about all events.

Parameters
• sensors – search only these sensors, identified by their instance or id (both unique) or

name (non-unique)

• event_starts_after – only return beliefs about events that start after this datetime (in-
clusive)

• event_ends_before – only return beliefs about events that end before this datetime (in-
clusive)

• beliefs_after – only return beliefs formed after this datetime (inclusive)

• beliefs_before – only return beliefs formed before this datetime (inclusive)

• horizons_at_least – only return beliefs with a belief horizon equal or greater than this
timedelta (for example, use timedelta(0) to get ante knowledge time beliefs)

• horizons_at_most – only return beliefs with a belief horizon equal or less than this
timedelta (for example, use timedelta(0) to get post knowledge time beliefs)

• source – search only beliefs by this source (pass the DataSource, or its name or id) or list
of sources

• user_source_ids – Optional list of user source ids to query only specific user sources

• source_types – Optional list of source type names to query only specific source types *

• exclude_source_types – Optional list of source type names to exclude specific source
types *

• most_recent_beliefs_only – only return the most recent beliefs for each event from
each source (minimum belief horizon)

• most_recent_events_only – only return (post knowledge time) beliefs for the most re-
cent event (maximum event start)

• one_deterministic_belief_per_event – only return a single value per event (no
probabilistic distribution and only 1 source)

• one_deterministic_belief_per_event_per_source – only return a single value per
event per source (no probabilistic distribution)

• resolution – Optional timedelta or pandas freqstr used to resample the results **

• sum_multiple – if True, sum over multiple sensors; otherwise, return a dictionary with
sensor names as key, each holding a BeliefsDataFrame as its value

266 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

• If user_source_ids is specified, the “user” source type is automatically included (and not excluded).
Somewhat redundant, though still allowed, is to set both source_types and exclude_source_types.

** Note that:
• timely-beliefs converts string resolutions to datetime.timedelta objects (see https://github.com/

SeitaBV/timely-beliefs/issues/13).

• for sensors recording non-instantaneous data: updates both the event frequency and the event
resolution

• for sensors recording instantaneous data: updates only the event frequency (and event resolution
remains 0)

sensor_id

source_id

flexmeasures.data.models.user

Functions

flexmeasures.data.models.user.is_user(o)→ bool
True if object is or proxies a User, False otherwise.

Takes into account that object can be of LocalProxy type, and uses get_current_object to get the underlying
(User) object.

flexmeasures.data.models.user.remember_last_seen(user)
Update the last_seen field

flexmeasures.data.models.user.remember_login(the_app, user)
We do not use the tracking feature of flask_security, but this basic meta data are quite handy to know

Classes

class flexmeasures.data.models.user.Account(**kwargs)
Account of a tenant on the server. Bundles Users as well as GenericAssets.

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

has_role(role: str | AccountRole)→ bool
Returns True if the account has the specified role.

Parameters
role – An account role name or AccountRole instance

5.3. I want to build new features quickly, not spend days solving basic problems 267

https://github.com/SeitaBV/timely-beliefs/issues/13
https://github.com/SeitaBV/timely-beliefs/issues/13
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

search_annotations(annotation_starts_after: datetime | None = None, annotations_after: datetime | None
= None, annotation_ends_before: datetime | None = None, annotations_before:
datetime | None = None, source: DataSource | List[DataSource] | int | List[int] | str |
List[str] | None = None, as_frame: bool = False)→ List[Annotation] | pd.DataFrame

Return annotations assigned to this account.

Parameters
• annotations_after – only return annotations that end after this datetime (exclusive)

• annotations_before – only return annotations that start before this datetime (exclusive)

class flexmeasures.data.models.user.AccountRole(**kwargs)

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

class flexmeasures.data.models.user.Role(**kwargs)

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

268 Chapter 5. Developer support

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

class flexmeasures.data.models.user.RolesAccounts(**kwargs)

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

class flexmeasures.data.models.user.RolesUsers(**kwargs)

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

class flexmeasures.data.models.user.User(**kwargs)
We use the flask security UserMixin, which does include functionality, but not the fields (those are in
flask_security/models::FsUserMixin). We went with a pick&choose approach. This gives us more freedom,
e.g. to choose our own table name or add logic around the activation status. If we add new FS functionality (e.g.
2FA), the fields needed for that need to be added here.

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

has_role(role: str | Role)→ bool

Returns True if the user identifies with the specified role.
Overwritten from flask_security.core.UserMixin.

Parameters
role – A role name or Role instance

5.3. I want to build new features quickly, not spend days solving basic problems 269

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

property is_authenticated: bool

We are overloading this, so it also considers being active. Inactive users can by definition not be authenti-
cated.

query: t.ClassVar[Query]

A SQLAlchemy query for a model. Equivalent to db.session.query(Model). Can be customized per-
model by overriding query_class.

Warning: The query interface is considered legacy in SQLAlchemy. Prefer using session.
execute(select()) instead.

roles

The roles attribute is being used by Flask-Security in the @roles_required decorator (among others). With
this little overload fix, it will only return the user’s roles if they are authenticated. We do this to prevent that
if a user is logged in while the admin deactivates them, their session would still work. In effect, we strip
unauthenticated users from their roles. To read roles of an unauthenticated user (e.g. being inactive), use
the flexmeasures_roles attribute. If our auth model has moved to an improved way, e.g. requiring modern
tokens, we should consider relaxing this. Note: This needed to become a hybrid property when moving to
Flask-Security 3.4

flexmeasures.data.models.validation_utils

Functions

flexmeasures.data.models.validation_utils.check_required_attributes(sensor: Sensor, attributes:
List[str | Tuple[str, Type |
Tuple[Type, ...]]])

Raises if any attribute in the list of attributes is missing on the Sensor, or has the wrong type.

Parameters
• sensor – Sensor object to check for attributes

• attributes – List of either an attribute name or a tuple of an attribute name and its allowed
type (the allowed type may also be a tuple of several allowed types)

Exceptions

exception flexmeasures.data.models.validation_utils.MissingAttributeException

exception flexmeasures.data.models.validation_utils.WrongTypeAttributeException

270 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Type

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.weather

Data models for FlexMeasures

Exceptions

exception flexmeasures.data.models.ModelException

flexmeasures.data.queries

Modules

flexmeasures.data.queries.annotations

flexmeasures.data.queries.data_sources

flexmeasures.data.queries.generic_assets

flexmeasures.data.queries.sensors

flexmeasures.data.queries.utils

flexmeasures.data.queries.annotations

Functions

flexmeasures.data.queries.annotations.query_asset_annotations(asset_id: int, annotations_after:
datetime | None = None,
annotations_before: datetime |
None = None, sources:
list[DataSource] | None = None,
annotation_type: str | None =
None)→ Query

Match annotations assigned to the given asset.

flexmeasures.data.queries.data_sources

Functions

flexmeasures.data.queries.data_sources.get_or_create_source(source: User | str, source_type: str |
None = None, model: str | None =
None, flush: bool = True)→
DataSource

5.3. I want to build new features quickly, not spend days solving basic problems 271

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

flexmeasures.data.queries.data_sources.get_source_or_none(source: int | str, source_type: str | None
= None)→ DataSource | None

Parameters
• source – source id

• source_type – optionally, filter by source type

flexmeasures.data.queries.generic_assets

Functions

flexmeasures.data.queries.generic_assets.get_asset_group_queries(group_by_type: bool = True,
group_by_account: bool =
False, group_by_location: bool
= False, cus-
tom_aggregate_type_groups:
Dict[str, List[str]] | None =
None)→ Dict[str, Query]

An asset group is defined by Asset queries, which this function can generate. Each query has a name (for
the asset group it represents). These queries still need an executive call, like all(), count() or first(). This
function limits the assets to be queried to the current user’s account, if the user is not an admin. Note:
Make sure the current user has the “read” permission on their account (on GenericAsset.__class__?? See
https://github.com/FlexMeasures/flexmeasures/issues/200) or is an admin. :param group_by_type: If True,
groups will be made for assets with the same type. We prefer pluralised group names here. Defaults to True.
:param group_by_account: If True, groups will be made for assets within the same account. This makes sense
for admins, as they can query across accounts. :param group_by_location: If True, groups will be made for
assets at the same location. Naming of the location currently supports charge points (for EVSEs). :param cus-
tom_aggregate_type_groups: dict of asset type groupings (mapping group names to names of asset types). See
also the setting FLEXMEASURES_ASSET_TYPE_GROUPS.

flexmeasures.data.queries.generic_assets.get_location_queries(account_id: int | None = None)→
Dict[str, Query]

Make queries for grouping assets by location.

We group EVSE assets by location (if they share a location, they belong to the same Charge Point) Like
get_asset_group_queries, the values in the returned dict still need an executive call, like all(), count() or first().
Note that this function will still load and inspect assets to do its job.

The Charge Points are named on the basis of the first EVSE in their list, using either the whole EVSE name or
that part that comes before a ” -” delimiter. For example: If:

evse_name = “Seoul Hilton - charger 1”

Then:
charge_point_name = “Seoul Hilton (Charge Point)”

A Charge Point is a special case. If all assets on a location are of type EVSE, we can call the location a “Charge
Point”.

Parameters
account_id – Pass in an account ID if you want to query an account other than your own. This
only works for admins. Public assets are always queried.

272 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/FlexMeasures/flexmeasures/issues/200
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

flexmeasures.data.queries.generic_assets.group_assets_by_location(asset_list:
List[GenericAsset])→
List[List[GenericAsset]]

flexmeasures.data.queries.generic_assets.query_assets_by_type(type_names: List[str] | str,
account_id: int | None = None,
query: Query | None = None)→
Query

Return a query which looks for GenericAssets by their type.

Parameters
• type_names – Pass in a list of type names or only one type name.

• account_id – Pass in an account ID if you want to query an account other than your own.
This only works for admins. Public assets are always queried.

• query – Pass in an existing Query object if you have one.

flexmeasures.data.queries.sensors

Functions

flexmeasures.data.queries.sensors.query_sensor_by_name_and_generic_asset_type_name(sensor_name:
str |
None =
None,
generic_asset_type_names:
List[str]
| None
= None,
ac-
count_id:
int |
None =
None)
→
Query

Match a sensor by its own name and that of its generic asset type.

Parameters
• sensor_name – should match (if None, no match is needed)

• generic_asset_type_names – should match at least one of these (if None, no match is
needed)

• account_id – Pass in an account ID if you want to query an account other than your own.
This only works for admins. Public assets are always queried.

flexmeasures.data.queries.sensors.query_sensors_by_proximity(latitude: float, longitude: float,
generic_asset_type_name: str |
None, sensor_name: str | None,
account_id: int | None = None)→
Query

Order them by proximity of their asset’s location to the target.

5.3. I want to build new features quickly, not spend days solving basic problems 273

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

flexmeasures.data.queries.utils

Functions

flexmeasures.data.queries.utils.create_beliefs_query(cls: Type[ts.TimedValue], session: Session,
old_sensor_class: Model, old_sensor_names:
Tuple[str], start: datetime | None, end:
datetime | None)→ Query

flexmeasures.data.queries.utils.get_belief_timing_criteria(cls: Type[ts.TimedValue], asset_class:
Model, belief_horizon_window:
Tuple[timedelta | None, timedelta |
None], belief_time_window:
Tuple[datetime | None, datetime |
None])→ List[BinaryExpression]

Get filter criteria for the desired windows with relevant belief times and belief horizons.

todo: interpret belief horizons with respect to knowledge time rather than event end. - a positive horizon
denotes a before-the-fact belief (ex-ante w.r.t. knowledge time) - a negative horizon denotes an after-the-fact
belief (ex-post w.r.t. knowledge time)

Parameters
• belief_horizon_window – short belief horizon and long belief horizon, each an optional

timedelta Interpretation: - a positive short horizon denotes “at least <horizon> before the
fact” (min ex-ante) - a positive long horizon denotes “at most <horizon> before the fact”
(max ex-ante) - a negative short horizon denotes “at most <horizon> after the fact” (max
ex-post) - a negative long horizon denotes “at least <horizon> after the fact” (min ex-post)

• belief_time_window – earliest belief time and latest belief time, each an optional datetime

Examples (assuming the knowledge time of each event coincides with the end of the event):

Query beliefs formed between 1 and 7 days before each individual event belief_horizon_window =
(timedelta(days=1), timedelta(days=7))

Query beliefs formed at least 2 hours before each individual event belief_horizon_window =
(timedelta(hours=2), None)

Query beliefs formed at most 2 hours after each individual event belief_horizon_window = (-
timedelta(hours=2), None)

Query beliefs formed at least after each individual event belief_horizon_window = (None,
timedelta(hours=0))

Query beliefs formed from May 2nd to May 13th (left inclusive, right exclusive) be-
lief_time_window = (datetime(2020, 5, 2), datetime(2020, 5, 13))

Query beliefs formed from May 14th onwards belief_time_window = (datetime(2020, 5, 14), None)

Query beliefs formed before May 13th belief_time_window = (None, datetime(2020, 5, 13))

flexmeasures.data.queries.utils.get_source_criteria(cls: Type[ts.TimedValue] | Type[ts.TimedBelief],
user_source_ids: int | List[int], source_types:
List[str], exclude_source_types: List[str])→
List[BinaryExpression]

274 Chapter 5. Developer support

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List

FlexMeasures Documentation, Release 0.17

flexmeasures.data.queries.utils.multiply_dataframe_with_deterministic_beliefs(df1:
DataFrame,
df2:
DataFrame,
multiplica-
tion_factor:
float = 1,
result_source:
str | None =
None)→
DataFrame

Create new DataFrame where the event_value columns of df1 and df2 are multiplied.

If df1 and df2 have belief_horizon columns, the belief_horizon column of the new DataFrame is determined as
the minimum of the input horizons. The source columns of df1 and df2 are not used. A source column for the
new DataFrame can be set by passing a result_source (string).

The index of the resulting DataFrame contains the outer join of the indices of df1 and df2. Event values are
np.nan for rows that are not in both DataFrames.

Parameters
• df1 – DataFrame with “event_value” column and optional “belief_horizon” and “source”

columns

• df2 – DataFrame with “event_value” column and optional “belief_horizon” and “source”
columns

• multiplication_factor – extra scalar to determine the event_value of the resulting
DataFrame

• result_source – string label for the source of the resulting DataFrame

Returns
DataFrame with “event_value” column, an additional “belief_horizon” column if both df1 and
df2 contain this column, and an additional “source” column if result_source is set.

flexmeasures.data.queries.utils.potentially_limit_assets_query_to_account(query: Query,
account_id: int |
None = None)→
Query

Filter out all assets that are not in the current user’s account. For admins and CLI users, no assets are filtered
out, unless an account_id is set.

Parameters
account_id – if set, all assets that are not in the given account will be filtered out (only works
for admins and CLI users). For querying public assets in particular, don’t use this function.

flexmeasures.data.queries.utils.simplify_index(bdf: BeliefsDataFrame, index_levels_to_columns:
List[str] | None = None)→ DataFrame

Drops indices other than event_start. Optionally, salvage index levels as new columns.

Because information stored in the index levels is potentially lost*, we cannot guarantee a complete description
of beliefs in the BeliefsDataFrame. Therefore, we type the result as a regular pandas DataFrame.

• The index levels are dropped (by overwriting the multi-level index with just the “event_start” index level).
Only for the columns named in index_levels_to_columns, the relevant information is kept around.

flexmeasures.data.queries.utils.source_type_criterion(source_types: List[str])→ BinaryExpression
Criterion to collect only data from sources that are of the given type.

5.3. I want to build new features quickly, not spend days solving basic problems 275

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

flexmeasures.data.queries.utils.source_type_exclusion_criterion(source_types: List[str])→
BinaryExpression

Criterion to exclude sources that are of the given type.

flexmeasures.data.queries.utils.user_source_criterion(cls: Type[ts.TimedValue] |
Type[ts.TimedBelief], user_source_ids: int |
List[int])→ BinaryExpression

Criterion to search only through user data from the specified user sources.

We distinguish user sources (sources with source.type == “user”) from other sources (source.type != “user”).
Data with a user source originates from a registered user. Data with e.g. a script source originates from a script.

This criterion doesn’t affect the query over non-user type sources. It does so by ignoring user sources that are
not in the given list of source_ids.

Data query functions

flexmeasures.data.schemas

Modules

flexmeasures.data.schemas.account

flexmeasures.data.schemas.attributes

flexmeasures.data.schemas.generic_assets

flexmeasures.data.schemas.io

flexmeasures.data.schemas.locations

flexmeasures.data.schemas.reporting

flexmeasures.data.schemas.scheduling

flexmeasures.data.schemas.sensors

flexmeasures.data.schemas.sources

flexmeasures.data.schemas.times

flexmeasures.data.schemas.units

flexmeasures.data.schemas.users

flexmeasures.data.schemas.utils

276 Chapter 5. Developer support

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

flexmeasures.data.schemas.account

Classes

class flexmeasures.data.schemas.account.AccountIdField(*, strict: bool = False, **kwargs)
Field that deserializes to an Account and serializes back to an integer.

_deserialize(value, attr, obj, **kwargs)→ Account
Turn an account id into an Account.

_serialize(account, attr, data, **kwargs)
Turn an Account into a source id.

class flexmeasures.data.schemas.account.AccountRoleSchema(*args, **kwargs)
AccountRole schema, with validations.

class Meta

model

alias of AccountRole

opts: SchemaOpts = <flask_marshmallow.sqla.SQLAlchemySchemaOpts object>

class flexmeasures.data.schemas.account.AccountSchema(*args, **kwargs)
Account schema, with validations.

class Meta

model

alias of Account

opts: SchemaOpts = <flask_marshmallow.sqla.SQLAlchemySchemaOpts object>

flexmeasures.data.schemas.attributes

Functions

flexmeasures.data.schemas.attributes.validate_special_attributes(key: str, value: Any)
Validate attributes with a special meaning in FlexMeasures.

flexmeasures.data.schemas.generic_assets

Classes

class flexmeasures.data.schemas.generic_assets.GenericAssetIdField(*args, **kwargs)
Field that deserializes to a GenericAsset and serializes back to an integer.

_deserialize(value, attr, obj, **kwargs)→ GenericAsset
Turn a generic asset id into a GenericAsset.

_serialize(asset, attr, data, **kwargs)
Turn a GenericAsset into a generic asset id.

5.3. I want to build new features quickly, not spend days solving basic problems 277

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

FlexMeasures Documentation, Release 0.17

class flexmeasures.data.schemas.generic_assets.GenericAssetSchema(*args, **kwargs)
GenericAsset schema, with validations.

class Meta

model

alias of GenericAsset

opts: SchemaOpts = <flask_marshmallow.sqla.SQLAlchemySchemaOpts object>

class flexmeasures.data.schemas.generic_assets.GenericAssetTypeSchema(*args, **kwargs)
GenericAssetType schema, with validations.

class Meta

model

alias of GenericAssetType

opts: SchemaOpts = <flask_marshmallow.sqla.SQLAlchemySchemaOpts object>

class flexmeasures.data.schemas.generic_assets.JSON(*, load_default: typing.Any =
<marshmallow.missing>, missing: typing.Any =
<marshmallow.missing>, dump_default:
typing.Any = <marshmallow.missing>, default:
typing.Any = <marshmallow.missing>,
data_key: str | None = None, attribute: str |
None = None, validate: None |
typing.Callable[[typing.Any], typing.Any] |
typing.Iterable[typing.Callable[[typing.Any],
typing.Any]] = None, required: bool = False,
allow_none: bool | None = None, load_only:
bool = False, dump_only: bool = False,
error_messages: dict[str, str] | None = None,
metadata: typing.Mapping[str, typing.Any] |
None = None, **additional_metadata)

_deserialize(value, attr, data, **kwargs)→ dict
Deserialize value. Concrete Field classes should implement this method.

Parameters
• value – The value to be deserialized.

• attr – The attribute/key in data to be deserialized.

• data – The raw input data passed to the Schema.load.

• kwargs – Field-specific keyword arguments.

Raises
ValidationError – In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.

Changed in version 3.0.0: Added **kwargs to signature.

278 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

_serialize(value, attr, data, **kwargs)→ str
Serializes value to a basic Python datatype. Noop by default. Concrete Field classes should implement
this method.

Example:

class TitleCase(Field):
def _serialize(self, value, attr, obj, **kwargs):

if not value:
return ''

return str(value).title()

Parameters
• value – The value to be serialized.

• attr (str) – The attribute or key on the object to be serialized.

• obj (object) – The object the value was pulled from.

• kwargs (dict) – Field-specific keyword arguments.

Returns
The serialized value

flexmeasures.data.schemas.io

Classes

class flexmeasures.data.schemas.io.Input(*, only: types.StrSequenceOrSet | None = None, exclude:
types.StrSequenceOrSet = (), many: bool = False, context: dict
| None = None, load_only: types.StrSequenceOrSet = (),
dump_only: types.StrSequenceOrSet = (), partial: bool |
types.StrSequenceOrSet | None = None, unknown: str | None =
None)

This schema implements the required fields to perform a TimedBeliefs search using the method flexmea-
sures.data.models.time_series:TimedBelief.search_beliefs.

It includes the field name, which is not part of the search query, for later reference of the belief.

class flexmeasures.data.schemas.io.Output(*, only: types.StrSequenceOrSet | None = None, exclude:
types.StrSequenceOrSet = (), many: bool = False, context:
dict | None = None, load_only: types.StrSequenceOrSet = (),
dump_only: types.StrSequenceOrSet = (), partial: bool |
types.StrSequenceOrSet | None = None, unknown: str | None
= None)

class flexmeasures.data.schemas.io.RequiredInput(*, only: types.StrSequenceOrSet | None = None,
exclude: types.StrSequenceOrSet = (), many: bool =
False, context: dict | None = None, load_only:
types.StrSequenceOrSet = (), dump_only:
types.StrSequenceOrSet = (), partial: bool |
types.StrSequenceOrSet | None = None, unknown:
str | None = None)

5.3. I want to build new features quickly, not spend days solving basic problems 279

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

class flexmeasures.data.schemas.io.RequiredOutput(*, only: types.StrSequenceOrSet | None = None,
exclude: types.StrSequenceOrSet = (), many: bool
= False, context: dict | None = None, load_only:
types.StrSequenceOrSet = (), dump_only:
types.StrSequenceOrSet = (), partial: bool |
types.StrSequenceOrSet | None = None, unknown:
str | None = None)

flexmeasures.data.schemas.locations

Classes

class flexmeasures.data.schemas.locations.LatitudeField(*args, **kwargs)
Field that deserializes to a latitude float with max 7 decimal places.

__init__(*args, **kwargs)

class flexmeasures.data.schemas.locations.LatitudeLongitudeValidator(*, error: str | None =
None)

Validator which succeeds if the value passed has at most 7 decimal places.

__init__(*, error: str | None = None)

class flexmeasures.data.schemas.locations.LatitudeValidator(*, error: str | None = None,
allow_none: bool = False)

Validator which succeeds if the value passed is in the range [-90, 90].

__init__(*, error: str | None = None, allow_none: bool = False)

class flexmeasures.data.schemas.locations.LongitudeField(*args, **kwargs)
Field that deserializes to a longitude float with max 7 decimal places.

__init__(*args, **kwargs)

class flexmeasures.data.schemas.locations.LongitudeValidator(*, error: str | None = None,
allow_none: bool = False)

Validator which succeeds if the value passed is in the range [-180, 180].

__init__(*, error: str | None = None, allow_none: bool = False)

flexmeasures.data.schemas.reporting

Modules

flexmeasures.data.schemas.reporting.
aggregation
flexmeasures.data.schemas.reporting.
pandas_reporter
flexmeasures.data.schemas.reporting.profit

280 Chapter 5. Developer support

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

flexmeasures.data.schemas.reporting.aggregation

Classes

class flexmeasures.data.schemas.reporting.aggregation.AggregatorConfigSchema(*, only:
types.StrSequenceOrSet
| None = None,
exclude:
types.StrSequenceOrSet
= (), many:
bool = False,
context: dict |
None = None,
load_only:
types.StrSequenceOrSet
= (),
dump_only:
types.StrSequenceOrSet
= (), partial:
bool |
types.StrSequenceOrSet
| None = None,
unknown: str |
None = None)

Schema for the AggregatorReporter configuration

Example: .. code-block:: json

{
“method” : “sum”, “weights” : {

“pv” : 1.0, “consumption” : -1.0

}

}

5.3. I want to build new features quickly, not spend days solving basic problems 281

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

class flexmeasures.data.schemas.reporting.aggregation.AggregatorParametersSchema(*, only:
types.StrSequenceOrSet
| None =
None,
exclude:
types.StrSequenceOrSet
= (),
many:
bool =
False,
context:
dict | None
= None,
load_only:
types.StrSequenceOrSet
= (),
dump_only:
types.StrSequenceOrSet
= (),
partial:
bool |
types.StrSequenceOrSet
| None =
None,
unknown:
str | None
= None)

Schema for the AggregatorReporter parameters

Example: .. code-block:: json

{
“input”: [

{
“name” : “pv”, “sensor”: 1, “source” : 1,

}, {

“name” : “consumption”, “sensor”: 1, “source” : 2,

}

], “output”: [

{
“sensor”: 3,

}

], “start” : “2023-01-01T00:00:00+00:00”, “end” : “2023-01-03T00:00:00+00:00”,

}

282 Chapter 5. Developer support

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

flexmeasures.data.schemas.reporting.pandas_reporter

Classes

class flexmeasures.data.schemas.reporting.pandas_reporter.PandasMethodCall(*, only:
types.StrSequenceOrSet
| None = None,
exclude:
types.StrSequenceOrSet
= (), many: bool =
False, context:
dict | None =
None, load_only:
types.StrSequenceOrSet
= (), dump_only:
types.StrSequenceOrSet
= (), partial: bool |
types.StrSequenceOrSet
| None = None,
unknown: str |
None = None)

5.3. I want to build new features quickly, not spend days solving basic problems 283

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

class flexmeasures.data.schemas.reporting.pandas_reporter.PandasReporterConfigSchema(*,
only:
types.StrSequenceOrSet
|
None
=
None,
ex-
clude:
types.StrSequenceOrSet
= (),
many:
bool
=
False,
con-
text:
dict |
None
=
None,
load_only:
types.StrSequenceOrSet
= (),
dump_only:
types.StrSequenceOrSet
= (),
par-
tial:
bool |
types.StrSequenceOrSet
|
None
=
None,
un-
known:
str |
None
=
None)

This schema lists fields that can be used to describe sensors in the optimised portfolio

Example:

{
“required_input”

[[] {“name” : “df1}

], “required_output” : [

{“name” : “df2”}

], “transformations” : [

{

284 Chapter 5. Developer support

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

“df_input” : “df1”, “df_output” : “df2”, “method” : “copy”

}, {

“df_input” : “df2”, “df_output” : “df2”, “method” : “sum”

}, {

“method” : “sum”, “kwargs” : {“axis” : 0}

}

],

}

validate_chaining(data, **kwargs)
This validator ensures that we are always given an input and that the final_df_output is computed.

5.3. I want to build new features quickly, not spend days solving basic problems 285

FlexMeasures Documentation, Release 0.17

class flexmeasures.data.schemas.reporting.pandas_reporter.PandasReporterParametersSchema(*,
only:
types.StrSequenceOrSet
|
None
=
None,
ex-
clude:
types.StrSequenceOrSet
=
(),
many:
bool
=
False,
con-
text:
dict
|
None
=
None,
load_only:
types.StrSequenceOrSet
=
(),
dump_only:
types.StrSequenceOrSet
=
(),
par-
tial:
bool
|
types.StrSequenceOrSet
|
None
=
None,
un-
known:
str
|
None
=
None)

validate_time_parameters(data, **kwargs)
This method validates that all input sensors have start and end parameters available.

286 Chapter 5. Developer support

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

flexmeasures.data.schemas.reporting.profit

Classes

class flexmeasures.data.schemas.reporting.profit.ProfitOrLossReporterConfigSchema(*, only:
types.StrSequenceOrSet
| None =
None,
exclude:
types.StrSequenceOrSet
= (),
many:
bool =
False,
context:
dict |
None =
None,
load_only:
types.StrSequenceOrSet
= (),
dump_only:
types.StrSequenceOrSet
= (),
partial:
bool |
types.StrSequenceOrSet
| None =
None, un-
known:
str | None
= None)

Schema for the ProfitOrLossReporter configuration

Example: .. code-block:: json

{
“production-price-sensor” : 1, “consumption-price-sensor” : 2, “loss_is_positive” : True

}

validate_price_sensors(data, **kwargs)
check that at least one of the price sensors is given

5.3. I want to build new features quickly, not spend days solving basic problems 287

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

class flexmeasures.data.schemas.reporting.profit.ProfitOrLossReporterParametersSchema(*,
only:
types.StrSequenceOrSet
|
None
=
None,
ex-
clude:
types.StrSequenceOrSet
= (),
many:
bool
=
False,
con-
text:
dict
|
None
=
None,
load_only:
types.StrSequenceOrSet
= (),
dump_only:
types.StrSequenceOrSet
= (),
par-
tial:
bool
|
types.StrSequenceOrSet
|
None
=
None,
un-
known:
str |
None
=
None)

Schema for the ProfitOrLossReporter parameters

Example: .. code-block:: json

{
“input”: [

{
“sensor”: 1,

},

], “output”: [

288 Chapter 5. Developer support

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

{
“sensor”: 2,

}

], “start” : “2023-01-01T00:00:00+00:00”, “end” : “2023-01-03T00:00:00+00:00”,

}

Classes

class flexmeasures.data.schemas.reporting.BeliefsSearchConfigSchema(*, only:
types.StrSequenceOrSet |
None = None, exclude:
types.StrSequenceOrSet =
(), many: bool = False,
context: dict | None =
None, load_only:
types.StrSequenceOrSet =
(), dump_only:
types.StrSequenceOrSet =
(), partial: bool |
types.StrSequenceOrSet |
None = None, unknown: str
| None = None)

This schema implements the required fields to perform a TimedBeliefs search using the method flexmea-
sures.data.models.time_series:Sensor.search_beliefs

class flexmeasures.data.schemas.reporting.ReporterConfigSchema(*, only: types.StrSequenceOrSet |
None = None, exclude:
types.StrSequenceOrSet = (),
many: bool = False, context: dict |
None = None, load_only:
types.StrSequenceOrSet = (),
dump_only:
types.StrSequenceOrSet = (),
partial: bool |
types.StrSequenceOrSet | None =
None, unknown: str | None =
None)

This schema is used to validate Reporter class configurations (config). Inherit from this class to extend this
schema with your own parameters.

5.3. I want to build new features quickly, not spend days solving basic problems 289

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

class flexmeasures.data.schemas.reporting.ReporterParametersSchema(*, only:
types.StrSequenceOrSet |
None = None, exclude:
types.StrSequenceOrSet = (),
many: bool = False, context:
dict | None = None,
load_only:
types.StrSequenceOrSet = (),
dump_only:
types.StrSequenceOrSet = (),
partial: bool |
types.StrSequenceOrSet |
None = None, unknown: str |
None = None)

This schema is used to validate the parameters to the method compute of
the Reporter class.

Inherit from this class to extend this schema with your own parameters.

flexmeasures.data.schemas.scheduling

Modules

flexmeasures.data.schemas.scheduling.
process
flexmeasures.data.schemas.scheduling.
storage

flexmeasures.data.schemas.scheduling.process

Classes

class flexmeasures.data.schemas.scheduling.process.OptimizationDirection(value)
An enumeration.

class flexmeasures.data.schemas.scheduling.process.ProcessSchedulerFlexModelSchema(sensor:
Sensor,
start:
date-
time,
end:
date-
time,
*args,
**kwargs)

__init__(sensor: Sensor, start: datetime, end: datetime, *args, **kwargs)
Pass start and end to convert time_restrictions into a time series and sensor as a fallback mechanism for the
process_type

290 Chapter 5. Developer support

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

FlexMeasures Documentation, Release 0.17

get_mask_from_events(events: list[dict[str, str]] | None)→ pd.Series
Convert events to a mask of the time periods that are valid

Parameters
events – list of events defined as dictionaries with a start and duration

Returns
mask of the allowed time periods

post_load_time_restrictions(data: dict, **kwargs)→ dict
Convert events (list of [start, duration] pairs) into a mask (pandas Series)

pre_load_process_type(data: dict, **kwargs)→ dict
Fallback mechanism for the process_type variable. If not found in data, it tries to find it in among the sensor
or asset attributes and, if it’s not found there either, it defaults to “INFLEXIBLE”.

class flexmeasures.data.schemas.scheduling.process.ProcessType(value)
An enumeration.

flexmeasures.data.schemas.scheduling.storage

Classes

class flexmeasures.data.schemas.scheduling.storage.EfficiencyField(*args, **kwargs)
Field that deserializes to a Quantity with % units. Must be greater than 0% and less than or equal to 100%.

Examples:

>>> ef = EfficiencyField()
>>> ef.deserialize(0.9)
<Quantity(90.0, 'percent')>
>>> ef.deserialize("90%")
<Quantity(90.0, 'percent')>
>>> ef.deserialize("0%")
Traceback (most recent call last):
...
marshmallow.exceptions.ValidationError: ['Must be greater than 0 and less than or␣
→˓equal to 1.']

__init__(*args, **kwargs)

class flexmeasures.data.schemas.scheduling.storage.SOCValueSchema(*args, **kwargs)
A point in time with a target value.

__init__(*args, **kwargs)

class flexmeasures.data.schemas.scheduling.storage.StorageFlexModelSchema(start: datetime,
sensor: Sensor,
*args, **kwargs)

This schema lists fields we require when scheduling storage assets. Some fields are not required, as they might
live on the Sensor.attributes. You can use StorageScheduler.deserialize_flex_config to get that filled in.

__init__(start: datetime, sensor: Sensor, *args, **kwargs)
Pass the schedule’s start, so we can use it to validate soc-target datetimes.

post_load_sequence(data: dict, **kwargs)→ dict
Perform some checks and corrections after we loaded.

5.3. I want to build new features quickly, not spend days solving basic problems 291

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

Classes

class flexmeasures.data.schemas.scheduling.FlexContextSchema(*, only: types.StrSequenceOrSet |
None = None, exclude:
types.StrSequenceOrSet = (), many:
bool = False, context: dict | None =
None, load_only:
types.StrSequenceOrSet = (),
dump_only: types.StrSequenceOrSet
= (), partial: bool |
types.StrSequenceOrSet | None =
None, unknown: str | None = None)

This schema lists fields that can be used to describe sensors in the optimised portfolio

flexmeasures.data.schemas.sensors

Classes

class flexmeasures.data.schemas.sensors.JSON(*, load_default: typing.Any = <marshmallow.missing>,
missing: typing.Any = <marshmallow.missing>,
dump_default: typing.Any = <marshmallow.missing>,
default: typing.Any = <marshmallow.missing>, data_key:
str | None = None, attribute: str | None = None, validate:
None | typing.Callable[[typing.Any], typing.Any] |
typing.Iterable[typing.Callable[[typing.Any],
typing.Any]] = None, required: bool = False,
allow_none: bool | None = None, load_only: bool =
False, dump_only: bool = False, error_messages: dict[str,
str] | None = None, metadata: typing.Mapping[str,
typing.Any] | None = None, **additional_metadata)

_deserialize(value, attr, data, **kwargs)→ dict
Deserialize value. Concrete Field classes should implement this method.

Parameters
• value – The value to be deserialized.

• attr – The attribute/key in data to be deserialized.

• data – The raw input data passed to the Schema.load.

• kwargs – Field-specific keyword arguments.

Raises
ValidationError – In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.

Changed in version 3.0.0: Added **kwargs to signature.

_serialize(value, attr, data, **kwargs)→ str
Serializes value to a basic Python datatype. Noop by default. Concrete Field classes should implement
this method.

292 Chapter 5. Developer support

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

Example:

class TitleCase(Field):
def _serialize(self, value, attr, obj, **kwargs):

if not value:
return ''

return str(value).title()

Parameters
• value – The value to be serialized.

• attr (str) – The attribute or key on the object to be serialized.

• obj (object) – The object the value was pulled from.

• kwargs (dict) – Field-specific keyword arguments.

Returns
The serialized value

class flexmeasures.data.schemas.sensors.SensorIdField(*args, **kwargs)
Field that deserializes to a Sensor and serializes back to an integer.

_deserialize(value: int, attr, obj, **kwargs)→ Sensor
Turn a sensor id into a Sensor.

_serialize(sensor: Sensor, attr, data, **kwargs)→ int
Turn a Sensor into a sensor id.

class flexmeasures.data.schemas.sensors.SensorSchema(*args, **kwargs)
Sensor schema, with validations.

class Meta

model

alias of Sensor

opts: SchemaOpts = <flask_marshmallow.sqla.SQLAlchemySchemaOpts object>

class flexmeasures.data.schemas.sensors.SensorSchemaMixin(*, only: types.StrSequenceOrSet | None
= None, exclude:
types.StrSequenceOrSet = (), many: bool
= False, context: dict | None = None,
load_only: types.StrSequenceOrSet = (),
dump_only: types.StrSequenceOrSet =
(), partial: bool |
types.StrSequenceOrSet | None = None,
unknown: str | None = None)

Base sensor schema.

Here we include all fields which are implemented by timely_beliefs.SensorDBMixin All classes inheriting from
timely beliefs sensor don’t need to repeat these. In a while, this schema can represent our unified Sensor class.

When subclassing, also subclass from ma.SQLAlchemySchema and add your own DB model class, e.g.:

class Meta:
model = Asset

5.3. I want to build new features quickly, not spend days solving basic problems 293

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

flexmeasures.data.schemas.sources

Classes

class flexmeasures.data.schemas.sources.DataSourceIdField(*, strict: bool = False, **kwargs)
Field that deserializes to a DataSource and serializes back to an integer.

_deserialize(value, attr, obj, **kwargs)→ DataSource
Turn a source id into a DataSource.

_serialize(source, attr, data, **kwargs)
Turn a DataSource into a source id.

flexmeasures.data.schemas.times

Classes

class flexmeasures.data.schemas.times.AwareDateTimeField(*args, **kwargs)
Field that de-serializes to a timezone aware datetime and serializes back to a string.

_deserialize(value: str, attr, obj, **kwargs)→ datetime
Work-around until this PR lands: https://github.com/marshmallow-code/marshmallow/pull/1787

class flexmeasures.data.schemas.times.DurationField(*args, **kwargs)
Field that deserializes to a ISO8601 Duration and serializes back to a string.

_deserialize(value, attr, obj, **kwargs)→ timedelta | isodate.Duration
Use the isodate library to turn an ISO8601 string into a timedelta. For some non-obvious cases, it will
become an isodate.Duration, see ground_from for more. This method throws a ValidationError if the string
is not ISO norm.

_serialize(value, attr, data, **kwargs)
An implementation of _serialize. It is not guaranteed to return the same string as was input, if ground_from
has been used!

static ground_from(duration: timedelta | isodate.Duration, start: datetime | None)→ timedelta
For some valid duration strings (such as “P1M”, a month), converting to a datetime.timedelta is not possible
(no obvious number of days). In this case, _deserialize returned an isodate.Duration. We can derive the
timedelta by grounding to an actual time span, for which we require a timezone-aware start datetime.

class flexmeasures.data.schemas.times.PlanningDurationField(*args, **kwargs)

classmethod load_default()

Use this with the load_default arg to __init__ if you want the default FlexMeasures planning horizon.

class flexmeasures.data.schemas.times.TimeIntervalField(*args, **kwargs)
Field that de-serializes to a TimeInverval defined with start and duration.

_deserialize(value: str, attr, obj, **kwargs)→ dict
Deserialize value. Concrete Field classes should implement this method.

Parameters
• value – The value to be deserialized.

• attr – The attribute/key in data to be deserialized.

294 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://github.com/marshmallow-code/marshmallow/pull/1787
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

• data – The raw input data passed to the Schema.load.

• kwargs – Field-specific keyword arguments.

Raises
ValidationError – In case of formatting or validation failure.

Returns
The deserialized value.

Changed in version 2.0.0: Added attr and data parameters.

Changed in version 3.0.0: Added **kwargs to signature.

class flexmeasures.data.schemas.times.TimeIntervalSchema(*, only: types.StrSequenceOrSet | None =
None, exclude: types.StrSequenceOrSet =
(), many: bool = False, context: dict |
None = None, load_only:
types.StrSequenceOrSet = (), dump_only:
types.StrSequenceOrSet = (), partial: bool
| types.StrSequenceOrSet | None = None,
unknown: str | None = None)

Exceptions

exception flexmeasures.data.schemas.times.DurationValidationError(message: str | list | dict,
field_name: str = '_schema',
data: Mapping[str, Any] |
Iterable[Mapping[str, Any]] |
None = None, valid_data:
list[dict[str, Any]] | dict[str,
Any] | None = None,
**kwargs)

flexmeasures.data.schemas.units

Classes

class flexmeasures.data.schemas.units.QuantityField(to_unit: str, *args, **kwargs)
Marshmallow/Click field for validating quantities against a unit registry.

The FlexMeasures unit registry is based on the pint library.

For example:

>>> percentage_field = QuantityField("%", validate=validate.Range(min=0, max=1))
>>> percentage_field.deserialize("2.5%")
<Quantity(2.5, 'percent')>
>>> percentage_field.deserialize(0.025)
<Quantity(2.5, 'percent')>
>>> power_field = QuantityField("kW", validate=validate.Range(max=ur.Quantity(
→˓"1 kW")))
>>> power_field.deserialize("120 W")
<Quantity(0.12, 'kilowatt')>

5.3. I want to build new features quickly, not spend days solving basic problems 295

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

__init__(to_unit: str, *args, **kwargs)

_deserialize(value, attr, obj, **kwargs)→ Quantity
Turn a quantity describing string into a Quantity.

_serialize(value, attr, data, **kwargs)
Turn a Quantity into a string in scientific format.

class flexmeasures.data.schemas.units.QuantityValidator(*, error: str | None = None)
Validator which succeeds if the value passed to it is a valid quantity.

__init__(*, error: str | None = None)

flexmeasures.data.schemas.users

Classes

class flexmeasures.data.schemas.users.UserSchema(*args, **kwargs)
This schema lists fields we support through this API (e.g. no password).

class Meta

model

alias of User

opts: SchemaOpts = <flask_marshmallow.sqla.SQLAlchemySchemaOpts object>

flexmeasures.data.schemas.utils

Functions

flexmeasures.data.schemas.utils.with_appcontext_if_needed()

Execute within the script’s application context, in case there is one.

An exception is flexmeasures run, which has a click context at the time the decorator is called, but no longer
has a click context at the time the decorated function is called, which, typically, is a request to the running
FlexMeasures server.

Classes

class flexmeasures.data.schemas.utils.MarshmallowClickMixin(*args, **kwargs)

__init__(*args, **kwargs)

convert(value, param, ctx, **kwargs)
Convert the value to the correct type. This is not called if the value is None (the missing value).

This must accept string values from the command line, as well as values that are already the correct type.
It may also convert other compatible types.

The param and ctx arguments may be None in certain situations, such as when converting prompt input.

If the value cannot be converted, call fail() with a descriptive message.

Parameters

296 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

• value – The value to convert.

• param – The parameter that is using this type to convert its value. May be None.

• ctx – The current context that arrived at this value. May be None.

get_metavar(param)

Returns the metavar default for this param if it provides one.

name: str

the descriptive name of this type

Exceptions

exception flexmeasures.data.schemas.utils.FMValidationError(message: str | list | dict, field_name:
str = '_schema', data: Mapping[str,
Any] | Iterable[Mapping[str, Any]] |
None = None, valid_data:
list[dict[str, Any]] | dict[str, Any] |
None = None, **kwargs)

Custom validation error class. It differs from the classic validation error by having two attributes, according to
the USEF 2015 reference implementation. Subclasses of this error might adjust the status attribute accordingly.

Data schemas (Marshmallow)

flexmeasures.data.scripts

Modules

flexmeasures.data.scripts.data_gen Populate the database with data we know or read in.
flexmeasures.data.scripts.
visualize_data_model

flexmeasures.data.scripts.data_gen

Populate the database with data we know or read in.

Functions

flexmeasures.data.scripts.data_gen.add_default_account_roles(db: SQLAlchemy)
Add a few useful account roles, inspired by USEF.

flexmeasures.data.scripts.data_gen.add_default_asset_types(db: SQLAlchemy)→ Dict[str,
GenericAssetType]

Add a few useful asset types.

flexmeasures.data.scripts.data_gen.add_default_data_sources(db: SQLAlchemy)

flexmeasures.data.scripts.data_gen.add_default_user_roles(db: SQLAlchemy)
Add a few useful user roles.

5.3. I want to build new features quickly, not spend days solving basic problems 297

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

flexmeasures.data.scripts.data_gen.add_transmission_zone_asset(country_code: str, db:
SQLAlchemy)→ GenericAsset

Ensure a GenericAsset exists to model a transmission zone for a country.

flexmeasures.data.scripts.data_gen.get_affected_classes(structure: bool = True, data: bool = False)
→ List

flexmeasures.data.scripts.data_gen.reset_db(db: SQLAlchemy)

flexmeasures.data.scripts.data_gen.save_tables(db: SQLAlchemy, backup_name: str = '', structure:
bool = True, data: bool = False, backup_path: str =
'migrations/dumps')

flexmeasures.data.scripts.visualize_data_model

Functions

flexmeasures.data.scripts.visualize_data_model.check_sqlalchemy_schemadisplay_installation()

Make sure the library which translates the model into a graph structure is installed with the right version.

flexmeasures.data.scripts.visualize_data_model.create_schema_pic(*args, **kwargs)

flexmeasures.data.scripts.visualize_data_model.create_uml_pic(*args, **kwargs)

flexmeasures.data.scripts.visualize_data_model.show_image(*args, **kwargs)

flexmeasures.data.scripts.visualize_data_model.uses_dot(func)
Decorator to make sure that if dot/graphviz (for drawing the graph) is not installed there is a proper message.

Useful scripts

298 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

flexmeasures.data.services

Modules

flexmeasures.data.services.accounts

flexmeasures.data.services.annotations

flexmeasures.data.services.asset_grouping Convenience functions and class for accessing generic
assets in groups.

flexmeasures.data.services.data_sources

flexmeasures.data.services.forecasting Logic around scheduling (jobs)
flexmeasures.data.services.scheduling Logic around scheduling (jobs)
flexmeasures.data.services.sensors

flexmeasures.data.services.time_series

flexmeasures.data.services.timerange

flexmeasures.data.services.users

flexmeasures.data.services.utils

flexmeasures.data.services.accounts

Functions

flexmeasures.data.services.accounts.get_account_roles(account_id: int)→ list[AccountRole]

flexmeasures.data.services.accounts.get_accounts(role_name: str | None = None)→ list[Account]
Return a list of Account objects. The role_name parameter allows to filter by role.

flexmeasures.data.services.accounts.get_number_of_assets_in_account(account_id: int)→ int
Get the number of assets in an account.

flexmeasures.data.services.annotations

Functions

flexmeasures.data.services.annotations.prepare_annotations_for_chart(df: DataFrame,
event_starts_after:
datetime | None = None,
event_ends_before:
datetime | None = None,
max_line_length: int =
60)→ DataFrame

Prepare a DataFrame with annotations for use in a chart.

• Clips annotations outside the requested time window.

5.3. I want to build new features quickly, not spend days solving basic problems 299

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

• Wraps on whitespace with a given max line length

• Stacks annotations for the same event

flexmeasures.data.services.annotations.stack_annotations(x: DataFrame)→ DataFrame
Select earliest start, and include all annotations as a list.

The list of strings results in a multi-line text encoding in the chart.

flexmeasures.data.services.asset_grouping

Convenience functions and class for accessing generic assets in groups. For example, group by asset type or by location.

Functions

flexmeasures.data.services.asset_grouping.get_asset_group_queries(group_by_type: bool = True,
group_by_account: bool =
False, group_by_location:
bool = False, cus-
tom_aggregate_type_groups:
Dict[str, List[str]] | None =
None)→ Dict[str, Query]

An asset group is defined by Asset queries, which this function can generate.

Each query has a name (for the asset group it represents). These queries still need an executive call, like all(),
count() or first().

This function limits the assets to be queried to the current user’s account, if the user is not an admin.

Note: Make sure the current user has the “read” permission on their account (on GenericAsset.__class__?? See
https://github.com/FlexMeasures/flexmeasures/issues/200) or is an admin.

Parameters
• group_by_type – If True, groups will be made for assets with the same type. We prefer

pluralised group names here. Defaults to True.

• group_by_account – If True, groups will be made for assets within the same account. This
makes sense for admins, as they can query across accounts.

• group_by_location – If True, groups will be made for assets at the same location. Naming
of the location currently supports charge points (for EVSEs).

• custom_aggregate_type_groups – dict of asset type groupings (mapping group names to
names of asset types). See also the setting FLEXMEASURES_ASSET_TYPE_GROUPS.

Classes

class flexmeasures.data.services.asset_grouping.AssetGroup(name: str, asset_query: Query | None
= None)

This class represents a group of assets of the same type, offering some convenience functions for displaying their
properties.

When initialised with an asset type name, the group will contain all assets of the given type that are accessible
to the current user’s account.

300 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/FlexMeasures/flexmeasures/issues/200
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

When initialised with a query for GenericAssets, as well, the group will list the assets returned by that query.
This can be useful in combination with get_asset_group_queries, see above.

TODO: On a conceptual level, we can model two functionally useful ways of grouping assets: - AggregatedAs-
set if it groups assets of only 1 type, - GeneralizedAsset if it groups assets of multiple types There might be
specialised subclasses, as well, for certain groups, like a market and consumers.

__init__(name: str, asset_query: Query | None = None)
The asset group name is either the name of an asset group or an individual asset.

property display_name: str

Attempt to get a beautiful name to show if possible.

property hover_label: str | None

Attempt to get a hover label to show if possible.

is_eligible_for_comparing_individual_traces(max_traces: int = 7)→ bool
Decide whether comparing individual traces for assets in this asset group is a useful feature. The number
of assets that can be compared is parametrizable with max_traces. Plot colors are reused if max_traces >
7, and run out if max_traces > 105.

property is_unique_asset: bool

Determines whether the resource represents a unique asset.

property parameterized_name: str

Get a parametrized name for use in javascript.

flexmeasures.data.services.data_sources

Functions

flexmeasures.data.services.data_sources.get_or_create_source(source: User | str, source_type: str |
None = None, model: str | None =
None, version: str | None = None,
attributes: dict | None = None, flush:
bool = True)→ DataSource

flexmeasures.data.services.data_sources.get_source_or_none(source: int | str, source_type: str | None
= None)→ DataSource | None

Parameters
• source – source id

• source_type – optionally, filter by source type

flexmeasures.data.services.forecasting

Logic around scheduling (jobs)

5.3. I want to build new features quickly, not spend days solving basic problems 301

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

Functions

flexmeasures.data.services.forecasting.create_forecasting_jobs(sensor_id: int, start_of_roll:
datetime, end_of_roll: datetime,
resolution: timedelta | None =
None, horizons: list[timedelta] |
None = None,
model_search_term='linear-OLS',
custom_model_params: dict |
None = None, enqueue: bool =
True)→ list[Job]

Create forecasting jobs by rolling through a time window, for a number of given forecast horizons. Start and end
of the forecasting jobs are equal to the time window (start_of_roll, end_of_roll) plus the horizon.

For example (with shorthand notation):

start_of_roll = 3pm end_of_roll = 5pm resolution = 15min horizons = [1h, 6h, 1d]

This creates the following 3 jobs:

1) forecast each quarter-hour from 4pm to 6pm, i.e. the 1h forecast

2) forecast each quarter-hour from 9pm to 11pm, i.e. the 6h forecast

3) forecast each quarter-hour from 3pm to 5pm the next day, i.e. the 1d forecast

If not given, relevant horizons are derived from the resolution of the posted data.

The job needs a model configurator, for which you can supply a model search term. If omitted, the current default
model configuration will be used.

It’s possible to customize model parameters, but this feature is (currently) meant to only be used by tests, so that
model behaviour can be adapted to test conditions. If used outside of testing, an exception is raised.

if enqueue is True (default), the jobs are put on the redis queue.

Returns the redis-queue forecasting jobs which were created.

flexmeasures.data.services.forecasting.handle_forecasting_exception(job, exc_type, exc_value,
traceback)

Decide if we can do something about this failure: * Try a different model * Re-queue at a later time (using
rq_scheduler)

flexmeasures.data.services.forecasting.make_fixed_viewpoint_forecasts(sensor_id: int, horizon:
timedelta, start:
datetime, end: datetime,
custom_model_params:
dict | None = None)→
int

Build forecasting model specs, make fixed-viewpoint forecasts, and save the forecasts made.

Each individual forecast is a belief about a time interval. Fixed-viewpoint forecasts share the same belief time.
See the timely-beliefs lib for relevant terminology.

flexmeasures.data.services.forecasting.make_rolling_viewpoint_forecasts(sensor_id: int,
horizon: timedelta,
start: datetime, end:
datetime, cus-
tom_model_params:
dict | None = None)
→ int

302 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

Build forecasting model specs, make rolling-viewpoint forecasts, and save the forecasts made.

Each individual forecast is a belief about a time interval. Rolling-viewpoint forecasts share the same belief hori-
zon (the duration between belief time and knowledge time). Model specs are also retrained in a rolling fashion,
but with its own frequency set in custom_model_params. See the timely-beliefs lib for relevant terminology.

Parameters

param sensor_id
int To identify which sensor to forecast

param horizon
timedelta duration between the end of each interval and the time at which the belief about that
interval is formed

param start
datetime start of forecast period, i.e. start time of the first interval to be forecast

param end
datetime end of forecast period, i.e end time of the last interval to be forecast

param custom_model_params
dict pass in params which will be passed to the model specs configurator, e.g. out-
come_var_transformation, only advisable to be used for testing.

returns
int the number of forecasts made

flexmeasures.data.services.forecasting.num_forecasts(start: datetime, end: datetime, resolution:
timedelta)→ int

Compute how many forecasts a job needs to make, given a resolution

Exceptions

exception flexmeasures.data.services.forecasting.MisconfiguredForecastingJobException

flexmeasures.data.services.scheduling

Logic around scheduling (jobs)

Functions

flexmeasures.data.services.scheduling.create_scheduling_job(sensor: Sensor, job_id: str | None =
None, enqueue: bool = True, requeue:
bool = False,
force_new_job_creation: bool =
False, scheduler_specs: dict | None =
None, **scheduler_kwargs)→ Job

Create a new Job, which is queued for later execution.

To support quick retrieval of the scheduling job, the job id is the unique entity address of the UDI event. That
means one event leads to one job (i.e. actions are event driven).

5.3. I want to build new features quickly, not spend days solving basic problems 303

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

As a rule of thumb, keep arguments to the job simple, and deserializable.

The life cycle of a scheduling job: 1. A scheduling job is born here (in create_scheduling_job). 2. It is run in
make_schedule which writes results to the db. 3. If an error occurs (and the worker is configured accordingly),
handle_scheduling_exception comes in.

Arguments: :param sensor: sensor for which the schedule is computed :param job_id: optionally, set a job id
explicitly :param enqueue: if True, enqueues the job in case it is new :param requeue: if True, requeues the job
in case it is not new and had previously failed

(this argument is used by the @job_cache decorator)

Parameters
force_new_job_creation – if True, this attribute forces a new job to be created (skipping
cache) (this argument is used by the @job_cache decorator)

Returns
the job

flexmeasures.data.services.scheduling.find_scheduler_class(sensor: Sensor)→ type
Find out which scheduler to use, given a sensor. This will morph into a logic store utility, and schedulers should
be registered for asset types there, instead of this fixed lookup logic.

flexmeasures.data.services.scheduling.get_data_source_for_job(job: Job)→ DataSource | None
Try to find the data source linked by this scheduling job.

We expect that enough info on the source was placed in the meta dict, either: - the DataSource ID itself (i.e. the
normal situation), or - enough info to facilitate a DataSource query (as a fallback).

flexmeasures.data.services.scheduling.handle_scheduling_exception(job, exc_type, exc_value,
traceback)

Store exception as job meta data.

flexmeasures.data.services.scheduling.load_custom_scheduler(scheduler_specs: dict)→ type
Read in custom scheduling spec. Attempt to load the Scheduler class to use.

The scheduler class should be derived from flexmeasures.data.models.planning.Scheduler. The scheduler class
should have a class method named “compute”.

Example specs:

{
“module”: “/path/to/module.py”, # or sthg importable, e.g. “package.module” “class”: “NameOfSched-
ulerClass”,

}

flexmeasures.data.services.scheduling.make_schedule(sensor_id: int, start: datetime, end: datetime,
resolution: timedelta, belief_time: datetime |
None = None, flex_model: dict | None = None,
flex_context: dict | None = None,
flex_config_has_been_deserialized: bool =
False, scheduler_specs: dict | None = None)→
bool

This function computes a schedule. It returns True if it ran successfully.

It can be queued as a job (see create_scheduling_job). In that case, it will probably run on a different FlexMea-
sures node than where the job is created. In any case, this function expects flex_model and flex_context to not
have been deserialized yet.

304 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

This is what this function does: - Find out which scheduler should be used & compute the schedule - Turn
scheduled values into beliefs and save them to db

flexmeasures.data.services.scheduling.trigger_optional_fallback(job, connection, type, value,
traceback)

Create a fallback schedule job when the error is of type InfeasibleProblemException

flexmeasures.data.services.sensors

Functions

flexmeasures.data.services.sensors.get_sensors(account: Account | list[Account] | None,
include_public_assets: bool = False,
sensor_id_allowlist: list[int] | None = None,
sensor_name_allowlist: list[str] | None = None)→
list[Sensor]

Return a list of Sensor objects that belong to the given account, and/or public sensors.

Parameters
• account – select only sensors from this account (or list of accounts)

• include_public_assets – if True, include sensors that belong to a public asset

• sensor_id_allowlist – optionally, allow only sensors whose id is in this list

• sensor_name_allowlist – optionally, allow only sensors whose name is in this list

flexmeasures.data.services.time_series

Functions

flexmeasures.data.services.time_series.aggregate_values(bdf_dict: dict[Any, BeliefsDataFrame])→
BeliefsDataFrame

flexmeasures.data.services.time_series.drop_unchanged_beliefs(bdf: BeliefsDataFrame)→
BeliefsDataFrame

Drop beliefs that are already stored in the database with an earlier belief time.

Also drop beliefs that are already in the data with an earlier belief time.

Quite useful function to prevent cluttering up your database with beliefs that remain unchanged over time.

flexmeasures.data.services.timerange

Functions

flexmeasures.data.services.timerange.get_timerange(sensor_ids: list[int])→ tuple[datetime, datetime]
Get the start and end of the least recent and most recent event, respectively.

In case of no data, defaults to (now, now).

5.3. I want to build new features quickly, not spend days solving basic problems 305

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

FlexMeasures Documentation, Release 0.17

flexmeasures.data.services.users

Functions

flexmeasures.data.services.users.create_user(password: str = None, user_roles: dict[str, str] |
list[dict[str, str]] | str | list[str] | None = None,
check_email_deliverability: bool = True, account_name:
str | None = None, **kwargs)→ User

Convenience wrapper to create a new User object.

It hashes the password.

In addition to the user, this function can create - new Role objects (if user roles do not already exist) - an Account
object (if it does not exist yet) - a new DataSource object that corresponds to the user

Remember to commit the session after calling this function!

flexmeasures.data.services.users.delete_user(user: User)
Delete the user (and also his assets and power measurements!).

Deleting oneself is not allowed.

Remember to commit the session after calling this function!

flexmeasures.data.services.users.find_user_by_email(user_email: str, keep_in_session: bool = True)
→ User

flexmeasures.data.services.users.get_user(id: str)→ User
Get a user, raise if not found.

flexmeasures.data.services.users.get_users(account_name: str | None = None, role_name: str | None =
None, account_role_name: str | None = None, only_active:
bool = True)→ list[User]

Return a list of User objects. The role_name parameter allows to filter by role. Set only_active to False if you
also want non-active users.

flexmeasures.data.services.users.remove_cookie_and_token_access(user: User)
Remove access of current cookies and auth tokens for a user. This might be useful if you feel their password,
cookie or tokens are compromised. in the former case, you can also call set_random_password.

Remember to commit the session after calling this function!

flexmeasures.data.services.users.set_random_password(user: User)
Randomise a user’s password.

Remember to commit the session after calling this function!

Exceptions

exception flexmeasures.data.services.users.InvalidFlexMeasuresUser

306 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

FlexMeasures Documentation, Release 0.17

flexmeasures.data.services.utils

Functions

flexmeasures.data.services.utils.get_or_create_model(model_class: Type[GenericAsset |
GenericAssetType | Sensor], **kwargs)→
GenericAsset | GenericAssetType | Sensor

Get a model from the database or add it if it’s missing.

For example: >>> weather_station_type = get_or_create_model(>>> GenericAssetType, >>> name=”weather
station”, >>> description=”A weather station with various sensors.”, >>>)

flexmeasures.data.services.utils.hash_function_arguments(args, kwags)
Combines the hashes of the args and kargs

The way to go to do h(x,y) = hash(hash(x) || hash(y)) because it avoid the following:

1) h(x,y) = hash(x || y), might create a collision if we delete the last n characters of x and we append them in
front of y. e.g h(“abc”, “d”) = h(“ab”, “cd”)

2) we don’t want to sort x and y, because we need the function h(x,y) != h(y,x)

3) extra hashing just avoid that we can’t decompose the input arguments and track if the same args or kwarg
are called several times. More of a security measure I think.

source: https://crypto.stackexchange.com/questions/55162/best-way-to-hash-two-values-into-one

flexmeasures.data.services.utils.job_cache(queue: str)
To avoid recomputing the same task multiple times, this decorator checks if the function has already been called
with the same arguments. Input arguments are hashed and stored as Redis keys with the values being the job IDs
input_arguments_hash:job_id).

The benefits of using redis to store the input arguments over a local cache, such as LRU Cache, are: 1) It will
work in distributed environments (in computing clusters), where multiple workers will avoid repeating

work as the cache will be shared across them.

2) Cached calls are logged, which means that we can easily debug.

3) Cache will still be there on restarts.

Arguments :param queue: name of the queue

flexmeasures.data.services.utils.make_hash_sha256(o)
SHA256 instead of Python’s hash function because apparently, python native hashing function yields different
results on restarts. Source: https://stackoverflow.com/a/42151923

flexmeasures.data.services.utils.make_hashable(o)
Function to create hashes for dictionaries with nested objects Source: https://stackoverflow.com/a/42151923

Business logic

5.3. I want to build new features quickly, not spend days solving basic problems 307

https://crypto.stackexchange.com/questions/55162/best-way-to-hash-two-values-into-one
https://docs.python.org/3/library/stdtypes.html#str
https://stackoverflow.com/a/42151923
https://stackoverflow.com/a/42151923

FlexMeasures Documentation, Release 0.17

flexmeasures.data.transactional

These, and only these, functions should help you with treating your own code in the context of one database transaction.
Which makes our lives easier.

Functions

flexmeasures.data.transactional.after_request_exception_rollback_session(exception)
Central place to handle transactions finally. So - usually your view code should not have to deal with rolling
back. Our policy is that we don’t auto-commit (we used to do that here). Some more reading is e.g. here
https://github.com/pallets/flask-sqlalchemy/issues/216

Register this on your app via the teardown_request setup method. We roll back the session if there was any error
(which only has an effect if the session has not yet been committed).

Flask-SQLAlchemy is closing the scoped sessions automatically.

flexmeasures.data.transactional.as_transaction(db_function)
Decorator for handling any function which contains SQLAlchemy commands as one database transaction
(ACID). Calls db operation function and when it is done, commits the db session. Rolls back the session if
anything goes wrong. If useful, the first argument can be the db (SQLAlchemy) object and the rest of the args
are sent through to the function. If this happened, the session is closed at the end.

Exceptions

exception flexmeasures.data.transactional.PartialTaskCompletionException

By raising this Exception in a task, no rollback will happen even if not everything was successful and the data
which was generated will get committed. The task status will still be False, so the non-successful parts can be
inspected.

flexmeasures.data.utils

Utils around the data models and db sessions

Functions

flexmeasures.data.utils.get_data_source(data_source_name: str, data_source_model: str | None = None,
data_source_version: str | None = None, data_source_type: str
= 'script')→ DataSource

Make sure we have a data source. Create one if it doesn’t exist, and add to session. Meant for scripts that may
run for the first time.

flexmeasures.data.utils.save_to_db(data: BeliefsDataFrame | BeliefsSeries | list[BeliefsDataFrame |
BeliefsSeries], bulk_save_objects: bool = False,
save_changed_beliefs_only: bool = True)→ str

Save the timed beliefs to the database.

Note: This function does not commit. It does, however, flush the session. Best to keep transactions short.

We make the distinction between updating beliefs and replacing beliefs.

Updating beliefs

308 Chapter 5. Developer support

https://github.com/pallets/flask-sqlalchemy/issues/216
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

An updated belief is a belief from the same source as some already saved belief, and about the same event, but
with a later belief time. If it has a different event value, then it represents a changed belief. Note that it is possible
to explicitly record unchanged beliefs (i.e. updated beliefs with a later belief time, but with the same event value),
by setting save_changed_beliefs_only to False.

Replacing beliefs

A replaced belief is a belief from the same source as some already saved belief, and about the same event and
with the same belief time, but with a different event value. Replacing beliefs is not allowed, because messing
with the history corrupts data lineage. Corrections should instead be recorded as updated beliefs. Servers in
‘play’ mode are exempt from this rule, to facilitate replaying simulations.

Parameters
• data – BeliefsDataFrame (or a list thereof) to be saved

• bulk_save_objects – if True, objects are bulk saved with session.bulk_save_objects(),
which is quite fast but has several caveats, see: https://docs.sqlalchemy.org/orm/persistence_
techniques.html#bulk-operations-caveats

• save_changed_beliefs_only – if True, unchanged beliefs are skipped (updated beliefs
are only stored if they represent changed beliefs) if False, all updated beliefs are stored

Returns
status string, one of the following: - ‘success’: all beliefs were saved - ‘suc-
cess_with_unchanged_beliefs_skipped’: not all beliefs represented a state change - ‘suc-
cess_but_nothing_new’: no beliefs represented a state change

flexmeasures.data.utils.save_to_session(objects: list[Model], overwrite: bool = False)
Utility function to save to database, either efficiently with a bulk save, or inefficiently with a merge save.

Models & schemata, as well as business logic (queries & services).

Functions

flexmeasures.data.register_at(app: Flask)

5.3.49 flexmeasures.ui

Modules

flexmeasures.ui.crud Backoffice UI for CRUD functionality
flexmeasures.ui.error_handlers Error views for UI purposes.
flexmeasures.ui.utils Utility functions for UI logic
flexmeasures.ui.views This module hosts the views.

5.3. I want to build new features quickly, not spend days solving basic problems 309

https://docs.sqlalchemy.org/orm/persistence_techniques.html#bulk-operations-caveats
https://docs.sqlalchemy.org/orm/persistence_techniques.html#bulk-operations-caveats
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

flexmeasures.ui.crud

Modules

flexmeasures.ui.crud.accounts

flexmeasures.ui.crud.api_wrapper

flexmeasures.ui.crud.assets

flexmeasures.ui.crud.users

flexmeasures.ui.crud.accounts

Functions

flexmeasures.ui.crud.accounts.get_account(account_id: str)→ dict

flexmeasures.ui.crud.accounts.get_accounts()→ list[dict]
/accounts

Classes

class flexmeasures.ui.crud.accounts.AccountCrudUI

get(account_id: str)
/accounts/<account_id>

index()

/accounts

flexmeasures.ui.crud.api_wrapper

Classes

class flexmeasures.ui.crud.api_wrapper.InternalApi

Simple wrapper around the requests lib, which we use to talk to our actual internal JSON Api via requests. It can
only be used to perform requests on the same URL root as the current request. - We use this because it is cleaner
than calling the API code directly.

That would re-use the same request we are working on here, which works differently in some ways
like content-type and authentication. The Flask/Werkzeug request is also immutable, so we could not
adapt the request anyways.

• Also, we implement auth token handling

• Finally we have some logic to control which error codes we want to raise.

310 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

_maybe_raise(response: requests.Response, do_not_raise_for: list | None = None)
Raise an error in the API (4xx, 5xx) if the error code is not in the list of codes we want to ignore / handle
explicitly.

flexmeasures.ui.crud.assets

Functions

flexmeasures.ui.crud.assets.get_assets_by_account(account_id: int | str | None)→ list[GenericAsset]

flexmeasures.ui.crud.assets.process_internal_api_response(asset_data: dict, asset_id: int | None =
None, make_obj=False)→
GenericAsset | dict

Turn data from the internal API into something we can use to further populate the UI. Either as an asset object
or a dict for form filling.

If we add other data by querying the database, we make sure the asset is not in the session afterwards.

flexmeasures.ui.crud.assets.user_can_create_assets()→ bool

flexmeasures.ui.crud.assets.user_can_delete(asset)→ bool

flexmeasures.ui.crud.assets.with_options(form: AssetForm | NewAssetForm)→ AssetForm |
NewAssetForm

Classes

class flexmeasures.ui.crud.assets.AssetCrudUI

These views help us offer a Jinja2-based UI. The main focus on logic is the API, so these views simply call the
API functions, and deal with the response. Some new functionality, like fetching accounts and asset types, is
added here.

delete_with_data(id: str)
Delete via /assets/delete_with_data/<id>

get(id: str)
GET from /assets/<id> where id can be ‘new’ (and thus the form for asset creation is shown)

index(msg='')
GET from /assets

List the user’s assets. For admins, list across all accounts.

owned_by(account_id: str)
/assets/owned_by/<account_id>

post(id: str)
POST to /assets/<id>, where id can be ‘create’ (and thus a new asset is made from POST data) Most of the
code deals with creating a user for the asset if no existing is chosen.

class flexmeasures.ui.crud.assets.AssetForm(*args, **kwargs)
The default asset form only allows to edit the name and location.

process_api_validation_errors(api_response: dict)
Process form errors from the API for the WTForm

5.3. I want to build new features quickly, not spend days solving basic problems 311

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

to_json()→ dict
turn form data into a JSON we can POST to our internal API

validate_on_submit()

Call validate() only if the form is submitted. This is a shortcut for form.is_submitted() and form.
validate().

class flexmeasures.ui.crud.assets.NewAssetForm(*args, **kwargs)
Here, in addition, we allow to set asset type and account.

flexmeasures.ui.crud.users

Functions

flexmeasures.ui.crud.users.get_users_by_account(account_id: int | str, include_inactive: bool = False)
→ list[User]

flexmeasures.ui.crud.users.process_internal_api_response(user_data: dict, user_id: int | None =
None, make_obj=False)→ User | dict

Turn data from the internal API into something we can use to further populate the UI. Either as a user object or
a dict for form filling.

flexmeasures.ui.crud.users.render_user(user: User | None, asset_count: int = 0, msg: str | None = None)

Classes

class flexmeasures.ui.crud.users.UserCrudUI

get(id: str)
GET from /users/<id>

index()

/users

reset_password_for(id: str)
/users/reset_password_for/<id> Set the password to something random (in case of worries the password
might be compromised) and send instructions on how to reset.

toggle_active(id: str)
Toggle activation status via /users/toggle_active/<id>

class flexmeasures.ui.crud.users.UserForm(*args, **kwargs)

Backoffice UI for CRUD functionality

312 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

flexmeasures.ui.error_handlers

Error views for UI purposes.

Functions

flexmeasures.ui.error_handlers.add_html_error_views(app: Flask)

flexmeasures.ui.error_handlers.handle_500_error(e: InternalServerError)

flexmeasures.ui.error_handlers.handle_bad_request(e: BadRequest)

flexmeasures.ui.error_handlers.handle_generic_http_exception(e: HTTPException)
This handles all known exception as fall-back

flexmeasures.ui.error_handlers.handle_not_found(e)

flexmeasures.ui.error_handlers.unauthenticated_handler()

An unauthenticated handler which renders an HTML error page

flexmeasures.ui.error_handlers.unauthorized_handler()

An unauthorized handler which renders an HTML error page

flexmeasures.ui.utils

Modules

flexmeasures.ui.utils.chart_defaults

flexmeasures.ui.utils.view_utils Utilities for views

flexmeasures.ui.utils.chart_defaults

flexmeasures.ui.utils.view_utils

Utilities for views

Functions

flexmeasures.ui.utils.view_utils.accountname(account_id)→ str

flexmeasures.ui.utils.view_utils.asset_icon_name(asset_type_name: str)→ str
Icon name for this asset type.

This can be used for UI html templates made with Jinja. ui.__init__ makes this function available as the filter
“asset_icon”.

For example:
<i class={{ asset_type.name | asset_icon }}></i>

becomes (for a battery):
<i class=”icon-battery”></i>

5.3. I want to build new features quickly, not spend days solving basic problems 313

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

flexmeasures.ui.utils.view_utils.clear_session()

flexmeasures.ui.utils.view_utils.get_git_description()→ tuple[str, int, str]
Get information about the SCM (git) state if possible (if a .git directory exists).

Returns the latest git version (tag) as a string, the number of commits since then as an int and the current commit
hash as string.

flexmeasures.ui.utils.view_utils.render_flexmeasures_template(html_filename: str, **variables)
Render template and add all expected template variables, plus the ones given as **variables.

flexmeasures.ui.utils.view_utils.set_session_variables(*var_names: str)
Store request values as session variables, for a consistent UX across UI page loads.

>>> set_session_variables("event_starts_after", "event_ends_before", "chart_type")

flexmeasures.ui.utils.view_utils.username(user_id)→ str

Utility functions for UI logic

flexmeasures.ui.views

Modules

flexmeasures.ui.views.control

flexmeasures.ui.views.logged_in_user

flexmeasures.ui.views.new_dashboard

flexmeasures.ui.views.sensors

flexmeasures.ui.views.control

Functions

flexmeasures.ui.views.control.control_view()

Control view. This page lists balancing opportunities for a selected time window. The user can place manual
orders or choose to automate the ordering process.

flexmeasures.ui.views.logged_in_user

Functions

flexmeasures.ui.views.logged_in_user.logged_in_user_view()

Basic information about the currently logged-in user. Plus basic actions (logout, reset pwd)

314 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

flexmeasures.ui.views.new_dashboard

Functions

flexmeasures.ui.views.new_dashboard.dashboard_view()

Dashboard view. This is the default landing page. It shows a map with the location of all of the assets in the
user’s account, or all assets if the user is an admin. Assets are grouped by asset type, which leads to map layers
and a table with asset counts by type. Admins get to see all assets.

TODO: Assets for which the platform has identified upcoming balancing opportunities are highlighted.

flexmeasures.ui.views.sensors

Classes

class flexmeasures.ui.views.sensors.SensorUI

This view creates several new UI endpoints for viewing sensors.

todo: consider extending this view for crud purposes

get(id: int)
GET from /sensors/<id>

get_chart(id, **kwargs)
GET from /sensors/<id>/chart

This module hosts the views. This file registers blueprints and hosts some helpful functions

Functions

flexmeasures.ui.views.docs_view()

Render the Sphinx documentation

Backoffice user interface & charting support.

Functions

flexmeasures.ui.add_jinja_filters(app)

flexmeasures.ui.add_jinja_variables(app)

flexmeasures.ui.register_at(app: Flask)
This can be used to register this blueprint together with other ui-related things

flexmeasures.ui.register_rq_dashboard(app)

5.3. I want to build new features quickly, not spend days solving basic problems 315

https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

5.3.50 flexmeasures.utils

Modules

flexmeasures.utils.app_utils Utils for serving the FlexMeasures app
flexmeasures.utils.calculations Various calculations
flexmeasures.utils.coding_utils Various coding utils (e.g. around function decoration) .
flexmeasures.utils.config_defaults Our configuration requirements and defaults
flexmeasures.utils.config_utils Reading in configuration
flexmeasures.utils.entity_address_utils

flexmeasures.utils.error_utils Utils for handling of errors
flexmeasures.utils.flexmeasures_inflection FlexMeasures way of handling inflection
flexmeasures.utils.geo_utils

flexmeasures.utils.grid_cells

flexmeasures.utils.plugin_utils Utils for registering FlexMeasures plugins
flexmeasures.utils.time_utils Utils for dealing with time
flexmeasures.utils.unit_utils Utility module for unit conversion

flexmeasures.utils.app_utils

Utils for serving the FlexMeasures app

Functions

flexmeasures.utils.app_utils.find_first_applicable_config_entry(configs: list, setting_name: str,
app: Flask | None = None)→
str | None

flexmeasures.utils.app_utils.init_sentry(app: Flask)
Configure Sentry. We need the app to read the Sentry DSN from configuration, and also to send some additional
meta information.

flexmeasures.utils.app_utils.parse_config_entry_by_account_roles(config: str | tuple[str, list[str]],
setting_name: str, app: Flask |
None = None)→ str | None

Parse a config entry (which can be a string, e.g. “dashboard” or a tuple, e.g. (“dashboard”, [“MDC”])). In the
latter case, return the first item (a string) only if the current user’s account roles match with the list of roles in
the second item. Otherwise, return None.

flexmeasures.utils.app_utils.root_dispatcher()

Re-routes to root views fitting for the current user, depending on the FLEXMEASURES_ROOT_VIEW setting.

flexmeasures.utils.app_utils.set_secret_key(app, filename='secret_key')
Set the SECRET_KEY or exit.

We first check if it is already in the config.

Then we look for it in environment var SECRET_KEY.

Finally, we look for filename in the app’s instance directory.

316 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

If nothing is found, we print instructions to create the secret and then exit.

flexmeasures.utils.calculations

Various calculations

Functions

flexmeasures.utils.calculations.apply_stock_changes_and_losses(initial: float, changes: list[float],
storage_efficiency: float |
list[float], how: str = 'linear',
decimal_precision: int | None =
None)→ list[float]

Assign stock changes and determine losses from storage efficiency.

The initial stock is exponentially decayed, as with each consecutive (constant-resolution) time step, some constant
percentage of the previous stock remains. For example:

100 → 90 → 81 → 72.9 → ...

For computing the decay of the changes, we make an assumption on how a delta 𝑑 is distributed within a given
time step. In case it happens at a constant rate, this leads to a linear stock change from one time step to the next.

An 𝑒 is introduced when we apply exponential decay to that. To see that, imagine we cut one time step in 𝑛
pieces (each with a stock change 𝑑

𝑛), apply the efficiency to each piece 𝑘 (for the corresponding fraction of the
time step 𝑘/𝑛), and then take the limit 𝑛 → ∞:

lim
𝑛→∞

𝑛∑︁
𝑘=0

𝑑

𝑛
𝜂𝑘/𝑛

which is:

𝑑 · 𝜂 − 1

𝑒𝜂

Parameters
• initial – initial stock

• changes – stock change for each step

• storage_efficiency – ratio of stock left after a step (constant ratio or one per step)

• how – left, right or linear; how stock changes should be applied, which affects how losses are
applied

• decimal_precision – Optional decimal precision to round off results (useful for tests fail-
ing over machine precision)

flexmeasures.utils.calculations.drop_nan_rows(a, b)

flexmeasures.utils.calculations.integrate_time_series(series: pd.Series, initial_stock: float,
up_efficiency: float | pd.Series = 1,
down_efficiency: float | pd.Series = 1,
storage_efficiency: float | pd.Series = 1,
decimal_precision: int | None = None)→
pd.Series

5.3. I want to build new features quickly, not spend days solving basic problems 317

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://www.wolframalpha.com/input?i=Limit%5BSum%5B%5Ceta%5E%28k%2Fn%29%2Fn%2C+%7Bk%2C+0%2C+n%7D%5D%2C+n+-%3E+Infinity%5D&assumption=%22LimitHead%22+-%3E+%7B%22Discrete%22%7D
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

Integrate time series of length n and inclusive=”left” (representing a flow) to a time series of length n+1 and
inclusive=”both” (representing a stock), given an initial stock (i.e. the constant of integration). The unit of time
is hours: i.e. the stock unit is flow unit times hours (e.g. a flow in kW becomes a stock in kWh). Optionally, set
a decimal precision to round off the results (useful for tests failing over machine precision).

>>> s = pd.Series([1, 2, 3, 4], index=pd.date_range(datetime(2001, 1, 1, 5),␣
→˓datetime(2001, 1, 1, 6), freq=timedelta(minutes=15), inclusive="left"))
>>> integrate_time_series(s, 10)

2001-01-01 05:00:00 10.00
2001-01-01 05:15:00 10.25
2001-01-01 05:30:00 10.75
2001-01-01 05:45:00 11.50
2001-01-01 06:00:00 12.50
Freq: D, dtype: float64

>>> s = pd.Series([1, 2, 3, 4], index=pd.date_range(datetime(2001, 1, 1, 5),␣
→˓datetime(2001, 1, 1, 7), freq=timedelta(minutes=30), inclusive="left"))
>>> integrate_time_series(s, 10)

2001-01-01 05:00:00 10.0
2001-01-01 05:30:00 10.5
2001-01-01 06:00:00 11.5
2001-01-01 06:30:00 13.0
2001-01-01 07:00:00 15.0
dtype: float64

flexmeasures.utils.calculations.mean_absolute_error(y_true: ndarray, y_forecast: ndarray)

flexmeasures.utils.calculations.mean_absolute_percentage_error(y_true: ndarray, y_forecast:
ndarray)

flexmeasures.utils.calculations.weighted_absolute_percentage_error(y_true: ndarray, y_forecast:
ndarray)

flexmeasures.utils.coding_utils

Various coding utils (e.g. around function decoration)

Functions

flexmeasures.utils.coding_utils.delete_key_recursive(value, key)
Delete key in a multilevel dictionary

flexmeasures.utils.coding_utils.deprecated(alternative, version: str | None = None)
Decorator for printing a warning error. alternative: importable object to use as an alternative to the func-
tion/method decorated version: version in which the function will be sunset

flexmeasures.utils.coding_utils.find_classes_module(module, superclass)

flexmeasures.utils.coding_utils.find_classes_modules(module, superclass, skiptest=True)

318 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

flexmeasures.utils.coding_utils.flatten_unique(nested_list_of_objects: list)→ list
Returns unique objects in a possibly nested (one level) list of objects.

Preserves the original order in which unique objects first occurred.

For example: >>> flatten_unique([1, [2, 20, 6], 10, [6, 2]]) <<< [1, 2, 20, 6, 10]

flexmeasures.utils.coding_utils.get_classes_module(module, superclass, skiptest=True)→ dict

flexmeasures.utils.coding_utils.optional_arg_decorator(fn)
A decorator which _optionally_ accepts arguments.

So a decorator like this:

@optional_arg_decorator def register_something(fn, optional_arg = ‘Default Value’):

. . . return fn

will work in both of these usage scenarios:

@register_something(‘Custom Name’) def custom_name():

pass

@register_something def default_name():

pass

Thanks to https://stackoverflow.com/questions/3888158/making-decorators-with-optional-arguments#
comment65959042_24617244

flexmeasures.utils.coding_utils.sort_dict(unsorted_dict: dict)→ dict

flexmeasures.utils.coding_utils.timeit(func)
Decorator for printing the time it took to execute the decorated function.

flexmeasures.utils.config_defaults

Our configuration requirements and defaults

This can be adjusted per environment here. Anything confidential should be handled outside of source control (e.g. a
SECRET KEY file is generated on first install, and confidential settings can be set via the <app-env>-conf.py file.

Classes

class flexmeasures.utils.config_defaults.Config

If there is a useful default value, set it here. Otherwise, set to None, so that it can be set either by subclasses or
the env-specific config script.

class flexmeasures.utils.config_defaults.DevelopmentConfig

class flexmeasures.utils.config_defaults.DocumentationConfig

class flexmeasures.utils.config_defaults.ProductionConfig

class flexmeasures.utils.config_defaults.StagingConfig

class flexmeasures.utils.config_defaults.TestingConfig

5.3. I want to build new features quickly, not spend days solving basic problems 319

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://stackoverflow.com/questions/3888158/making-decorators-with-optional-arguments#comment65959042_24617244
https://stackoverflow.com/questions/3888158/making-decorators-with-optional-arguments#comment65959042_24617244
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

flexmeasures.utils.config_utils

Reading in configuration

Functions

flexmeasures.utils.config_utils.are_required_settings_complete(app)→ bool
Check if all settings we expect are not None. Return False if they are not. Printout helpful advice.

flexmeasures.utils.config_utils.check_app_env(env: str | None)

flexmeasures.utils.config_utils.configure_logging()

Configure and register logging

flexmeasures.utils.config_utils.get_config_warnings(app)→ tuple[list[str], list[str]]
return missing settings and the warnings for them.

flexmeasures.utils.config_utils.get_configuration_keys(app)→ list[str]
Collect all members of DefaultConfig who are not in-built fields or callables.

flexmeasures.utils.config_utils.read_config(app: Flask, custom_path_to_config: str | None)
Read configuration from various expected sources, complain if not setup correctly.

flexmeasures.utils.config_utils.read_custom_config(app: Flask, suggested_path_to_config,
path_to_config_home, path_to_config_instance)
→ str

Read in a custom config file and env vars. For the config, there are two fallback options, tried in a specific order:
If no custom path is suggested, we’ll try the path in the home dir first, then in the instance dir.

Return the path to the config file.

flexmeasures.utils.config_utils.read_env_vars(app: Flask)
Read in what we support as environment settings. At the moment, these are: - All required and warnable variables
- Logging settings - access tokens - plugins (handled in plugin utils)

flexmeasures.utils.entity_address_utils

Functions

flexmeasures.utils.entity_address_utils.build_ea_scheme_and_naming_authority(host: str,
host_auth_start_month:
str | None =
None)→ str

This function creates the host identification part of USEF’s EA1 addressing scheme, so everything but the locally
unique string.

If not given nor configured, host_auth_start_month is the start of the next month for localhost.

flexmeasures.utils.entity_address_utils.build_entity_address(entity_info: dict, entity_type: str,
host: str | None = None, fm_scheme:
str = 'fm1')→ str

Build an entity address.

fm1 type entity address should use entity_info[“sensor_id”] todo: implement entity addresses for actuators with
entity_info[“actuator_id”] (first ensuring globally unique ids across sensors and actuators)

320 Chapter 5. Developer support

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

If the host is not given, it is attempted to be taken from the request. entity_info is expected to contain the required
fields for the custom string.

Returns the address as string.

flexmeasures.utils.entity_address_utils.get_domain_parts(domain: str)→ ExtractResult
wrapper for calling tldextract as it logs things about file locks we don’t care about.

flexmeasures.utils.entity_address_utils.get_host()→ str
Get host from the context of the request.

Strips off www. but keeps subdomains. Can be localhost, too.

flexmeasures.utils.entity_address_utils.parse_entity_address(entity_address: str, entity_type: str,
fm_scheme: str = 'fm1')→ dict

Parses an entity address into an info dict.

Returns a dictionary with scheme, naming_authority and various other fields, depending on the entity type and
FlexMeasures scheme (see examples above). Returns None if entity type is unknown or entity_address is not
parse-able. We recommend to return invalid_domain() in that case.

Examples for the fm1 scheme:

sensor = ea1.2021-01.io.flexmeasures:fm1.42 sensor = ea1.2021-
01.io.flexmeasures:fm1.<sensor_id> connection = ea1.2021-01.io.flexmeasures:fm1.<sensor_id>
market = ea1.2021-01.io.flexmeasures:fm1.<sensor_id> weather_station = ea1.2021-
01.io.flexmeasures:fm1.<sensor_id> todo: UDI events are not yet modelled in the fm1 scheme, but
will probably be ea1.2021-01.io.flexmeasures:fm1.<actuator_id>

Examples for the fm0 scheme:

connection = ea1.2021-01.localhost:fm0.40:30 connection = ea1.2021-
01.io.flexmeasures:fm0.<owner_id>:<asset_id> weather_sensor = ea1.2021-
01.io.flexmeasures:fm0.temperature:52:73.0 weather_sensor = ea1.2021-
01.io.flexmeasures:fm0.<sensor_type>:<latitude>:<longitude> market = ea1.2021-
01.io.flexmeasures:fm0.epex_da market = ea1.2021-01.io.flexmeasures:fm0.<market_name>
event = ea1.2021-01.io.flexmeasures:fm0.40:30:302:soc event = ea1.2021-
01.io.flexmeasures:fm0.<owner_id>:<asset_id>:<event_id>:<event_type>

For the fm0 scheme, the ‘fm0.’ part is optional, for backwards compatibility.

flexmeasures.utils.entity_address_utils.reverse_domain_name(domain: str | TldExtractResult)→ str
Returns the reverse notation of the domain. You can pass in a string domain or an extraction result from tldextract

Exceptions

exception flexmeasures.utils.entity_address_utils.EntityAddressException

5.3. I want to build new features quickly, not spend days solving basic problems 321

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

flexmeasures.utils.error_utils

Utils for handling of errors

Functions

flexmeasures.utils.error_utils.add_basic_error_handlers(app: Flask)
Register classes we care about with the generic handler. See also the auth package for auth-specific error handling
(Unauthorized, Forbidden)

flexmeasures.utils.error_utils.error_handling_router(error: HTTPException)
Generic handler for errors. We respond in json if the request content-type is JSON. The ui package can also
define how it wants to render HTML errors, by setting a function.

flexmeasures.utils.error_utils.get_err_source_info(original_traceback=None)→ dict
Use this when an error is handled to get info on where it occurred.

flexmeasures.utils.error_utils.log_error(exc: Exception, error_msg: str)
Collect meta data about the exception and log it. error_msg comes in as an extra attribute because Exception
implementations differ here.

flexmeasures.utils.error_utils.print_query(query: Query)→ str
Print full SQLAlchemy query with compiled parameters.

Recommended use as developer tool only.

Adapted from https://stackoverflow.com/a/63900851/13775459

flexmeasures.utils.flexmeasures_inflection

FlexMeasures way of handling inflection

Functions

flexmeasures.utils.flexmeasures_inflection.capitalize(x: str, lower_case_remainder: bool = False)
→ str

Capitalize string with control over whether to lower case the remainder.

flexmeasures.utils.flexmeasures_inflection.humanize(word)

flexmeasures.utils.flexmeasures_inflection.join_words_into_a_list(words: list[str])→ str

flexmeasures.utils.flexmeasures_inflection.parameterize(word)
Parameterize the word, so it can be used as a python or javascript variable name. For example: >>> word =
“Acme® EV-Charger™” “acme_ev_chargertm”

flexmeasures.utils.flexmeasures_inflection.pluralize(word, count: str | int | None = None)

flexmeasures.utils.flexmeasures_inflection.titleize(word)
Acronym exceptions are not yet supported by the inflection package, even though Ruby on Rails, of which the
package is a port, does.

In most cases it’s probably better to use our capitalize function instead of titleize, because it has less unintended
side effects. For example:

322 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://stackoverflow.com/a/63900851/13775459
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

FlexMeasures Documentation, Release 0.17

>>> word = "two PV panels"
>>> titleize(word)
"Two Pv Panels"
>>> capitalize(word)
"Two PV panels"

flexmeasures.utils.geo_utils

Functions

flexmeasures.utils.geo_utils.cos_rad_lat(latitude: float)→ float

flexmeasures.utils.geo_utils.earth_distance(location: tuple[float, float], other_location: tuple[float,
float])→ float

Great circle distance in km between two locations on Earth.

flexmeasures.utils.geo_utils.parse_lat_lng(kwargs)→ tuple[float, float] | tuple[None, None]
Parses latitude and longitude values stated in kwargs.

Can be called with an object that has latitude and longitude properties, for example:

lat, lng = parse_lat_lng(object=asset)

Can also be called with latitude and longitude parameters, for example:

lat, lng = parse_lat_lng(latitude=32, longitude=54) lat, lng = parse_lat_lng(lat=32, lng=54)

flexmeasures.utils.geo_utils.rad_lng(longitude: float)→ float

flexmeasures.utils.geo_utils.sin_rad_lat(latitude: float)→ float

flexmeasures.utils.grid_cells

Functions

flexmeasures.utils.grid_cells.get_cell_nums(tl: tuple[float, float], br: tuple[float, float], num_cells: int
= 9)→ tuple[int, int]

Compute the number of cells in both directions, latitude and longitude. By default, a square grid with N=9 cells
is computed, so 3 by 3. For N with non-integer square root, the function will determine a nice cell pattern. :param
tl: top-left (lat, lng) tuple of ROI :param br: bottom-right (lat, lng) tuple of ROI :param num_cells: number of
cells (9 by default, leading to a 3x3 grid)

Classes

class flexmeasures.utils.grid_cells.LatLngGrid(top_left: tuple[float, float], bottom_right: tuple[float,
float], num_cells_lat: int, num_cells_lng: int)

Represents a grid in latitude and longitude notation for some rectangular region of interest (ROI). The specs are
a top-left and a bottom-right coordinate, as well as the number of cells in both directions. The class provides two
ways of conceptualising cells which nicely cover the grid: square cells and hexagonal cells. For both, locations
can be computed which represent the corners of said cells. Examples:

• 4 cells in square: 9 unique locations in a 2x2 grid (4*4 locations, of which 7 are covered by another cell)

• 4 cells in hex: 13 unique locations in a 2x2 grid (4*6 locations, of which 11 are already covered)

5.3. I want to build new features quickly, not spend days solving basic problems 323

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

FlexMeasures Documentation, Release 0.17

• 10 cells in square: 18 unique locations in a 5x2 grid (10*4 locations, of which 11 are already covered)

• 10 cells in hex: 34 unique locations in a 5x2 grid (10*6 locations, of which 26 are already covered)

The top-right and bottom-left locations are always at the center of a cell, unless the grid has 1 row or 1 column.
In those case, these locations are closer to one side of the cell.

__init__(top_left: tuple[float, float], bottom_right: tuple[float, float], num_cells_lat: int, num_cells_lng:
int)

compute_cell_size_lat()→ float
Calculate the step size between latitudes

compute_cell_size_lng()→ float
Calculate the step size between longitudes

get_locations(method: str)→ list[tuple[float, float]]
Get locations by method (“square” or “hex”)

locations_hex()→ list[tuple[float, float]]
The hexagonal pattern - actually leaves out one cell for every even row.

locations_square()→ list[tuple[float, float]]
square pattern

flexmeasures.utils.plugin_utils

Utils for registering FlexMeasures plugins

Functions

flexmeasures.utils.plugin_utils.check_config_settings(app, settings: dict[str, dict])
Make sure expected config settings exist.

For example:

settings = {
“MY_PLUGIN_URL”: {

“description”: “URL used by my plugin for x.”, “level”: “error”,

}, “MY_PLUGIN_TOKEN”: {

“description”: “Token used by my plugin for y.”, “level”: “warning”, “message”: “With-
out this token, my plugin will not do y.”, “parse_as”: str,

}, “MY_PLUGIN_COLOR”: {

“description”: “Color used to override the default plugin color.”, “level”: “info”,

},

}

flexmeasures.utils.plugin_utils.log_missing_config_setting(app, setting_name: str, setting_fields:
dict)

Log a message for this missing config setting.

The logging level is taken from the ‘level’ key. If missing, we default to error. If present, we also log the
‘description’ and the ‘message_if_missing’ keys.

324 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

FlexMeasures Documentation, Release 0.17

flexmeasures.utils.plugin_utils.log_wrong_type_for_config_setting(app, setting_name: str,
setting_fields: dict,
setting_type: type)

Log a message for this config setting that has the wrong type.

flexmeasures.utils.plugin_utils.register_plugins(app: Flask)
Register FlexMeasures plugins as Blueprints. This is configured by the config setting FLEXMEA-
SURES_PLUGINS.

Assumptions: - a setting EITHER points to a plugin folder containing an __init__.py file

OR it is the name of an installed module, which can be imported.

• each plugin defines at least one Blueprint object. These will be registered with the Flask app, so their
functionality (e.g. routes) becomes available.

If you load a plugin via a file path, we’ll refer to the plugin with the name of your plugin folder (last part of the
path).

flexmeasures.utils.time_utils

Utils for dealing with time

Functions

flexmeasures.utils.time_utils.apply_offset_chain(dt: pd.Timestamp | datetime, offset_chain: str)→
pd.Timestamp | datetime

Apply an offset chain to a date.

An offset chain consist of multiple (pandas) offset strings separated by commas. Moreover, this function im-
plements the offset string “DB”, which stands for Day Begin, to get a date from a datetime, i.e. removing time
details finer than a day.

Args:
dt (pd.Timestamp | datetime) offset_chain (str)

Returns:
pd.Timestamp | datetime (same type as given dt)

flexmeasures.utils.time_utils.as_server_time(dt: datetime)→ datetime
The datetime represented in the timezone of the FlexMeasures platform. If dt is naive, we assume it is UTC time.

flexmeasures.utils.time_utils.decide_resolution(start: datetime | None, end: datetime | None)→ str
Decide on a practical resolution given the length of the selected time period. Useful for querying or plotting.

flexmeasures.utils.time_utils.determine_minimum_resampling_resolution(event_resolutions:
list[timedelta])→
timedelta

Return minimum non-zero event resolution, or zero resolution if none of the event resolutions is non-zero.

flexmeasures.utils.time_utils.duration_isoformat(duration: timedelta)
Adapted version of isodate.duration_isoformat for formatting a datetime.timedelta.

The difference is that absolute days are not formatted as nominal days. Workaround for https://github.com/gweis/
isodate/issues/74.

5.3. I want to build new features quickly, not spend days solving basic problems 325

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://github.com/gweis/isodate/issues/74
https://github.com/gweis/isodate/issues/74

FlexMeasures Documentation, Release 0.17

flexmeasures.utils.time_utils.ensure_local_timezone(dt: pd.Timestamp | datetime, tz_name: str =
'Europe/Amsterdam')→ pd.Timestamp |
datetime

If no timezone is given, assume the datetime is in the given timezone and make it explicit. Otherwise, if a
timezone is given, convert to that timezone.

flexmeasures.utils.time_utils.forecast_horizons_for(resolution: str | timedelta)→ list[str] |
list[timedelta]

Return a list of horizons that are supported per resolution. Return values or of the same type as the input.

flexmeasures.utils.time_utils.freq_label_to_human_readable_label(freq_label: str)→ str
Translate pandas frequency labels to human-readable labels.

flexmeasures.utils.time_utils.get_first_day_of_next_month()→ datetime

flexmeasures.utils.time_utils.get_max_planning_horizon(resolution: timedelta)→ timedelta | None
Determine the maximum planning horizon for the given sensor resolution.

flexmeasures.utils.time_utils.get_most_recent_clocktime_window(window_size_in_minutes: int,
now: datetime | None = None,
grace_period_in_seconds: int |
None = 0)→ tuple[datetime,
datetime]

Calculate a recent time window, returning a start and end minute so that a full hour can be filled with such
windows, e.g.:

Calling this function at 15:01:xx with window size 5 -> (14:55:00, 15:00:00) Calling this function at 03:36:xx
with window size 15 -> (03:15:00, 03:30:00)

We can demand a grace period (of x seconds) to have passed before we are ready to accept that we’re in a new
window: Calling this function at 15:00:16 with window size 5 and grace period of 30 seconds -> (14:50:00,
14:55:00)

window_size_in_minutes is assumed to > 0 and < = 60, and a divisor of 60 (1, 2, . . . , 30, 60).

If now is not given, the current server time is used. if now / the current time lies within a boundary minute (e.g.
15 when window_size_in_minutes=5), then the window is not deemed over and the previous one is returned (in
this case, [5, 10])

Returns two datetime objects. They’ll be in the timezone (if given) of the now parameter, or in the server timezone
(see FLEXMEASURES_TIMEZONE setting).

flexmeasures.utils.time_utils.get_most_recent_hour()→ datetime

flexmeasures.utils.time_utils.get_most_recent_quarter()→ datetime

flexmeasures.utils.time_utils.get_timezone(of_user=False)→ BaseTzInfo
Return the FlexMeasures timezone, or if desired try to return the timezone of the current user.

flexmeasures.utils.time_utils.localized_datetime(dt: datetime)→ datetime
Localise a datetime to the timezone of the FlexMeasures platform. Note: this will change nothing but the tzinfo
field.

flexmeasures.utils.time_utils.localized_datetime_str(dt: datetime, dt_format: str = '%Y-%m-%d
%I:%M %p')→ str

Localise a datetime to the timezone of the FlexMeasures platform. If no datetime is passed in, use server_now()
as basis.

Hint: This can be set as a jinja filter, so we can display local time in the app, e.g.:
app.jinja_env.filters[‘localized_datetime’] = localized_datetime_str

326 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

FlexMeasures Documentation, Release 0.17

flexmeasures.utils.time_utils.naive_utc_from(dt: datetime)→ datetime
Return a naive datetime, that is localised to UTC if it has a timezone. If dt is naive, we assume it is already in
UTC time.

flexmeasures.utils.time_utils.naturalized_datetime_str(dt: datetime | None, now: datetime | None =
None)→ str

Naturalise a datetime object (into a human-friendly string). The dt parameter (as well as the now parameter if
you use it) can be either naive or tz-aware. We assume UTC in the naive case.

We use the the humanize library to generate a human-friendly string. If dt is not longer ago than 24 hours, we
use humanize.naturaltime (e.g. “3 hours ago”), otherwise humanize.naturaldate (e.g. “one week ago”)

Hint: This can be set as a jinja filter, so we can display local time in the app, e.g.:
app.jinja_env.filters[‘naturalized_datetime’] = naturalized_datetime_str

flexmeasures.utils.time_utils.resolution_to_hour_factor(resolution: str | timedelta)→ float
Return the factor with which a value needs to be multiplied in order to get the value per hour, e.g. 10 MW at a
resolution of 15min are 2.5 MWh per time step.

Parameters
resolution – timedelta or pandas offset such as “15T” or “1H”

flexmeasures.utils.time_utils.round_to_closest_hour(dt: datetime)→ datetime

flexmeasures.utils.time_utils.round_to_closest_quarter(dt: datetime)→ datetime

flexmeasures.utils.time_utils.server_now()→ datetime
The current time (timezone aware), converted to the timezone of the FlexMeasures platform.

flexmeasures.utils.time_utils.supported_horizons()→ list[timedelta]

flexmeasures.utils.time_utils.timedelta_to_pandas_freq_str(resolution: timedelta)→ str

flexmeasures.utils.time_utils.to_http_time(dt: pd.Timestamp | datetime)→ str
Formats datetime using the Internet Message Format fixdate.

>>> to_http_time(pd.Timestamp("2022-12-13 14:06:23Z"))
Tue, 13 Dec 2022 14:06:23 GMT

References

IMF-fixdate: https://www.rfc-editor.org/rfc/rfc7231#section-7.1.1.1

flexmeasures.utils.time_utils.tz_index_naively(data: pd.DataFrame | pd.Series | pd.DatetimeIndex)
→ pd.DataFrame | pd.Series | pd.DatetimeIndex

Turn any DatetimeIndex into a tz-naive one, then return. Useful for bokeh, for instance.

5.3. I want to build new features quickly, not spend days solving basic problems 327

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://www.rfc-editor.org/rfc/rfc7231#section-7.1.1.1

FlexMeasures Documentation, Release 0.17

flexmeasures.utils.unit_utils

Utility module for unit conversion

FlexMeasures stores units as strings in short scientific notation (such as ‘kWh’ to denote kilowatt-hour). We use the
pint library to convert data between compatible units (such as ‘m/s’ to ‘km/h’). Three-letter currency codes (such as
‘KRW’ to denote South Korean Won) are valid units. Note that converting between currencies requires setting up a
sensor that registers conversion rates over time. The preferred compact form for combinations of units can be derived
automatically (such as ‘kW*EUR/MWh’ to ‘EUR/h’). Time series with fixed resolution can be converted from units of
flow to units of stock (such as ‘kW’ to ‘kWh’), and vice versa. Percentages can be converted to units of some physical
capacity if a capacity is known (such as ‘%’ to ‘kWh’).

Functions

flexmeasures.utils.unit_utils.convert_units(data: tb.BeliefsSeries | pd.Series | list[int | float] | int |
float, from_unit: str, to_unit: str, event_resolution:
timedelta | None = None, capacity: str | None = None)→
pd.Series | list[int | float] | int | float

Updates data values to reflect the given unit conversion.

Handles units in short scientific notation (e.g. m3/h, kW, and ºC), as well as three special units to convert from: -
from_unit=”datetime” (with data point such as “2023-05-02”, “2023-05-02 05:14:49” or “2023-05-02 05:14:49
+02:00”) - from_unit=”dayfirst datetime” (with data point such as “02-05-2023”) - from_unit=”timedelta” (with
data point such as “0 days 01:18:25”)

flexmeasures.utils.unit_utils.determine_flow_unit(stock_unit: str, time_unit: str = 'h')
For example: >>> determine_flow_unit(“m3”) # m3/h >>> determine_flow_unit(“kWh”) # kW

flexmeasures.utils.unit_utils.determine_stock_unit(flow_unit: str, time_unit: str = 'h')
Determine the shortest unit of stock, given a unit of flow.

For example: >>> determine_stock_unit(“m3/h”) # m3 >>> determine_stock_unit(“kW”) # kWh

flexmeasures.utils.unit_utils.determine_unit_conversion_multiplier(from_unit: str, to_unit: str,
duration: timedelta | None =
None)

Determine the value multiplier for a given unit conversion. If needed, requires a duration to convert from units
of stock change to units of flow, or vice versa.

flexmeasures.utils.unit_utils.is_currency_unit(unit: str | pint.Quantity | pint.Unit)→ bool
For Example: >>> is_energy_price_unit(“EUR”) True >>> is_energy_price_unit(“KRW”) True >>>
is_energy_price_unit(“potatoe”) False >>> is_energy_price_unit(“MW”) False

flexmeasures.utils.unit_utils.is_energy_price_unit(unit: str)→ bool
For example: >>> is_energy_price_unit(“EUR/MWh”) True >>> is_energy_price_unit(“KRW/MWh”) True
>>> is_energy_price_unit(“KRW/MW”) False >>> is_energy_price_unit(“beans/MW”) False

flexmeasures.utils.unit_utils.is_energy_unit(unit: str)→ bool
For example: >>> is_energy_unit(“kW”) False >>> is_energy_unit(”°C”) False >>> is_energy_unit(“kWh”)
True >>> is_energy_unit(“EUR/MWh”) False

flexmeasures.utils.unit_utils.is_power_unit(unit: str)→ bool
For example: >>> is_power_unit(“kW”) True >>> is_power_unit(”°C”) False >>> is_power_unit(“kWh”) False
>>> is_power_unit(“EUR/MWh”) False

328 Chapter 5. Developer support

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

flexmeasures.utils.unit_utils.is_valid_unit(unit: str)→ bool
Return True if the pint library can work with this unit identifier.

flexmeasures.utils.unit_utils.to_preferred(x: Quantity)→ Quantity
From https://github.com/hgrecco/pint/issues/676#issuecomment-689157693

flexmeasures.utils.unit_utils.units_are_convertible(from_unit: str, to_unit: str, duration_known:
bool = True)→ bool

For example, a sensor with W units allows data to be posted with units: >>> units_are_convertible(“kW”, “W”)
True (units just have different prefixes) >>> units_are_convertible(“J/s”, “W”) # True (units can be converted
using some multiplier) >>> units_are_convertible(“Wh”, “W”) # True (units that represent a stock delta can,
knowing the duration, be converted to a flow) >>> units_are_convertible(”°C”, “W”) # False

Utilities for the FlexMeasures project.

5.3. I want to build new features quickly, not spend days solving basic problems 329

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://github.com/hgrecco/pint/issues/676#issuecomment-689157693
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

FlexMeasures Documentation, Release 0.17

330 Chapter 5. Developer support

PYTHON MODULE INDEX

f
flexmeasures.api, 218
flexmeasures.api.common, 196
flexmeasures.api.common.implementations, 183
flexmeasures.api.common.responses, 183
flexmeasures.api.common.routes, 185
flexmeasures.api.common.schemas, 192
flexmeasures.api.common.schemas.generic_assets,

186
flexmeasures.api.common.schemas.sensor_data,

187
flexmeasures.api.common.schemas.sensors, 190
flexmeasures.api.common.schemas.users, 191
flexmeasures.api.common.utils, 196
flexmeasures.api.common.utils.api_utils, 192
flexmeasures.api.common.utils.args_parsing,

193
flexmeasures.api.common.utils.deprecation_utils,

193
flexmeasures.api.common.utils.validators, 196
flexmeasures.api.dev, 198
flexmeasures.api.dev.sensors, 197
flexmeasures.api.play, 199
flexmeasures.api.play.implementations, 198
flexmeasures.api.play.routes, 198
flexmeasures.api.sunset, 199
flexmeasures.api.sunset.routes, 199
flexmeasures.api.v3_0, 218
flexmeasures.api.v3_0.accounts, 200
flexmeasures.api.v3_0.assets, 202
flexmeasures.api.v3_0.health, 206
flexmeasures.api.v3_0.public, 206
flexmeasures.api.v3_0.sensors, 206
flexmeasures.api.v3_0.users, 215
flexmeasures.app, 219
flexmeasures.auth, 222
flexmeasures.auth.decorators, 219
flexmeasures.auth.error_handling, 221
flexmeasures.auth.policy, 222
flexmeasures.cli, 226
flexmeasures.cli.data_add, 223
flexmeasures.cli.data_delete, 223

flexmeasures.cli.data_edit, 223
flexmeasures.cli.data_show, 224
flexmeasures.cli.db_ops, 224
flexmeasures.cli.jobs, 224
flexmeasures.cli.monitor, 224
flexmeasures.cli.utils, 225
flexmeasures.data, 309
flexmeasures.data.config, 227
flexmeasures.data.models, 271
flexmeasures.data.models.annotations, 228
flexmeasures.data.models.charts, 231
flexmeasures.data.models.charts.belief_charts,

230
flexmeasures.data.models.charts.defaults, 231
flexmeasures.data.models.data_sources, 232
flexmeasures.data.models.forecasting, 240
flexmeasures.data.models.forecasting.exceptions,

234
flexmeasures.data.models.forecasting.model_spec_factory,

234
flexmeasures.data.models.forecasting.model_specs,

238
flexmeasures.data.models.forecasting.model_specs.linear_regression,

238
flexmeasures.data.models.forecasting.model_specs.naive,

238
flexmeasures.data.models.forecasting.utils,

239
flexmeasures.data.models.generic_assets, 240
flexmeasures.data.models.legacy_migration_utils,

244
flexmeasures.data.models.parsing_utils, 246
flexmeasures.data.models.planning, 256
flexmeasures.data.models.planning.battery,

246
flexmeasures.data.models.planning.charging_station,

246
flexmeasures.data.models.planning.exceptions,

247
flexmeasures.data.models.planning.linear_optimization,

247
flexmeasures.data.models.planning.process,

331

FlexMeasures Documentation, Release 0.17

248
flexmeasures.data.models.planning.storage,

250
flexmeasures.data.models.planning.utils, 255
flexmeasures.data.models.reporting, 260
flexmeasures.data.models.reporting.aggregator,

257
flexmeasures.data.models.reporting.pandas_reporter,

258
flexmeasures.data.models.reporting.profit,

259
flexmeasures.data.models.task_runs, 261
flexmeasures.data.models.time_series, 261
flexmeasures.data.models.user, 267
flexmeasures.data.models.validation_utils,

270
flexmeasures.data.models.weather, 271
flexmeasures.data.queries, 276
flexmeasures.data.queries.annotations, 271
flexmeasures.data.queries.data_sources, 271
flexmeasures.data.queries.generic_assets, 272
flexmeasures.data.queries.sensors, 273
flexmeasures.data.queries.utils, 274
flexmeasures.data.schemas, 297
flexmeasures.data.schemas.account, 277
flexmeasures.data.schemas.attributes, 277
flexmeasures.data.schemas.generic_assets, 277
flexmeasures.data.schemas.io, 279
flexmeasures.data.schemas.locations, 280
flexmeasures.data.schemas.reporting, 289
flexmeasures.data.schemas.reporting.aggregation,

281
flexmeasures.data.schemas.reporting.pandas_reporter,

283
flexmeasures.data.schemas.reporting.profit,

287
flexmeasures.data.schemas.scheduling, 291
flexmeasures.data.schemas.scheduling.process,

290
flexmeasures.data.schemas.scheduling.storage,

291
flexmeasures.data.schemas.sensors, 292
flexmeasures.data.schemas.sources, 294
flexmeasures.data.schemas.times, 294
flexmeasures.data.schemas.units, 295
flexmeasures.data.schemas.users, 296
flexmeasures.data.schemas.utils, 296
flexmeasures.data.scripts, 298
flexmeasures.data.scripts.data_gen, 297
flexmeasures.data.scripts.visualize_data_model,

298
flexmeasures.data.services, 307
flexmeasures.data.services.accounts, 299
flexmeasures.data.services.annotations, 299

flexmeasures.data.services.asset_grouping,
300

flexmeasures.data.services.data_sources, 301
flexmeasures.data.services.forecasting, 301
flexmeasures.data.services.scheduling, 303
flexmeasures.data.services.sensors, 305
flexmeasures.data.services.time_series, 305
flexmeasures.data.services.timerange, 305
flexmeasures.data.services.users, 306
flexmeasures.data.services.utils, 307
flexmeasures.data.transactional, 308
flexmeasures.data.utils, 308
flexmeasures.ui, 315
flexmeasures.ui.crud, 312
flexmeasures.ui.crud.accounts, 310
flexmeasures.ui.crud.api_wrapper, 310
flexmeasures.ui.crud.assets, 311
flexmeasures.ui.crud.users, 312
flexmeasures.ui.error_handlers, 313
flexmeasures.ui.utils, 314
flexmeasures.ui.utils.chart_defaults, 313
flexmeasures.ui.utils.view_utils, 313
flexmeasures.ui.views, 315
flexmeasures.ui.views.control, 314
flexmeasures.ui.views.logged_in_user, 314
flexmeasures.ui.views.new_dashboard, 315
flexmeasures.ui.views.sensors, 315
flexmeasures.utils, 329
flexmeasures.utils.app_utils, 316
flexmeasures.utils.calculations, 317
flexmeasures.utils.coding_utils, 318
flexmeasures.utils.config_defaults, 319
flexmeasures.utils.config_utils, 320
flexmeasures.utils.entity_address_utils, 320
flexmeasures.utils.error_utils, 322
flexmeasures.utils.flexmeasures_inflection,

322
flexmeasures.utils.geo_utils, 323
flexmeasures.utils.grid_cells, 323
flexmeasures.utils.plugin_utils, 324
flexmeasures.utils.time_utils, 325
flexmeasures.utils.unit_utils, 328

332 Python Module Index

HTTP ROUTING TABLE

/api
GET /api/, 101
GET /api/dev/asset/(id)/, 116
GET /api/dev/sensor/(id)/, 116
GET /api/dev/sensor/(id)/chart/, 116
GET /api/dev/sensor/(id)/chart_annotations/,

116
GET /api/dev/sensor/(id)/chart_data/, 116
GET /api/v3_0, 101
GET /api/v3_0/assets, 101
GET /api/v3_0/assets/(id), 103
GET /api/v3_0/assets/(id)/chart/, 104
GET /api/v3_0/assets/(id)/chart_data/, 104
GET /api/v3_0/assets/public, 104
GET /api/v3_0/health/ready, 104
GET /api/v3_0/sensors, 105
GET /api/v3_0/sensors/(id), 107
GET /api/v3_0/sensors/(id)/schedules/(uuid),

108
GET /api/v3_0/sensors/data, 111
GET /api/v3_0/users, 113
GET /api/v3_0/users/(id), 113
POST /api/requestAuthToken, 101
POST /api/v3_0/assets, 102
POST /api/v3_0/sensors, 105
POST /api/v3_0/sensors/(id)/schedules/trigger,

109
POST /api/v3_0/sensors/data, 112
DELETE /api/v3_0/assets/(id), 102
DELETE /api/v3_0/sensors/(id), 106
PATCH /api/v3_0/assets/(id), 103
PATCH /api/v3_0/sensors/(id), 107
PATCH /api/v3_0/users/(id), 114
PATCH /api/v3_0/users/(id)/password-reset,

115

333

FlexMeasures Documentation, Release 0.17

334 HTTP Routing Table

INDEX

Symbols
__init__() (flexmeasures.api.common.responses.BaseMessage

method), 185
__init__() (flexmeasures.api.common.schemas.sensors.SensorField

method), 190
__init__() (flexmeasures.api.common.schemas.users.UserIdField

method), 192
__init__() (flexmeasures.cli.utils.DeprecatedDefaultGroup

method), 226
__init__() (flexmeasures.data.models.annotations.AccountAnnotationRelationship

method), 228
__init__() (flexmeasures.data.models.annotations.Annotation

method), 228
__init__() (flexmeasures.data.models.annotations.GenericAssetAnnotationRelationship

method), 229
__init__() (flexmeasures.data.models.annotations.SensorAnnotationRelationship

method), 229
__init__() (flexmeasures.data.models.data_sources.DataGenerator

method), 232
__init__() (flexmeasures.data.models.data_sources.DataSource

method), 233
__init__() (flexmeasures.data.models.forecasting.model_spec_factory.TBSeriesSpecs

method), 237
__init__() (flexmeasures.data.models.forecasting.model_specs.naive.Naive

method), 238
__init__() (flexmeasures.data.models.generic_assets.GenericAsset

method), 241
__init__() (flexmeasures.data.models.generic_assets.GenericAssetType

method), 244
__init__() (flexmeasures.data.models.planning.Scheduler

method), 256
__init__() (flexmeasures.data.models.task_runs.LatestTaskRun

method), 261
__init__() (flexmeasures.data.models.time_series.Sensor

method), 261
__init__() (flexmeasures.data.models.time_series.TimedBelief

method), 265
__init__() (flexmeasures.data.models.user.Account

method), 267
__init__() (flexmeasures.data.models.user.AccountRole

method), 268
__init__() (flexmeasures.data.models.user.Role

method), 268
__init__() (flexmeasures.data.models.user.RolesAccounts

method), 269
__init__() (flexmeasures.data.models.user.RolesUsers

method), 269
__init__() (flexmeasures.data.models.user.User

method), 269
__init__() (flexmeasures.data.schemas.locations.LatitudeField

method), 280
__init__() (flexmeasures.data.schemas.locations.LatitudeLongitudeValidator

method), 280
__init__() (flexmeasures.data.schemas.locations.LatitudeValidator

method), 280
__init__() (flexmeasures.data.schemas.locations.LongitudeField

method), 280
__init__() (flexmeasures.data.schemas.locations.LongitudeValidator

method), 280
__init__() (flexmeasures.data.schemas.scheduling.process.ProcessSchedulerFlexModelSchema

method), 290
__init__() (flexmeasures.data.schemas.scheduling.storage.EfficiencyField

method), 291
__init__() (flexmeasures.data.schemas.scheduling.storage.SOCValueSchema

method), 291
__init__() (flexmeasures.data.schemas.scheduling.storage.StorageFlexModelSchema

method), 291
__init__() (flexmeasures.data.schemas.units.QuantityField

method), 295
__init__() (flexmeasures.data.schemas.units.QuantityValidator

method), 296
__init__() (flexmeasures.data.schemas.utils.MarshmallowClickMixin

method), 296
__init__() (flexmeasures.data.services.asset_grouping.AssetGroup

method), 301
__init__() (flexmeasures.utils.grid_cells.LatLngGrid

method), 324
_apply_transformations() (flexmea-

sures.data.models.reporting.pandas_reporter.PandasReporter
method), 258

_clean_belief_dataframe() (flexmea-
sures.data.models.reporting.pandas_reporter.PandasReporter
method), 258

_clean_belief_series() (flexmea-

335

FlexMeasures Documentation, Release 0.17

sures.data.models.reporting.pandas_reporter.PandasReporter
method), 258

_clean_parameters() (flexmea-
sures.data.models.data_sources.DataGenerator
method), 233

_clean_parameters() (flexmea-
sures.data.models.reporting.Reporter method),
260

_compute() (flexmeasures.data.models.reporting.Reporter
method), 260

_compute_report() (flexmea-
sures.data.models.reporting.Reporter method),
260

_compute_report() (flexmea-
sures.data.models.reporting.aggregator.AggregatorReporter
method), 257

_compute_report() (flexmea-
sures.data.models.reporting.pandas_reporter.PandasReporter
method), 258

_compute_report() (flexmea-
sures.data.models.reporting.profit.ProfitOrLossReporter
method), 259

_deserialize() (flexmea-
sures.api.common.schemas.generic_assets.AssetIdField
method), 186

_deserialize() (flexmea-
sures.api.common.schemas.sensor_data.SingleValueField
method), 189

_deserialize() (flexmea-
sures.api.common.schemas.sensors.SensorField
method), 190

_deserialize() (flexmea-
sures.api.common.schemas.sensors.SensorIdField
method), 190

_deserialize() (flexmea-
sures.api.common.schemas.users.AccountIdField
method), 191

_deserialize() (flexmea-
sures.api.common.schemas.users.UserIdField
method), 192

_deserialize() (flexmea-
sures.data.schemas.account.AccountIdField
method), 277

_deserialize() (flexmea-
sures.data.schemas.generic_assets.GenericAssetIdField
method), 277

_deserialize() (flexmea-
sures.data.schemas.generic_assets.JSON
method), 278

_deserialize() (flexmea-
sures.data.schemas.sensors.JSON method),
292

_deserialize() (flexmea-
sures.data.schemas.sensors.SensorIdField

method), 293
_deserialize() (flexmea-

sures.data.schemas.sources.DataSourceIdField
method), 294

_deserialize() (flexmea-
sures.data.schemas.times.AwareDateTimeField
method), 294

_deserialize() (flexmea-
sures.data.schemas.times.DurationField
method), 294

_deserialize() (flexmea-
sures.data.schemas.times.TimeIntervalField
method), 294

_deserialize() (flexmea-
sures.data.schemas.units.QuantityField
method), 296

_load_series() (flexmea-
sures.data.models.forecasting.model_spec_factory.TBSeriesSpecs
method), 238

_maybe_raise() (flexmea-
sures.ui.crud.api_wrapper.InternalApi
method), 310

_parameters_schema (flexmea-
sures.data.models.reporting.pandas_reporter.PandasReporter
attribute), 258

_prepare() (flexmeasures.data.models.planning.storage.MetaStorageScheduler
method), 253

_process_pandas_args() (flexmea-
sures.data.models.reporting.pandas_reporter.PandasReporter
method), 258

_process_pandas_kwargs() (flexmea-
sures.data.models.reporting.pandas_reporter.PandasReporter
method), 258

_serialize() (flexmea-
sures.api.common.schemas.generic_assets.AssetIdField
method), 186

_serialize() (flexmea-
sures.api.common.schemas.sensor_data.SingleValueField
method), 189

_serialize() (flexmea-
sures.api.common.schemas.sensors.SensorField
method), 190

_serialize() (flexmea-
sures.api.common.schemas.sensors.SensorIdField
method), 190

_serialize() (flexmea-
sures.api.common.schemas.users.AccountIdField
method), 191

_serialize() (flexmea-
sures.api.common.schemas.users.UserIdField
method), 192

_serialize() (flexmea-
sures.data.schemas.account.AccountIdField
method), 277

336 Index

FlexMeasures Documentation, Release 0.17

_serialize() (flexmea-
sures.data.schemas.generic_assets.GenericAssetIdField
method), 277

_serialize() (flexmea-
sures.data.schemas.generic_assets.JSON
method), 278

_serialize() (flexmea-
sures.data.schemas.sensors.JSON method),
292

_serialize() (flexmea-
sures.data.schemas.sensors.SensorIdField
method), 293

_serialize() (flexmea-
sures.data.schemas.sources.DataSourceIdField
method), 294

_serialize() (flexmea-
sures.data.schemas.times.DurationField
method), 294

_serialize() (flexmea-
sures.data.schemas.units.QuantityField
method), 296

A
Account (class in flexmeasures.data.models.user), 267
account_roles_accepted() (in module flexmea-

sures.auth.decorators), 220
account_roles_required() (in module flexmea-

sures.auth.decorators), 220
AccountAnnotationRelationship (class in flexmea-

sures.data.models.annotations), 228
AccountAPI (class in flexmeasures.api.v3_0.accounts),

200
AccountCrudUI (class in flexmea-

sures.ui.crud.accounts), 310
AccountIdField (class in flexmea-

sures.api.common.schemas.users), 191
AccountIdField (class in flexmea-

sures.data.schemas.account), 277
accountname() (in module flexmea-

sures.ui.utils.view_utils), 313
AccountRole (class in flexmeasures.data.models.user),

268
AccountRoleSchema (class in flexmea-

sures.data.schemas.account), 277
AccountRoleSchema.Meta (class in flexmea-

sures.data.schemas.account), 277
AccountSchema (class in flexmea-

sures.data.schemas.account), 277
AccountSchema.Meta (class in flexmea-

sures.data.schemas.account), 277
add() (flexmeasures.data.models.annotations.Annotation

class method), 228
add() (flexmeasures.data.models.time_series.TimedBelief

class method), 265

add_annotations() (flexmea-
sures.data.models.generic_assets.GenericAsset
method), 241

add_basic_error_handlers() (in module flexmea-
sures.utils.error_utils), 322

add_default_account_roles() (in module flexmea-
sures.data.scripts.data_gen), 297

add_default_asset_types() (in module flexmea-
sures.data.scripts.data_gen), 297

add_default_data_sources() (in module flexmea-
sures.data.scripts.data_gen), 297

add_default_user_roles() (in module flexmea-
sures.data.scripts.data_gen), 297

add_html_error_views() (in module flexmea-
sures.ui.error_handlers), 313

add_jinja_filters() (in module flexmeasures.ui), 315
add_jinja_variables() (in module flexmeasures.ui),

315
add_storage_constraints() (in module flexmea-

sures.data.models.planning.storage), 250
add_tiny_price_slope() (in module flexmea-

sures.data.models.planning.utils), 255
add_transmission_zone_asset() (in module

flexmeasures.data.scripts.data_gen), 297
after_request_exception_rollback_session()

(in module flexmeasures.data.transactional),
308

aggregate_values() (in module flexmea-
sures.data.services.time_series), 305

AggregatorConfigSchema (class in flexmea-
sures.data.schemas.reporting.aggregation),
281

AggregatorParametersSchema (class in flexmea-
sures.data.schemas.reporting.aggregation),
281

AggregatorReporter (class in flexmea-
sures.data.models.reporting.aggregator),
257

already_received_and_successfully_processed()
(in module flexmea-
sures.api.common.responses), 183

Annotation (class in flexmea-
sures.data.models.annotations), 228

apply_chart_defaults() (in module flexmea-
sures.data.models.charts.defaults), 231

apply_offset_chain() (in module flexmea-
sures.utils.time_utils), 325

apply_stock_changes_and_losses() (in module
flexmeasures.utils.calculations), 317

are_required_settings_complete() (in module
flexmeasures.utils.config_utils), 320

as_server_time() (in module flexmea-
sures.utils.time_utils), 325

as_transaction() (in module flexmea-

Index 337

FlexMeasures Documentation, Release 0.17

sures.data.transactional), 308
asset_icon_name() (in module flexmea-

sures.ui.utils.view_utils), 313
asset_type (flexmeasures.data.models.generic_assets.GenericAsset

property), 241
AssetAPI (class in flexmeasures.api.dev.sensors), 197
AssetAPI (class in flexmeasures.api.v3_0.assets), 202
AssetCrudUI (class in flexmeasures.ui.crud.assets), 311
AssetForm (class in flexmeasures.ui.crud.assets), 311
AssetGroup (class in flexmea-

sures.data.services.asset_grouping), 300
AssetIdField (class in flexmea-

sures.api.common.schemas.generic_assets),
186

assets_share_location() (in module flexmea-
sures.data.models.generic_assets), 240

AuthModelMixin (class in flexmeasures.auth.policy),
222

AwareDateTimeField (class in flexmea-
sures.data.schemas.times), 294

B
bar_chart() (in module flexmea-

sures.data.models.charts.belief_charts), 230
BaseMessage (class in flexmea-

sures.api.common.responses), 185
belief_horizon (flexmea-

sures.data.models.time_series.TimedBelief
attribute), 265

BeliefsSearchConfigSchema (class in flexmea-
sures.data.schemas.reporting), 289

block_invalid_starting_times_for_whole_process_scheduling()
(flexmeasures.data.models.planning.process.ProcessScheduler
method), 248

build_device_soc_targets() (in module flexmea-
sures.data.models.planning.storage), 250

build_device_soc_values() (in module flexmea-
sures.data.models.planning.storage), 250

build_ea_scheme_and_naming_authority()
(in module flexmea-
sures.utils.entity_address_utils), 320

build_entity_address() (in module flexmea-
sures.utils.entity_address_utils), 320

C
capitalize() (in module flexmea-

sures.utils.flexmeasures_inflection), 322
catch_timed_belief_replacements() (in module

flexmeasures.api.common.utils.api_utils), 192
chart() (flexmeasures.data.models.generic_assets.GenericAsset

method), 241
chart() (flexmeasures.data.models.time_series.Sensor

method), 261

chart_for_multiple_sensors() (in module flexmea-
sures.data.models.charts.belief_charts), 230

chart_type_to_chart_specs() (in module flexmea-
sures.data.models.charts), 232

check_access() (in module flexmeasures.auth.policy),
222

check_account_membership() (in module flexmea-
sures.auth.policy), 222

check_account_role() (in module flexmea-
sures.auth.policy), 222

check_and_convert_power_capacity() (in module
flexmeasures.data.models.planning.storage),
251

check_app_env() (in module flexmea-
sures.utils.config_utils), 320

check_config_settings() (in module flexmea-
sures.utils.plugin_utils), 324

check_data() (flexmea-
sures.data.models.forecasting.model_spec_factory.TBSeriesSpecs
method), 238

check_data_availability() (in module flexmea-
sures.data.models.forecasting.utils), 239

check_errors() (in module flexmeasures.cli.data_add),
223

check_required_attributes() (flexmea-
sures.data.models.time_series.Sensor method),
262

check_required_attributes() (in module flexmea-
sures.data.models.validation_utils), 270

check_resolution_compatibility_of_sensor_data()
(flexmeasures.api.common.schemas.sensor_data.PostSensorDataSchema
method), 188

check_schema_unit_against_sensor_unit()
(flexmeasures.api.common.schemas.sensor_data.SensorDataDescriptionSchema
method), 189

check_sqlalchemy_schemadisplay_installation()
(in module flexmea-
sures.data.scripts.visualize_data_model),
298

check_timezone() (in module flexmea-
sures.cli.data_add), 223

check_user_identity() (in module flexmea-
sures.auth.policy), 222

check_user_role() (in module flexmea-
sures.auth.policy), 222

clear_session() (in module flexmea-
sures.ui.utils.view_utils), 313

commit_and_start_new_session() (in module
flexmeasures.data.config), 227

compute() (flexmeasures.data.models.data_sources.DataGenerator
method), 233

compute() (flexmeasures.data.models.planning.process.ProcessScheduler
method), 249

compute() (flexmeasures.data.models.planning.Scheduler

338 Index

FlexMeasures Documentation, Release 0.17

method), 256
compute() (flexmeasures.data.models.planning.storage.StorageFallbackScheduler

method), 254
compute() (flexmeasures.data.models.planning.storage.StorageScheduler

method), 254
compute_breakable() (flexmea-

sures.data.models.planning.process.ProcessScheduler
method), 249

compute_cell_size_lat() (flexmea-
sures.utils.grid_cells.LatLngGrid method),
324

compute_cell_size_lng() (flexmea-
sures.utils.grid_cells.LatLngGrid method),
324

compute_inflexible() (flexmea-
sures.data.models.planning.process.ProcessScheduler
method), 249

compute_schedule() (flexmea-
sures.data.models.planning.Scheduler method),
257

compute_schedule() (flexmea-
sures.data.models.planning.storage.MetaStorageScheduler
method), 253

compute_schedule() (flexmea-
sures.data.models.planning.storage.StorageScheduler
method), 254

compute_shiftable() (flexmea-
sures.data.models.planning.process.ProcessScheduler
method), 249

Config (class in flexmeasures.utils.config_defaults), 319
configure_db_for() (in module flexmea-

sures.data.config), 227
configure_logging() (in module flexmea-

sures.utils.config_utils), 320
configure_regressors_for_nearest_weather_sensor()

(in module flexmea-
sures.data.models.forecasting.model_spec_factory),
234

conflicting_resolutions() (in module flexmea-
sures.api.common.responses), 183

control_view() (in module flexmea-
sures.ui.views.control), 314

convert() (flexmeasures.data.schemas.utils.MarshmallowClickMixin
method), 296

convert_units() (in module flexmea-
sures.utils.unit_utils), 328

copy_old_sensor_attributes() (in module flexmea-
sures.data.models.legacy_migration_utils), 245

cos_rad_lat() (in module flexmeasures.utils.geo_utils),
323

count_annotations() (flexmea-
sures.data.models.generic_assets.GenericAsset
method), 241

create() (in module flexmeasures.app), 219

create_beliefs_query() (in module flexmea-
sures.data.queries.utils), 274

create_circle_layer() (in module flexmea-
sures.data.models.charts.belief_charts), 230

create_constraint_violations_message()
(in module flexmea-
sures.data.models.planning.storage), 251

create_fall_dst_transition_layer()
(in module flexmea-
sures.data.models.charts.belief_charts), 231

create_forecasting_jobs() (in module flexmea-
sures.data.services.forecasting), 302

create_generic_asset() (in module flexmea-
sures.data.models.generic_assets), 240

create_initial_model_specs() (in module flexmea-
sures.data.models.forecasting.model_spec_factory),
235

create_lags() (in module flexmea-
sures.data.models.forecasting.utils), 239

create_line_layer() (in module flexmea-
sures.data.models.charts.belief_charts), 231

create_rect_layer() (in module flexmea-
sures.data.models.charts.belief_charts), 231

create_scheduling_job() (in module flexmea-
sures.data.services.scheduling), 303

create_schema_pic() (in module flexmea-
sures.data.scripts.visualize_data_model),
298

create_uml_pic() (in module flexmea-
sures.data.scripts.visualize_data_model),
298

create_user() (in module flexmea-
sures.data.services.users), 306

cumulative_probability (flexmea-
sures.data.models.time_series.TimedBelief
attribute), 265

D
daily_heatmap() (in module flexmea-

sures.data.models.charts.belief_charts), 231
dashboard_view() (in module flexmea-

sures.ui.views.new_dashboard), 315
data_source (flexmea-

sures.data.models.data_sources.DataGenerator
property), 233

DataGenerator (class in flexmea-
sures.data.models.data_sources), 232

DataSource (class in flexmea-
sures.data.models.data_sources), 233

DataSourceIdField (class in flexmea-
sures.data.schemas.sources), 294

decide_resolution() (in module flexmea-
sures.utils.time_utils), 325

Index 339

FlexMeasures Documentation, Release 0.17

delete() (flexmeasures.api.v3_0.assets.AssetAPI
method), 202

delete() (flexmeasures.api.v3_0.sensors.SensorAPI
method), 206

delete_key_recursive() (in module flexmea-
sures.utils.coding_utils), 318

delete_user() (in module flexmea-
sures.data.services.users), 306

delete_with_data() (flexmea-
sures.ui.crud.assets.AssetCrudUI method),
311

deprecate_blueprint() (in module flexmea-
sures.api.common.utils.deprecation_utils),
193

deprecate_fields() (in module flexmea-
sures.api.common.utils.deprecation_utils),
194

deprecated() (in module flexmea-
sures.utils.coding_utils), 318

deprecated_api_version() (in module flexmea-
sures.api.common.responses), 183

DeprecatedDefaultGroup (class in flexmea-
sures.cli.utils), 225

description (flexmea-
sures.data.models.data_sources.DataSource
property), 233

deserialize_config() (flexmea-
sures.data.models.planning.Scheduler method),
257

deserialize_flex_config() (flexmea-
sures.data.models.planning.process.ProcessScheduler
method), 249

deserialize_flex_config() (flexmea-
sures.data.models.planning.Scheduler method),
257

deserialize_flex_config() (flexmea-
sures.data.models.planning.storage.MetaStorageScheduler
method), 253

deserialize_timing_config() (flexmea-
sures.data.models.planning.Scheduler method),
257

determine_flow_unit() (in module flexmea-
sures.utils.unit_utils), 328

determine_minimum_resampling_resolution() (in
module flexmeasures.utils.time_utils), 325

determine_shared_sensor_type()
(in module flexmea-
sures.data.models.charts.belief_charts), 231

determine_shared_unit() (in module flexmea-
sures.data.models.charts.belief_charts), 231

determine_stock_unit() (in module flexmea-
sures.utils.unit_utils), 328

determine_unit_conversion_multiplier() (in
module flexmeasures.utils.unit_utils), 328

DevelopmentConfig (class in flexmea-
sures.utils.config_defaults), 319

device_scheduler() (in module flexmea-
sures.data.models.planning.linear_optimization),
247

display_name (flexmea-
sures.data.services.asset_grouping.AssetGroup
property), 301

docs_view() (in module flexmeasures.ui.views), 315
DocumentationConfig (class in flexmea-

sures.utils.config_defaults), 319
drop_nan_rows() (in module flexmea-

sures.utils.calculations), 317
drop_unchanged_beliefs() (in module flexmea-

sures.data.services.time_series), 305
duration_isoformat() (in module flexmea-

sures.utils.time_utils), 325
DurationField (class in flexmea-

sures.data.schemas.times), 294
DurationValidationError, 295

E
earth_distance() (in module flexmea-

sures.utils.geo_utils), 323
EfficiencyField (class in flexmea-

sures.data.schemas.scheduling.storage),
291

enqueue_forecasting_jobs() (in module flexmea-
sures.api.common.utils.api_utils), 192

ensure_local_timezone() (in module flexmea-
sures.utils.time_utils), 325

ensure_soc_min_max() (flexmea-
sures.data.models.planning.storage.MetaStorageScheduler
method), 253

EntityAddressException, 321
EntityAddressValidationError, 191
error_handling_router() (in module flexmea-

sures.utils.error_utils), 322
event_resolution (flexmea-

sures.data.models.time_series.Sensor at-
tribute), 262

event_start (flexmea-
sures.data.models.time_series.TimedBelief
attribute), 265

event_value (flexmea-
sures.data.models.time_series.TimedBelief
attribute), 265

F
fallback_charging_policy() (in module flexmea-

sures.data.models.planning.utils), 255
fallback_schedule_redirect() (in module flexmea-

sures.api.common.responses), 183

340 Index

FlexMeasures Documentation, Release 0.17

fallback_scheduler_class (flexmea-
sures.data.models.planning.storage.StorageScheduler
attribute), 254

fetch_data() (flexmea-
sures.data.models.reporting.pandas_reporter.PandasReporter
method), 259

fetch_one() (flexmeasures.api.v3_0.assets.AssetAPI
method), 202

fetch_one() (flexmeasures.api.v3_0.sensors.SensorAPI
method), 207

find_classes_module() (in module flexmea-
sures.utils.coding_utils), 318

find_classes_modules() (in module flexmea-
sures.utils.coding_utils), 318

find_closest() (flexmea-
sures.data.models.time_series.Sensor class
method), 262

find_first_applicable_config_entry() (in mod-
ule flexmeasures.utils.app_utils), 316

find_scheduler_class() (in module flexmea-
sures.data.services.scheduling), 304

find_user_by_email() (in module flexmea-
sures.data.services.users), 306

flatten_unique() (in module flexmea-
sures.utils.coding_utils), 318

FlexContextSchema (class in flexmea-
sures.data.schemas.scheduling), 292

flexmeasures.api
module, 218

flexmeasures.api.common
module, 196

flexmeasures.api.common.implementations
module, 183

flexmeasures.api.common.responses
module, 183

flexmeasures.api.common.routes
module, 185

flexmeasures.api.common.schemas
module, 192

flexmeasures.api.common.schemas.generic_assets
module, 186

flexmeasures.api.common.schemas.sensor_data
module, 187

flexmeasures.api.common.schemas.sensors
module, 190

flexmeasures.api.common.schemas.users
module, 191

flexmeasures.api.common.utils
module, 196

flexmeasures.api.common.utils.api_utils
module, 192

flexmeasures.api.common.utils.args_parsing
module, 193

flexmeasures.api.common.utils.deprecation_utils

module, 193
flexmeasures.api.common.utils.validators

module, 196
flexmeasures.api.dev

module, 198
flexmeasures.api.dev.sensors

module, 197
flexmeasures.api.play

module, 199
flexmeasures.api.play.implementations

module, 198
flexmeasures.api.play.routes

module, 198
flexmeasures.api.sunset

module, 199
flexmeasures.api.sunset.routes

module, 199
flexmeasures.api.v3_0

module, 218
flexmeasures.api.v3_0.accounts

module, 200
flexmeasures.api.v3_0.assets

module, 202
flexmeasures.api.v3_0.health

module, 206
flexmeasures.api.v3_0.public

module, 206
flexmeasures.api.v3_0.sensors

module, 206
flexmeasures.api.v3_0.users

module, 215
flexmeasures.app

module, 219
flexmeasures.auth

module, 222
flexmeasures.auth.decorators

module, 219
flexmeasures.auth.error_handling

module, 221
flexmeasures.auth.policy

module, 222
flexmeasures.cli

module, 226
flexmeasures.cli.data_add

module, 223
flexmeasures.cli.data_delete

module, 223
flexmeasures.cli.data_edit

module, 223
flexmeasures.cli.data_show

module, 224
flexmeasures.cli.db_ops

module, 224
flexmeasures.cli.jobs

Index 341

FlexMeasures Documentation, Release 0.17

module, 224
flexmeasures.cli.monitor

module, 224
flexmeasures.cli.utils

module, 225
flexmeasures.data

module, 309
flexmeasures.data.config

module, 227
flexmeasures.data.models

module, 271
flexmeasures.data.models.annotations

module, 228
flexmeasures.data.models.charts

module, 231
flexmeasures.data.models.charts.belief_charts

module, 230
flexmeasures.data.models.charts.defaults

module, 231
flexmeasures.data.models.data_sources

module, 232
flexmeasures.data.models.forecasting

module, 240
flexmeasures.data.models.forecasting.exceptions

module, 234
flexmeasures.data.models.forecasting.model_spec_factory

module, 234
flexmeasures.data.models.forecasting.model_specs

module, 238
flexmeasures.data.models.forecasting.model_specs.linear_regression

module, 238
flexmeasures.data.models.forecasting.model_specs.naive

module, 238
flexmeasures.data.models.forecasting.utils

module, 239
flexmeasures.data.models.generic_assets

module, 240
flexmeasures.data.models.legacy_migration_utils

module, 244
flexmeasures.data.models.parsing_utils

module, 246
flexmeasures.data.models.planning

module, 256
flexmeasures.data.models.planning.battery

module, 246
flexmeasures.data.models.planning.charging_station

module, 246
flexmeasures.data.models.planning.exceptions

module, 247
flexmeasures.data.models.planning.linear_optimization

module, 247
flexmeasures.data.models.planning.process

module, 248
flexmeasures.data.models.planning.storage

module, 250
flexmeasures.data.models.planning.utils

module, 255
flexmeasures.data.models.reporting

module, 260
flexmeasures.data.models.reporting.aggregator

module, 257
flexmeasures.data.models.reporting.pandas_reporter

module, 258
flexmeasures.data.models.reporting.profit

module, 259
flexmeasures.data.models.task_runs

module, 261
flexmeasures.data.models.time_series

module, 261
flexmeasures.data.models.user

module, 267
flexmeasures.data.models.validation_utils

module, 270
flexmeasures.data.models.weather

module, 271
flexmeasures.data.queries

module, 276
flexmeasures.data.queries.annotations

module, 271
flexmeasures.data.queries.data_sources

module, 271
flexmeasures.data.queries.generic_assets

module, 272
flexmeasures.data.queries.sensors

module, 273
flexmeasures.data.queries.utils

module, 274
flexmeasures.data.schemas

module, 297
flexmeasures.data.schemas.account

module, 277
flexmeasures.data.schemas.attributes

module, 277
flexmeasures.data.schemas.generic_assets

module, 277
flexmeasures.data.schemas.io

module, 279
flexmeasures.data.schemas.locations

module, 280
flexmeasures.data.schemas.reporting

module, 289
flexmeasures.data.schemas.reporting.aggregation

module, 281
flexmeasures.data.schemas.reporting.pandas_reporter

module, 283
flexmeasures.data.schemas.reporting.profit

module, 287
flexmeasures.data.schemas.scheduling

342 Index

FlexMeasures Documentation, Release 0.17

module, 291
flexmeasures.data.schemas.scheduling.process

module, 290
flexmeasures.data.schemas.scheduling.storage

module, 291
flexmeasures.data.schemas.sensors

module, 292
flexmeasures.data.schemas.sources

module, 294
flexmeasures.data.schemas.times

module, 294
flexmeasures.data.schemas.units

module, 295
flexmeasures.data.schemas.users

module, 296
flexmeasures.data.schemas.utils

module, 296
flexmeasures.data.scripts

module, 298
flexmeasures.data.scripts.data_gen

module, 297
flexmeasures.data.scripts.visualize_data_model

module, 298
flexmeasures.data.services

module, 307
flexmeasures.data.services.accounts

module, 299
flexmeasures.data.services.annotations

module, 299
flexmeasures.data.services.asset_grouping

module, 300
flexmeasures.data.services.data_sources

module, 301
flexmeasures.data.services.forecasting

module, 301
flexmeasures.data.services.scheduling

module, 303
flexmeasures.data.services.sensors

module, 305
flexmeasures.data.services.time_series

module, 305
flexmeasures.data.services.timerange

module, 305
flexmeasures.data.services.users

module, 306
flexmeasures.data.services.utils

module, 307
flexmeasures.data.transactional

module, 308
flexmeasures.data.utils

module, 308
flexmeasures.ui

module, 315
flexmeasures.ui.crud

module, 312
flexmeasures.ui.crud.accounts

module, 310
flexmeasures.ui.crud.api_wrapper

module, 310
flexmeasures.ui.crud.assets

module, 311
flexmeasures.ui.crud.users

module, 312
flexmeasures.ui.error_handlers

module, 313
flexmeasures.ui.utils

module, 314
flexmeasures.ui.utils.chart_defaults

module, 313
flexmeasures.ui.utils.view_utils

module, 313
flexmeasures.ui.views

module, 315
flexmeasures.ui.views.control

module, 314
flexmeasures.ui.views.logged_in_user

module, 314
flexmeasures.ui.views.new_dashboard

module, 315
flexmeasures.ui.views.sensors

module, 315
flexmeasures.utils

module, 329
flexmeasures.utils.app_utils

module, 316
flexmeasures.utils.calculations

module, 317
flexmeasures.utils.coding_utils

module, 318
flexmeasures.utils.config_defaults

module, 319
flexmeasures.utils.config_utils

module, 320
flexmeasures.utils.entity_address_utils

module, 320
flexmeasures.utils.error_utils

module, 322
flexmeasures.utils.flexmeasures_inflection

module, 322
flexmeasures.utils.geo_utils

module, 323
flexmeasures.utils.grid_cells

module, 323
flexmeasures.utils.plugin_utils

module, 324
flexmeasures.utils.time_utils

module, 325
flexmeasures.utils.unit_utils

Index 343

FlexMeasures Documentation, Release 0.17

module, 328
FMValidationError, 297
forecast_horizons_for() (in module flexmea-

sures.utils.time_utils), 326
freq_label_to_human_readable_label() (in mod-

ule flexmeasures.utils.time_utils), 326

G
GenericAsset (class in flexmea-

sures.data.models.generic_assets), 241
GenericAssetAnnotationRelationship (class in

flexmeasures.data.models.annotations), 229
GenericAssetIdField (class in flexmea-

sures.data.schemas.generic_assets), 277
GenericAssetSchema (class in flexmea-

sures.data.schemas.generic_assets), 277
GenericAssetSchema.Meta (class in flexmea-

sures.data.schemas.generic_assets), 278
GenericAssetType (class in flexmea-

sures.data.models.generic_assets), 244
GenericAssetTypeSchema (class in flexmea-

sures.data.schemas.generic_assets), 278
GenericAssetTypeSchema.Meta (class in flexmea-

sures.data.schemas.generic_assets), 278
get() (flexmeasures.api.dev.sensors.AssetAPI method),

197
get() (flexmeasures.api.dev.sensors.SensorAPI method),

197
get() (flexmeasures.api.v3_0.accounts.AccountAPI

method), 200
get() (flexmeasures.api.v3_0.users.UserAPI method),

215
get() (flexmeasures.ui.crud.accounts.AccountCrudUI

method), 310
get() (flexmeasures.ui.crud.assets.AssetCrudUI

method), 311
get() (flexmeasures.ui.crud.users.UserCrudUI method),

312
get() (flexmeasures.ui.views.sensors.SensorUI method),

315
get_account() (in module flexmea-

sures.ui.crud.accounts), 310
get_account_roles() (in module flexmea-

sures.data.services.accounts), 299
get_accounts() (in module flexmea-

sures.data.services.accounts), 299
get_accounts() (in module flexmea-

sures.ui.crud.accounts), 310
get_affected_classes() (in module flexmea-

sures.data.scripts.data_gen), 298
get_asset_group_queries() (in module flexmea-

sures.data.queries.generic_assets), 272
get_asset_group_queries() (in module flexmea-

sures.data.services.asset_grouping), 300

get_assets_by_account() (in module flexmea-
sures.ui.crud.assets), 311

get_attribute() (flexmea-
sures.data.models.data_sources.DataSource
method), 234

get_attribute() (flexmea-
sures.data.models.time_series.Sensor method),
262

get_belief_timing_criteria() (in module flexmea-
sures.data.queries.utils), 274

get_cell_nums() (in module flexmea-
sures.utils.grid_cells), 323

get_center_location_of_assets() (in module
flexmeasures.data.models.generic_assets), 240

get_chart() (flexmeasures.api.dev.sensors.SensorAPI
method), 197

get_chart() (flexmeasures.api.v3_0.assets.AssetAPI
method), 203

get_chart() (flexmeasures.ui.views.sensors.SensorUI
method), 315

get_chart_annotations() (flexmea-
sures.api.dev.sensors.SensorAPI method),
197

get_chart_data() (flexmea-
sures.api.dev.sensors.SensorAPI method),
197

get_chart_data() (flexmea-
sures.api.v3_0.assets.AssetAPI method),
203

get_classes_module() (in module flexmea-
sures.utils.coding_utils), 319

get_command() (flexmea-
sures.cli.utils.DeprecatedDefaultGroup
method), 226

get_config_warnings() (in module flexmea-
sures.utils.config_utils), 320

get_configuration_keys() (in module flexmea-
sures.utils.config_utils), 320

get_data() (flexmeasures.api.v3_0.sensors.SensorAPI
method), 207

get_data_source() (in module flexmea-
sures.data.utils), 308

get_data_source_for_job() (in module flexmea-
sures.data.services.scheduling), 304

get_data_source_info() (flexmea-
sures.data.models.data_sources.DataGenerator
class method), 233

get_data_source_info() (flexmea-
sures.data.models.planning.Scheduler class
method), 257

get_domain_parts() (in module flexmea-
sures.utils.entity_address_utils), 321

get_err_source_info() (in module flexmea-
sures.utils.error_utils), 322

344 Index

FlexMeasures Documentation, Release 0.17

get_first_day_of_next_month() (in module
flexmeasures.utils.time_utils), 326

get_git_description() (in module flexmea-
sures.ui.utils.view_utils), 314

get_host() (in module flexmea-
sures.utils.entity_address_utils), 321

get_location_queries() (in module flexmea-
sures.data.queries.generic_assets), 272

get_locations() (flexmea-
sures.utils.grid_cells.LatLngGrid method),
324

get_market() (in module flexmea-
sures.data.models.planning.utils), 255

get_mask_from_events() (flexmea-
sures.data.schemas.scheduling.process.ProcessSchedulerFlexModelSchema
method), 290

get_max_planning_horizon() (in module flexmea-
sures.utils.time_utils), 326

get_metavar() (flexmea-
sures.data.schemas.utils.MarshmallowClickMixin
method), 297

get_most_recent_clocktime_window() (in module
flexmeasures.utils.time_utils), 326

get_most_recent_hour() (in module flexmea-
sures.utils.time_utils), 326

get_most_recent_quarter() (in module flexmea-
sures.utils.time_utils), 326

get_normalization_transformation_from_sensor_attributes()
(in module flexmea-
sures.data.models.forecasting.model_spec_factory),
236

get_number_of_assets_in_account() (in module
flexmeasures.data.services.accounts), 299

get_object_or_literal() (flexmea-
sures.data.models.reporting.pandas_reporter.PandasReporter
method), 259

get_old_model_type() (in module flexmea-
sures.data.models.legacy_migration_utils),
245

get_or_create_annotation() (in module flexmea-
sures.data.models.annotations), 228

get_or_create_model() (in module flexmea-
sures.data.services.utils), 307

get_or_create_source() (in module flexmea-
sures.data.queries.data_sources), 271

get_or_create_source() (in module flexmea-
sures.data.services.data_sources), 301

get_pattern_match_word() (in module flexmea-
sures.data.models.planning.storage), 251

get_ping() (in module flexmea-
sures.api.common.routes), 185

get_power_values() (in module flexmea-
sures.data.models.planning.utils), 255

get_prices() (in module flexmea-

sures.data.models.planning.utils), 255
get_query_window() (in module flexmea-

sures.data.models.forecasting.utils), 239
get_schedule() (flexmea-

sures.api.v3_0.sensors.SensorAPI method),
208

get_sensor_or_abort() (in module flexmea-
sures.api.dev.sensors), 197

get_sensors() (in module flexmea-
sures.data.services.sensors), 305

get_source_criteria() (in module flexmea-
sures.data.queries.utils), 274

get_source_or_none() (in module flexmea-
sures.data.queries.data_sources), 271

get_source_or_none() (in module flexmea-
sures.data.services.data_sources), 301

get_task_run() (in module flexmea-
sures.api.common.implementations), 183

get_task_run() (in module flexmea-
sures.api.common.routes), 185

get_timerange() (flexmea-
sures.data.models.generic_assets.GenericAsset
class method), 242

get_timerange() (in module flexmea-
sures.data.services.timerange), 305

get_timerange_from_flag() (in module flexmea-
sures.cli.utils), 225

get_timezone() (in module flexmea-
sures.utils.time_utils), 326

get_user() (in module flexmea-
sures.data.services.users), 306

get_users() (in module flexmea-
sures.data.services.users), 306

get_users_by_account() (in module flexmea-
sures.ui.crud.users), 312

get_versions() (in module flexmeasures.api), 219
GetSensorDataSchema (class in flexmea-

sures.api.common.schemas.sensor_data),
187

great_circle_distance() (flexmea-
sures.data.models.generic_assets.GenericAsset
method), 242

ground_from() (flexmea-
sures.data.schemas.times.DurationField static
method), 294

group_assets_by_location() (in module flexmea-
sures.data.queries.generic_assets), 272

H
handle_500_error() (in module flexmea-

sures.ui.error_handlers), 313
handle_bad_request() (in module flexmea-

sures.ui.error_handlers), 313

Index 345

FlexMeasures Documentation, Release 0.17

handle_error() (in module flexmea-
sures.api.common.utils.args_parsing), 193

handle_forecasting_exception() (in module
flexmeasures.data.services.forecasting), 302

handle_generic_http_exception() (in module
flexmeasures.ui.error_handlers), 313

handle_not_found() (in module flexmea-
sures.ui.error_handlers), 313

handle_scheduling_exception() (in module
flexmeasures.data.services.scheduling), 304

handle_worker_exception() (in module flexmea-
sures.cli.jobs), 224

has_energy_sensors (flexmea-
sures.data.models.generic_assets.GenericAsset
property), 242

has_power_sensors (flexmea-
sures.data.models.generic_assets.GenericAsset
property), 242

has_role() (flexmeasures.data.models.user.Account
method), 267

has_role() (flexmeasures.data.models.user.User
method), 269

hash_function_arguments() (in module flexmea-
sures.data.services.utils), 307

HealthAPI (class in flexmeasures.api.v3_0.health), 206
heatmap() (in module flexmea-

sures.data.models.charts.belief_charts), 231
hover_label (flexmea-

sures.data.services.asset_grouping.AssetGroup
property), 301

humanize() (in module flexmea-
sures.utils.flexmeasures_inflection), 322

I
id (flexmeasures.data.models.data_sources.DataSource

attribute), 234
id (flexmeasures.data.models.time_series.Sensor at-

tribute), 263
idle_after_reaching_target() (in module flexmea-

sures.data.models.planning.utils), 256
implementation_gone() (in module flexmea-

sures.api.sunset.routes), 199
incomplete_event() (in module flexmea-

sures.api.common.responses), 183
index() (flexmeasures.api.v3_0.accounts.AccountAPI

method), 201
index() (flexmeasures.api.v3_0.assets.AssetAPI

method), 203
index() (flexmeasures.api.v3_0.public.ServicesAPI

method), 206
index() (flexmeasures.api.v3_0.sensors.SensorAPI

method), 209
index() (flexmeasures.api.v3_0.users.UserAPI method),

216

index() (flexmeasures.ui.crud.accounts.AccountCrudUI
method), 310

index() (flexmeasures.ui.crud.assets.AssetCrudUI
method), 311

index() (flexmeasures.ui.crud.users.UserCrudUI
method), 312

InfeasibleProblemException, 247
init_db() (in module flexmeasures.data.config), 227
init_sentry() (in module flexmea-

sures.utils.app_utils), 316
initialize_df() (in module flexmea-

sures.data.models.planning.utils), 256
initialize_index() (in module flexmea-

sures.data.models.planning.utils), 256
initialize_series() (in module flexmea-

sures.data.models.planning.utils), 256
Input (class in flexmeasures.data.schemas.io), 279
integrate_time_series() (in module flexmea-

sures.utils.calculations), 317
InternalApi (class in flexmea-

sures.ui.crud.api_wrapper), 310
invalid_datetime() (in module flexmea-

sures.api.common.responses), 183
invalid_domain() (in module flexmea-

sures.api.common.responses), 183
invalid_flex_config() (in module flexmea-

sures.api.common.responses), 183
invalid_horizon() (in module flexmea-

sures.api.common.responses), 183
invalid_market() (in module flexmea-

sures.api.common.responses), 183
invalid_message_type() (in module flexmea-

sures.api.common.responses), 183
invalid_method() (in module flexmea-

sures.api.common.responses), 183
invalid_period() (in module flexmea-

sures.api.common.responses), 183
invalid_ptu_duration() (in module flexmea-

sures.api.common.responses), 184
invalid_replacement() (in module flexmea-

sures.api.common.responses), 184
invalid_resolution_str() (in module flexmea-

sures.api.common.responses), 184
invalid_role() (in module flexmea-

sures.api.common.responses), 184
invalid_sender() (in module flexmea-

sures.api.common.responses), 184
invalid_source() (in module flexmea-

sures.api.common.responses), 184
invalid_timezone() (in module flexmea-

sures.api.common.responses), 184
invalid_unit() (in module flexmea-

sures.api.common.responses), 184
InvalidFlexMeasuresUser, 306

346 Index

FlexMeasures Documentation, Release 0.17

InvalidHorizonException, 234
is_authenticated (flexmea-

sures.data.models.user.User property), 269
is_currency_unit() (in module flexmea-

sures.utils.unit_utils), 328
is_eligible_for_comparing_individual_traces()

(flexmeasures.data.services.asset_grouping.AssetGroup
method), 301

is_energy_price_unit() (in module flexmea-
sures.utils.unit_utils), 328

is_energy_unit() (in module flexmea-
sures.utils.unit_utils), 328

is_power_unit() (in module flexmea-
sures.utils.unit_utils), 328

is_ready() (flexmeasures.api.v3_0.health.HealthAPI
method), 206

is_response_tuple() (in module flexmea-
sures.api.common.responses), 184

is_running() (in module flexmeasures.cli), 226
is_strictly_non_negative (flexmea-

sures.data.models.time_series.Sensor prop-
erty), 263

is_strictly_non_positive (flexmea-
sures.data.models.time_series.Sensor prop-
erty), 263

is_unique_asset (flexmea-
sures.data.services.asset_grouping.AssetGroup
property), 301

is_user() (in module flexmeasures.data.models.user),
267

is_valid_unit() (in module flexmea-
sures.utils.unit_utils), 328

J
job_cache() (in module flexmea-

sures.data.services.utils), 307
join_words_into_a_list() (in module flexmea-

sures.utils.flexmeasures_inflection), 322
JSON (class in flexmea-

sures.data.schemas.generic_assets), 278
JSON (class in flexmeasures.data.schemas.sensors), 292

K
knowledge_horizon_fnc (flexmea-

sures.data.models.time_series.Sensor at-
tribute), 263

knowledge_horizon_par (flexmea-
sures.data.models.time_series.Sensor at-
tribute), 263

L
label (flexmeasures.data.models.data_sources.DataSource

property), 234

latest_state() (flexmea-
sures.data.models.time_series.Sensor method),
263

LatestTaskRun (class in flexmea-
sures.data.models.task_runs), 261

LatitudeField (class in flexmea-
sures.data.schemas.locations), 280

LatitudeLongitudeValidator (class in flexmea-
sures.data.schemas.locations), 280

LatitudeValidator (class in flexmea-
sures.data.schemas.locations), 280

LatLngGrid (class in flexmeasures.utils.grid_cells), 323
launch_editor() (in module flexmea-

sures.cli.data_add), 223
list_items() (in module flexmeasures.cli.data_show),

224
load_bdf() (flexmeasures.api.common.schemas.sensor_data.PostSensorDataSchema

static method), 188
load_current() (flexmea-

sures.api.common.schemas.users.AccountIdField
class method), 191

load_custom_scheduler() (in module flexmea-
sures.data.services.scheduling), 304

load_data() (in module flexmea-
sures.api.common.utils.args_parsing), 193

load_data_and_make_response() (flexmea-
sures.api.common.schemas.sensor_data.GetSensorDataSchema
static method), 187

load_default() (flexmea-
sures.data.schemas.times.PlanningDurationField
class method), 294

localized_datetime() (in module flexmea-
sures.utils.time_utils), 326

localized_datetime_str() (in module flexmea-
sures.utils.time_utils), 326

locations_hex() (flexmea-
sures.utils.grid_cells.LatLngGrid method),
324

locations_square() (flexmea-
sures.utils.grid_cells.LatLngGrid method),
324

log_error() (in module flexmeasures.utils.error_utils),
322

log_missing_config_setting() (in module flexmea-
sures.utils.plugin_utils), 324

log_wrong_type_for_config_setting() (in module
flexmeasures.utils.plugin_utils), 324

logged_in_user_view() (in module flexmea-
sures.ui.views.logged_in_user), 314

LongitudeField (class in flexmea-
sures.data.schemas.locations), 280

LongitudeValidator (class in flexmea-
sures.data.schemas.locations), 280

lookup_model_specs_configurator() (in module

Index 347

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.forecasting), 240

M
make_fixed_viewpoint_forecasts() (in module

flexmeasures.data.services.forecasting), 302
make_hash_sha256() (in module flexmea-

sures.data.services.utils), 307
make_hashable() (flexmea-

sures.data.models.time_series.Sensor method),
263

make_hashable() (in module flexmea-
sures.data.services.utils), 307

make_rolling_viewpoint_forecasts() (in module
flexmeasures.data.services.forecasting), 302

make_schedule() (in module flexmea-
sures.data.services.scheduling), 304

MarshmallowClickMixin (class in flexmea-
sures.data.schemas.utils), 296

mean_absolute_error() (in module flexmea-
sures.utils.calculations), 318

mean_absolute_percentage_error() (in module
flexmeasures.utils.calculations), 318

measures_energy (flexmea-
sures.data.models.time_series.Sensor prop-
erty), 263

measures_energy_price (flexmea-
sures.data.models.time_series.Sensor prop-
erty), 263

measures_power (flexmea-
sures.data.models.time_series.Sensor prop-
erty), 263

merge_vega_lite_specs() (in module flexmea-
sures.data.models.charts.defaults), 231

MetaStorageScheduler (class in flexmea-
sures.data.models.planning.storage), 253

MisconfiguredForecastingJobException, 303
MissingAttributeException, 247, 270
model (flexmeasures.data.schemas.account.AccountRoleSchema.Meta

attribute), 277
model (flexmeasures.data.schemas.account.AccountSchema.Meta

attribute), 277
model (flexmeasures.data.schemas.generic_assets.GenericAssetSchema.Meta

attribute), 278
model (flexmeasures.data.schemas.generic_assets.GenericAssetTypeSchema.Meta

attribute), 278
model (flexmeasures.data.schemas.sensors.SensorSchema.Meta

attribute), 293
model (flexmeasures.data.schemas.users.UserSchema.Meta

attribute), 296
ModelException, 271
module

flexmeasures.api, 218
flexmeasures.api.common, 196

flexmeasures.api.common.implementations,
183

flexmeasures.api.common.responses, 183
flexmeasures.api.common.routes, 185
flexmeasures.api.common.schemas, 192
flexmeasures.api.common.schemas.generic_assets,

186
flexmeasures.api.common.schemas.sensor_data,

187
flexmeasures.api.common.schemas.sensors,

190
flexmeasures.api.common.schemas.users,

191
flexmeasures.api.common.utils, 196
flexmeasures.api.common.utils.api_utils,

192
flexmeasures.api.common.utils.args_parsing,

193
flexmeasures.api.common.utils.deprecation_utils,

193
flexmeasures.api.common.utils.validators,

196
flexmeasures.api.dev, 198
flexmeasures.api.dev.sensors, 197
flexmeasures.api.play, 199
flexmeasures.api.play.implementations,

198
flexmeasures.api.play.routes, 198
flexmeasures.api.sunset, 199
flexmeasures.api.sunset.routes, 199
flexmeasures.api.v3_0, 218
flexmeasures.api.v3_0.accounts, 200
flexmeasures.api.v3_0.assets, 202
flexmeasures.api.v3_0.health, 206
flexmeasures.api.v3_0.public, 206
flexmeasures.api.v3_0.sensors, 206
flexmeasures.api.v3_0.users, 215
flexmeasures.app, 219
flexmeasures.auth, 222
flexmeasures.auth.decorators, 219
flexmeasures.auth.error_handling, 221
flexmeasures.auth.policy, 222
flexmeasures.cli, 226
flexmeasures.cli.data_add, 223
flexmeasures.cli.data_delete, 223
flexmeasures.cli.data_edit, 223
flexmeasures.cli.data_show, 224
flexmeasures.cli.db_ops, 224
flexmeasures.cli.jobs, 224
flexmeasures.cli.monitor, 224
flexmeasures.cli.utils, 225
flexmeasures.data, 309
flexmeasures.data.config, 227
flexmeasures.data.models, 271

348 Index

FlexMeasures Documentation, Release 0.17

flexmeasures.data.models.annotations, 228
flexmeasures.data.models.charts, 231
flexmeasures.data.models.charts.belief_charts,

230
flexmeasures.data.models.charts.defaults,

231
flexmeasures.data.models.data_sources,

232
flexmeasures.data.models.forecasting, 240
flexmeasures.data.models.forecasting.exceptions,

234
flexmeasures.data.models.forecasting.model_spec_factory,

234
flexmeasures.data.models.forecasting.model_specs,

238
flexmeasures.data.models.forecasting.model_specs.linear_regression,

238
flexmeasures.data.models.forecasting.model_specs.naive,

238
flexmeasures.data.models.forecasting.utils,

239
flexmeasures.data.models.generic_assets,

240
flexmeasures.data.models.legacy_migration_utils,

244
flexmeasures.data.models.parsing_utils,

246
flexmeasures.data.models.planning, 256
flexmeasures.data.models.planning.battery,

246
flexmeasures.data.models.planning.charging_station,

246
flexmeasures.data.models.planning.exceptions,

247
flexmeasures.data.models.planning.linear_optimization,

247
flexmeasures.data.models.planning.process,

248
flexmeasures.data.models.planning.storage,

250
flexmeasures.data.models.planning.utils,

255
flexmeasures.data.models.reporting, 260
flexmeasures.data.models.reporting.aggregator,

257
flexmeasures.data.models.reporting.pandas_reporter,

258
flexmeasures.data.models.reporting.profit,

259
flexmeasures.data.models.task_runs, 261
flexmeasures.data.models.time_series, 261
flexmeasures.data.models.user, 267
flexmeasures.data.models.validation_utils,

270

flexmeasures.data.models.weather, 271
flexmeasures.data.queries, 276
flexmeasures.data.queries.annotations,

271
flexmeasures.data.queries.data_sources,

271
flexmeasures.data.queries.generic_assets,

272
flexmeasures.data.queries.sensors, 273
flexmeasures.data.queries.utils, 274
flexmeasures.data.schemas, 297
flexmeasures.data.schemas.account, 277
flexmeasures.data.schemas.attributes, 277
flexmeasures.data.schemas.generic_assets,

277
flexmeasures.data.schemas.io, 279
flexmeasures.data.schemas.locations, 280
flexmeasures.data.schemas.reporting, 289
flexmeasures.data.schemas.reporting.aggregation,

281
flexmeasures.data.schemas.reporting.pandas_reporter,

283
flexmeasures.data.schemas.reporting.profit,

287
flexmeasures.data.schemas.scheduling, 291
flexmeasures.data.schemas.scheduling.process,

290
flexmeasures.data.schemas.scheduling.storage,

291
flexmeasures.data.schemas.sensors, 292
flexmeasures.data.schemas.sources, 294
flexmeasures.data.schemas.times, 294
flexmeasures.data.schemas.units, 295
flexmeasures.data.schemas.users, 296
flexmeasures.data.schemas.utils, 296
flexmeasures.data.scripts, 298
flexmeasures.data.scripts.data_gen, 297
flexmeasures.data.scripts.visualize_data_model,

298
flexmeasures.data.services, 307
flexmeasures.data.services.accounts, 299
flexmeasures.data.services.annotations,

299
flexmeasures.data.services.asset_grouping,

300
flexmeasures.data.services.data_sources,

301
flexmeasures.data.services.forecasting,

301
flexmeasures.data.services.scheduling,

303
flexmeasures.data.services.sensors, 305
flexmeasures.data.services.time_series,

305

Index 349

FlexMeasures Documentation, Release 0.17

flexmeasures.data.services.timerange, 305
flexmeasures.data.services.users, 306
flexmeasures.data.services.utils, 307
flexmeasures.data.transactional, 308
flexmeasures.data.utils, 308
flexmeasures.ui, 315
flexmeasures.ui.crud, 312
flexmeasures.ui.crud.accounts, 310
flexmeasures.ui.crud.api_wrapper, 310
flexmeasures.ui.crud.assets, 311
flexmeasures.ui.crud.users, 312
flexmeasures.ui.error_handlers, 313
flexmeasures.ui.utils, 314
flexmeasures.ui.utils.chart_defaults, 313
flexmeasures.ui.utils.view_utils, 313
flexmeasures.ui.views, 315
flexmeasures.ui.views.control, 314
flexmeasures.ui.views.logged_in_user, 314
flexmeasures.ui.views.new_dashboard, 315
flexmeasures.ui.views.sensors, 315
flexmeasures.utils, 329
flexmeasures.utils.app_utils, 316
flexmeasures.utils.calculations, 317
flexmeasures.utils.coding_utils, 318
flexmeasures.utils.config_defaults, 319
flexmeasures.utils.config_utils, 320
flexmeasures.utils.entity_address_utils,

320
flexmeasures.utils.error_utils, 322
flexmeasures.utils.flexmeasures_inflection,

322
flexmeasures.utils.geo_utils, 323
flexmeasures.utils.grid_cells, 323
flexmeasures.utils.plugin_utils, 324
flexmeasures.utils.time_utils, 325
flexmeasures.utils.unit_utils, 328

MsgStyle (class in flexmeasures.cli.utils), 226
multiply_dataframe_with_deterministic_beliefs()

(in module flexmeasures.data.queries.utils),
274

N
Naive (class in flexmea-

sures.data.models.forecasting.model_specs.naive),
238

naive_specs_configurator() (in module flexmea-
sures.data.models.forecasting.model_specs.naive),
238

naive_utc_from() (in module flexmea-
sures.utils.time_utils), 327

name (flexmeasures.data.models.data_sources.DataSource
attribute), 234

name (flexmeasures.data.models.time_series.Sensor at-
tribute), 263

name (flexmeasures.data.schemas.utils.MarshmallowClickMixin
attribute), 297

naturalized_datetime_str() (in module flexmea-
sures.utils.time_utils), 327

NewAssetForm (class in flexmeasures.ui.crud.assets),
312

no_backup() (in module flexmea-
sures.api.common.responses), 184

no_message_type() (in module flexmea-
sures.api.common.responses), 184

NotEnoughDataException, 234
num_forecasts() (in module flexmea-

sures.data.services.forecasting), 303

O
ols_specs_configurator() (in module flexmea-

sures.data.models.forecasting.model_specs.linear_regression),
238

OptimizationDirection (class in flexmea-
sures.data.schemas.scheduling.process),
290

optional_arg_decorator() (in module flexmea-
sures.utils.coding_utils), 319

optional_duration_accepted() (in module flexmea-
sures.api.common.utils.validators), 196

opts (flexmeasures.data.schemas.account.AccountRoleSchema
attribute), 277

opts (flexmeasures.data.schemas.account.AccountSchema
attribute), 277

opts (flexmeasures.data.schemas.generic_assets.GenericAssetSchema
attribute), 278

opts (flexmeasures.data.schemas.generic_assets.GenericAssetTypeSchema
attribute), 278

opts (flexmeasures.data.schemas.sensors.SensorSchema
attribute), 293

opts (flexmeasures.data.schemas.users.UserSchema at-
tribute), 296

outdated_event_id() (in module flexmea-
sures.api.common.responses), 184

Output (class in flexmeasures.data.schemas.io), 279
override_from_config() (in module flexmea-

sures.api.common.utils.deprecation_utils),
195

owned_by() (flexmeasures.ui.crud.assets.AssetCrudUI
method), 311

P
PandasMethodCall (class in flexmea-

sures.data.schemas.reporting.pandas_reporter),
283

PandasReporter (class in flexmea-
sures.data.models.reporting.pandas_reporter),
258

350 Index

FlexMeasures Documentation, Release 0.17

PandasReporterConfigSchema (class in flexmea-
sures.data.schemas.reporting.pandas_reporter),
283

PandasReporterParametersSchema (class in flexmea-
sures.data.schemas.reporting.pandas_reporter),
285

parameterize() (in module flexmea-
sures.utils.flexmeasures_inflection), 322

parameterized_name (flexmea-
sures.data.services.asset_grouping.AssetGroup
property), 301

parse_attribute_value() (in module flexmea-
sures.cli.data_edit), 223

parse_config_entry_by_account_roles() (in mod-
ule flexmeasures.utils.app_utils), 316

parse_duration() (in module flexmea-
sures.api.common.utils.validators), 196

parse_entity_address() (in module flexmea-
sures.utils.entity_address_utils), 321

parse_horizon() (in module flexmea-
sures.api.common.utils.validators), 196

parse_lat_lng() (in module flexmea-
sures.utils.geo_utils), 323

parse_queue_list() (in module flexmeasures.cli.jobs),
224

parse_source() (in module flexmeasures.cli.data_add),
223

parse_source_arg() (in module flexmea-
sures.data.models.parsing_utils), 246

PartialTaskCompletionException, 308
patch() (flexmeasures.api.v3_0.assets.AssetAPI

method), 204
patch() (flexmeasures.api.v3_0.sensors.SensorAPI

method), 210
patch() (flexmeasures.api.v3_0.users.UserAPI method),

217
permission_required_for_context() (in module

flexmeasures.auth.decorators), 220
persist_flex_model() (flexmea-

sures.data.models.planning.Scheduler method),
257

persist_flex_model() (flexmea-
sures.data.models.planning.storage.MetaStorageScheduler
method), 253

ping() (in module flexmea-
sures.api.common.implementations), 183

PlanningDurationField (class in flexmea-
sures.data.schemas.times), 294

pluralize() (in module flexmea-
sures.api.common.responses), 184

pluralize() (in module flexmea-
sures.utils.flexmeasures_inflection), 322

possibly_convert_units() (flexmea-
sures.api.common.schemas.sensor_data.PostSensorDataSchema

static method), 188
possibly_extend_end() (flexmea-

sures.data.models.planning.storage.MetaStorageScheduler
method), 253

possibly_upsample_values() (flexmea-
sures.api.common.schemas.sensor_data.PostSensorDataSchema
static method), 188

post() (flexmeasures.api.v3_0.assets.AssetAPI method),
204

post() (flexmeasures.api.v3_0.sensors.SensorAPI
method), 211

post() (flexmeasures.ui.crud.assets.AssetCrudUI
method), 311

post_data() (flexmeasures.api.v3_0.sensors.SensorAPI
method), 212

post_load_sequence() (flexmea-
sures.api.common.schemas.sensor_data.PostSensorDataSchema
method), 188

post_load_sequence() (flexmea-
sures.data.schemas.scheduling.storage.StorageFlexModelSchema
method), 291

post_load_time_restrictions() (flexmea-
sures.data.schemas.scheduling.process.ProcessSchedulerFlexModelSchema
method), 291

post_task_run() (in module flexmea-
sures.api.common.implementations), 183

post_task_run() (in module flexmea-
sures.api.common.routes), 185

PostSensorDataSchema (class in flexmea-
sures.api.common.schemas.sensor_data),
187

potentially_limit_assets_query_to_account()
(in module flexmeasures.data.queries.utils),
275

power_value_too_big() (in module flexmea-
sures.api.common.responses), 184

power_value_too_small() (in module flexmea-
sures.api.common.responses), 184

pre_load_process_type() (flexmea-
sures.data.schemas.scheduling.process.ProcessSchedulerFlexModelSchema
method), 291

prepare_annotations_for_chart() (in module
flexmeasures.data.services.annotations), 299

prepend_serie() (in module flexmea-
sures.data.models.planning.storage), 251

print_query() (in module flexmea-
sures.utils.error_utils), 322

process_api_validation_errors() (flexmea-
sures.ui.crud.assets.AssetForm method), 311

process_internal_api_response() (in module
flexmeasures.ui.crud.assets), 311

process_internal_api_response() (in module
flexmeasures.ui.crud.users), 312

ProcessScheduler (class in flexmea-

Index 351

FlexMeasures Documentation, Release 0.17

sures.data.models.planning.process), 248
ProcessSchedulerFlexModelSchema

(class in flexmea-
sures.data.schemas.scheduling.process),
290

ProcessType (class in flexmea-
sures.data.schemas.scheduling.process),
291

ProductionConfig (class in flexmea-
sures.utils.config_defaults), 319

ProfitOrLossReporter (class in flexmea-
sures.data.models.reporting.profit), 259

ProfitOrLossReporterConfigSchema (class in
flexmeasures.data.schemas.reporting.profit),
287

ProfitOrLossReporterParametersSchema (class in
flexmeasures.data.schemas.reporting.profit),
287

ptus_incomplete() (in module flexmea-
sures.api.common.responses), 184

public() (flexmeasures.api.v3_0.assets.AssetAPI
method), 205

Q
QuantityField (class in flexmea-

sures.data.schemas.units), 295
QuantityValidator (class in flexmea-

sures.data.schemas.units), 296
query (flexmeasures.data.models.annotations.AccountAnnotationRelationship

attribute), 228
query (flexmeasures.data.models.annotations.Annotation

attribute), 229
query (flexmeasures.data.models.annotations.GenericAssetAnnotationRelationship

attribute), 229
query (flexmeasures.data.models.annotations.SensorAnnotationRelationship

attribute), 230
query (flexmeasures.data.models.generic_assets.GenericAsset

attribute), 242
query (flexmeasures.data.models.generic_assets.GenericAssetType

attribute), 244
query (flexmeasures.data.models.task_runs.LatestTaskRun

attribute), 261
query (flexmeasures.data.models.time_series.Sensor at-

tribute), 263
query (flexmeasures.data.models.time_series.TimedBelief

attribute), 265
query (flexmeasures.data.models.user.Account attribute),

267
query (flexmeasures.data.models.user.AccountRole at-

tribute), 268
query (flexmeasures.data.models.user.Role attribute),

268
query (flexmeasures.data.models.user.RolesAccounts at-

tribute), 269

query (flexmeasures.data.models.user.RolesUsers
attribute), 269

query (flexmeasures.data.models.user.User attribute),
270

query_asset_annotations() (in module flexmea-
sures.data.queries.annotations), 271

query_assets_by_type() (in module flexmea-
sures.data.queries.generic_assets), 273

query_sensor_by_name_and_generic_asset_type_name()
(in module flexmeasures.data.queries.sensors),
273

query_sensors_by_proximity() (in module flexmea-
sures.data.queries.sensors), 273

quickref_directive() (in module flexmea-
sures.api.v3_0.public), 206

R
rad_lng() (in module flexmeasures.utils.geo_utils), 323
read_config() (in module flexmea-

sures.utils.config_utils), 320
read_custom_config() (in module flexmea-

sures.utils.config_utils), 320
read_env_vars() (in module flexmea-

sures.utils.config_utils), 320
record_run() (flexmea-

sures.data.models.task_runs.LatestTaskRun
static method), 261

register_at() (in module flexmeasures.api), 219
register_at() (in module flexmeasures.api.common),

196
register_at() (in module flexmeasures.api.dev), 198
register_at() (in module flexmeasures.api.play), 199
register_at() (in module flexmeasures.api.sunset),

200
register_at() (in module flexmeasures.api.v3_0), 218
register_at() (in module flexmeasures.auth), 222
register_at() (in module flexmeasures.cli), 226
register_at() (in module flexmeasures.data), 309
register_at() (in module flexmeasures.ui), 315
register_plugins() (in module flexmea-

sures.utils.plugin_utils), 325
register_rq_dashboard() (in module flexmea-

sures.ui), 315
remember_last_seen() (in module flexmea-

sures.data.models.user), 267
remember_login() (in module flexmea-

sures.data.models.user), 267
remove_cookie_and_token_access() (in module

flexmeasures.data.services.users), 306
render_flexmeasures_template() (in module

flexmeasures.ui.utils.view_utils), 314
render_user() (in module flexmeasures.ui.crud.users),

312

352 Index

FlexMeasures Documentation, Release 0.17

Reporter (class in flexmeasures.data.models.reporting),
260

ReporterConfigSchema (class in flexmea-
sures.data.schemas.reporting), 289

ReporterParametersSchema (class in flexmea-
sures.data.schemas.reporting), 289

request_auth_token() (in module flexmeasures.api),
219

request_processed() (in module flexmea-
sures.api.common.responses), 184

required_info_missing() (in module flexmea-
sures.api.common.responses), 184

RequiredInput (class in flexmeasures.data.schemas.io),
279

RequiredOutput (class in flexmea-
sures.data.schemas.io), 279

reset_db() (in module flexmea-
sures.data.scripts.data_gen), 298

reset_password_for() (flexmea-
sures.ui.crud.users.UserCrudUI method),
312

reset_user_password() (flexmea-
sures.api.v3_0.users.UserAPI method), 218

resolution_to_hour_factor() (in module flexmea-
sures.utils.time_utils), 327

restore_data() (in module flexmea-
sures.api.play.routes), 198

restore_data_response() (in module flexmea-
sures.api.play.implementations), 198

reverse_domain_name() (in module flexmea-
sures.utils.entity_address_utils), 321

Role (class in flexmeasures.data.models.user), 268
roles (flexmeasures.data.models.user.User attribute),

270
roles_accepted() (in module flexmea-

sures.auth.decorators), 221
roles_required() (in module flexmea-

sures.auth.decorators), 221
RolesAccounts (class in flexmea-

sures.data.models.user), 268
RolesUsers (class in flexmeasures.data.models.user),

269
root_dispatcher() (in module flexmea-

sures.utils.app_utils), 316
round_to_closest_hour() (in module flexmea-

sures.utils.time_utils), 327
round_to_closest_quarter() (in module flexmea-

sures.utils.time_utils), 327

S
sanitize_expression() (in module flexmea-

sures.data.models.planning.storage), 251
save_and_enqueue() (in module flexmea-

sures.api.common.utils.api_utils), 193

save_tables() (in module flexmea-
sures.data.scripts.data_gen), 298

save_to_db() (in module flexmeasures.data.utils), 308
save_to_session() (in module flexmea-

sures.data.utils), 309
schedule_battery() (in module flexmea-

sures.data.models.planning.battery), 246
schedule_charging_station() (in module flexmea-

sures.data.models.planning.charging_station),
246

Scheduler (class in flexmeasures.data.models.planning),
256

search() (flexmeasures.data.models.time_series.TimedBelief
class method), 265

search_annotations() (flexmea-
sures.data.models.generic_assets.GenericAsset
method), 242

search_annotations() (flexmea-
sures.data.models.time_series.Sensor method),
263

search_annotations() (flexmea-
sures.data.models.user.Account method),
268

search_beliefs() (flexmea-
sures.data.models.generic_assets.GenericAsset
method), 242

search_beliefs() (flexmea-
sures.data.models.time_series.Sensor method),
264

select_schema_to_ensure_list_of_floats()
(in module flexmea-
sures.api.common.schemas.sensor_data),
187

send_lastseen_monitoring_alert() (in module
flexmeasures.cli.monitor), 224

send_task_monitoring_alert() (in module flexmea-
sures.cli.monitor), 224

Sensor (class in flexmeasures.data.models.time_series),
261

sensor_id (flexmeasures.data.models.time_series.TimedBelief
attribute), 267

SensorAnnotationRelationship (class in flexmea-
sures.data.models.annotations), 229

SensorAPI (class in flexmeasures.api.dev.sensors), 197
SensorAPI (class in flexmeasures.api.v3_0.sensors), 206
SensorDataDescriptionSchema (class in flexmea-

sures.api.common.schemas.sensor_data), 188
SensorField (class in flexmea-

sures.api.common.schemas.sensors), 190
SensorIdField (class in flexmea-

sures.api.common.schemas.sensors), 190
SensorIdField (class in flexmea-

sures.data.schemas.sensors), 293
sensors_to_show (flexmea-

Index 353

FlexMeasures Documentation, Release 0.17

sures.data.models.generic_assets.GenericAsset
property), 243

SensorSchema (class in flexmea-
sures.data.schemas.sensors), 293

SensorSchema.Meta (class in flexmea-
sures.data.schemas.sensors), 293

SensorSchemaMixin (class in flexmea-
sures.data.schemas.sensors), 293

SensorUI (class in flexmeasures.ui.views.sensors), 315
server_now() (in module flexmeasures.utils.time_utils),

327
ServicesAPI (class in flexmeasures.api.v3_0.public),

206
set_random_password() (in module flexmea-

sures.data.services.users), 306
set_secret_key() (in module flexmea-

sures.utils.app_utils), 316
set_session_variables() (in module flexmea-

sures.ui.utils.view_utils), 314
set_training_and_testing_dates() (in module

flexmeasures.data.models.forecasting.utils),
239

show_image() (in module flexmea-
sures.data.scripts.visualize_data_model),
298

simplify_index() (in module flexmea-
sures.data.queries.utils), 275

sin_rad_lat() (in module flexmeasures.utils.geo_utils),
323

single_true() (in module flexmeasures.cli.data_edit),
223

SingleValueField (class in flexmea-
sures.api.common.schemas.sensor_data),
189

SOCValueSchema (class in flexmea-
sures.data.schemas.scheduling.storage),
291

sort_dict() (in module flexmea-
sures.utils.coding_utils), 319

source_id (flexmeasures.data.models.time_series.TimedBelief
attribute), 267

source_type_criterion() (in module flexmea-
sures.data.queries.utils), 275

source_type_exclusion_criterion() (in module
flexmeasures.data.queries.utils), 276

stack_annotations() (in module flexmea-
sures.data.services.annotations), 300

StagingConfig (class in flexmea-
sures.utils.config_defaults), 319

StorageFallbackScheduler (class in flexmea-
sures.data.models.planning.storage), 253

StorageFlexModelSchema (class in flexmea-
sures.data.schemas.scheduling.storage),
291

StorageScheduler (class in flexmea-
sures.data.models.planning.storage), 254

sunset_blueprint() (in module flexmea-
sures.api.common.utils.deprecation_utils),
195

supported_horizons() (in module flexmea-
sures.utils.time_utils), 327

T
TBSeriesSpecs (class in flexmea-

sures.data.models.forecasting.model_spec_factory),
237

TestingConfig (class in flexmea-
sures.utils.config_defaults), 319

TimedBelief (class in flexmea-
sures.data.models.time_series), 265

timedelta_to_pandas_freq_str() (in module
flexmeasures.utils.time_utils), 327

TimeIntervalField (class in flexmea-
sures.data.schemas.times), 294

TimeIntervalSchema (class in flexmea-
sures.data.schemas.times), 295

timeit() (in module flexmeasures.utils.coding_utils),
319

timerange (flexmeasures.data.models.generic_assets.GenericAsset
property), 243

timerange (flexmeasures.data.models.time_series.Sensor
property), 264

timerange_of_sensors_to_show (flexmea-
sures.data.models.generic_assets.GenericAsset
property), 244

timezone (flexmeasures.data.models.generic_assets.GenericAsset
property), 244

timezone (flexmeasures.data.models.time_series.Sensor
attribute), 265

titleize() (in module flexmea-
sures.utils.flexmeasures_inflection), 322

to_annotation_frame() (in module flexmea-
sures.data.models.annotations), 228

to_http_time() (in module flexmea-
sures.utils.time_utils), 327

to_json() (flexmeasures.ui.crud.assets.AssetForm
method), 311

to_preferred() (in module flexmea-
sures.utils.unit_utils), 329

toggle_active() (flexmea-
sures.ui.crud.users.UserCrudUI method),
312

trigger_optional_fallback() (in module flexmea-
sures.data.services.scheduling), 305

trigger_schedule() (flexmea-
sures.api.v3_0.sensors.SensorAPI method),
213

354 Index

FlexMeasures Documentation, Release 0.17

tz_index_naively() (in module flexmea-
sures.utils.time_utils), 327

U
unapplicable_resolution() (in module flexmea-

sures.api.common.responses), 184
unauthenticated_handler() (in module flexmea-

sures.auth.error_handling), 221
unauthenticated_handler() (in module flexmea-

sures.ui.error_handlers), 313
unauthenticated_handler_e() (in module flexmea-

sures.auth.error_handling), 221
unauthorized_handler() (in module flexmea-

sures.auth.error_handling), 221
unauthorized_handler() (in module flexmea-

sures.ui.error_handlers), 313
unauthorized_handler_e() (in module flexmea-

sures.auth.error_handling), 222
unique_ever_seen() (in module flexmea-

sures.api.common.utils.api_utils), 193
unit (flexmeasures.data.models.time_series.Sensor at-

tribute), 265
units_are_convertible() (in module flexmea-

sures.utils.unit_utils), 329
unknown_prices() (in module flexmea-

sures.api.common.responses), 185
unknown_schedule() (in module flexmea-

sures.api.common.responses), 185
UnknownForecastException, 247
UnknownMarketException, 247
UnknownPricesException, 247
unrecognized_asset() (in module flexmea-

sures.api.common.responses), 185
unrecognized_backup() (in module flexmea-

sures.api.common.responses), 185
unrecognized_connection_group() (in module

flexmeasures.api.common.responses), 185
unrecognized_event() (in module flexmea-

sures.api.common.responses), 185
unrecognized_event_type() (in module flexmea-

sures.api.common.responses), 185
unrecognized_market() (in module flexmea-

sures.api.common.responses), 185
unrecognized_sensor() (in module flexmea-

sures.api.common.responses), 185
upsample_values() (in module flexmea-

sures.api.common.utils.api_utils), 193
User (class in flexmeasures.data.models.user), 269
user_can_create_assets() (in module flexmea-

sures.ui.crud.assets), 311
user_can_delete() (in module flexmea-

sures.ui.crud.assets), 311
user_has_admin_access() (in module flexmea-

sures.auth.policy), 222

user_matches_principals() (in module flexmea-
sures.auth.policy), 222

user_source_criterion() (in module flexmea-
sures.data.queries.utils), 276

UserAPI (class in flexmeasures.api.v3_0.users), 215
UserCrudUI (class in flexmeasures.ui.crud.users), 312
UserForm (class in flexmeasures.ui.crud.users), 312
UserIdField (class in flexmea-

sures.api.common.schemas.users), 191
username() (in module flexmeasures.ui.utils.view_utils),

314
UserSchema (class in flexmeasures.data.schemas.users),

296
UserSchema.Meta (class in flexmea-

sures.data.schemas.users), 296
uses_dot() (in module flexmea-

sures.data.scripts.visualize_data_model),
298

V
validate_chaining() (flexmea-

sures.data.schemas.reporting.pandas_reporter.PandasReporterConfigSchema
method), 285

validate_constraint() (in module flexmea-
sures.data.models.planning.storage), 252

validate_on_submit() (flexmea-
sures.ui.crud.assets.AssetForm method),
312

validate_price_sensors() (flexmea-
sures.data.schemas.reporting.profit.ProfitOrLossReporterConfigSchema
method), 287

validate_special_attributes() (in module
flexmeasures.data.schemas.attributes), 277

validate_storage_constraints() (in module
flexmeasures.data.models.planning.storage),
252

validate_time_parameters() (flexmea-
sures.data.schemas.reporting.pandas_reporter.PandasReporterParametersSchema
method), 286

validation_error_handler() (in module flexmea-
sures.api.common.utils.args_parsing), 193

W
weekly_heatmap() (in module flexmea-

sures.data.models.charts.belief_charts), 231
weighted_absolute_percentage_error() (in mod-

ule flexmeasures.utils.calculations), 318
with_appcontext_if_needed() (in module flexmea-

sures.data.schemas.utils), 296
with_options() (in module flexmea-

sures.ui.crud.assets), 311
WrongTypeAttributeException, 247, 270

Index 355

	A quick glance at usage
	Use cases
	A possible road to start using FlexMeasures in your operation
	Where to start reading?
	Developer support
	I need help with integrating real-time data and continuously computing new data
	It’s hard to correctly model data with different sources, resolutions, horizons and even uncertainties
	I want to build new features quickly, not spend days solving basic problems
	Getting started
	Using FlexMeasures
	Hosting FlexMeasures
	Plugin developers
	Core developers

	Get in touch
	FlexMeasures Changelog
	v0.17.0 | November 8, 2023
	New features
	Infrastructure / Support

	v0.16.1 | October 2, 2023
	Bugfixes

	v0.16.0 | September 27, 2023
	New features
	Infrastructure / Support

	v0.15.2 | October 2, 2023
	Bugfixes

	v0.15.1 | August 28, 2023
	Bugfixes

	v0.15.0 | August 9, 2023
	New features
	Bugfixes
	Infrastructure / Support

	v0.14.3 | October 2, 2023
	Bugfixes

	v0.14.2 | July 25, 2023
	Bugfixes

	v0.14.1 | June 26, 2023
	Bugfixes

	v0.14.0 | June 15, 2023
	New features
	Bugfixes
	Infrastructure / Support

	v0.13.3 | June 10, 2023
	Bugfixes

	v0.13.2 | June 9, 2023
	Bugfixes

	v0.13.1 | May 12, 2023
	Bugfixes

	v0.13.0 | May 1, 2023
	New features
	Bugfixes
	Infrastructure / Support

	v0.12.3 | February 28, 2023
	Bugfixes

	v0.12.2 | February 4, 2023
	Bugfixes

	v0.12.1 | January 12, 2023
	Bugfixes

	v0.12.0 | January 4, 2023
	New features
	Bugfixes
	Infrastructure / Support

	v0.11.3 | November 2, 2022
	Bugfixes

	v0.11.2 | September 6, 2022
	Bugfixes

	v0.11.1 | September 5, 2022
	Bugfixes

	v0.11.0 | August 28, 2022
	New features
	Bugfixes
	Infrastructure / Support

	v0.10.1 | August 12, 2022
	Bugfixes

	v0.10.0 | May 8, 2022
	New features
	Bugfixes
	Infrastructure / Support

	v0.9.4 | April 28, 2022
	Bugfixes

	v0.9.3 | April 15, 2022
	Bugfixes

	v0.9.2 | April 10, 2022
	Bugfixes

	v0.9.1 | March 31, 2022
	Bugfixes

	v0.9.0 | March 25, 2022
	New features
	Bugfixes
	Infrastructure / Support

	v0.8.0 | January 24, 2022
	New features
	Deprecations
	Bugfixes
	Infrastructure / Support

	v0.7.1 | November 8, 2021
	Bugfixes

	v0.7.0 | October 26, 2021
	New features
	Bugfixes
	Infrastructure / Support

	v0.6.1 | October 23, 2021
	New features
	Bugfixes
	Infrastructure / Support

	v0.6.0 | September 3, 2021
	New features
	Bugfixes
	Infrastructure / Support

	v0.5.0 | June 7, 2021
	New features
	Bugfixes
	Infrastructure / Support

	v0.4.1 | May 7, 2021
	Bugfixes

	v0.4.0 | April 29, 2021
	New features
	Bugfixes
	Infrastructure / Support

	v0.3.1 | April 9, 2021
	Bugfixes

	v0.3.0 | April 2, 2021
	New features
	Bugfixes
	Infrastructure / Support

	v0.2.3 | February 27, 2021
	New features
	Bugfixes
	Infrastructure / Support

	Benefits
	Automation
	Insight
	Autonomy
	Profit sharing

	In-built smart functionality
	Monitoring
	Forecasting
	Scheduling

	Algorithms
	Forecasting
	Scheduling
	Storage devices

	Possible future work on algorithms
	More configurable forecasting
	Other optimisation goals for scheduling
	Scheduling of other flexible asset types
	Broker algorithm
	Trading algorithm

	Security aspects
	Data
	Authentication
	Authorization

	Device scheduler
	Introduction
	Notation
	Indexes
	Parameters
	Variables

	Cost function
	State dynamics
	Perfect efficiency
	Left efficiency
	Right efficiency
	Linear efficiency

	Constraints
	Device bounds
	Upwards/Downwards activation selection
	Grid constraints
	Power coupling constraints

	Installation & First steps
	Preparing FlexMeasures for running
	Install FlexMeasures
	Make a secret key for sessions and password salts
	Configure environment
	Preparing the time series database

	Adding data
	Add an account & user
	Add structure
	Add your first asset
	Add your first sensor
	Add time series data (beliefs)

	Running FlexMeasures as a web service
	Other settings, for full functionality
	Set mail settings
	Install an LP solver
	CBC
	HiGHS

	Install and configure Redis

	Where to go from here?

	Toy example: Introduction and setup
	Install Flexmeasures and the database
	Add some structural data
	Add some price data

	Toy example: Scheduling a battery, from scratch
	Make a schedule

	Toy example II: Adding solar production and limited grid connection
	Adding PV production forecasts
	Trigger an updated schedule

	Toy example III: Computing schedules for processes
	Setup
	Trigger an updated schedule
	Results

	Toy example IV: Computing reports
	Setup
	Compute headroom
	Process scheduler profit
	Inflexible process
	Breakable process
	Shiftable process

	Posting data
	Prerequisites
	Posting sensor data
	Being explicit when posting power data
	Single value, single sensor
	Multiple values, single sensor

	Observations vs forecasts: The time of knowledge
	Posting flexibility states

	Forecasting & scheduling
	Maintaining the queues
	How forecasting jobs are queued
	Historical forecasts

	How scheduling jobs are queued
	Getting power forecasts (prognoses)
	Getting schedules (control signals)

	Building custom UIs
	Get an authentication token
	Load user information
	Load asset information
	Embedding charts

	Dashboard
	Interactive map of assets
	Summary of asset types
	Grouping by accounts

	Assets & data
	Administration
	Assets
	Users

	API Introduction
	Main endpoint and API versions
	Authentication
	Deprecation and sunset
	Clients
	Hosts
	Stage 1: Deprecation
	Stage 2: Preliminary sunset
	Stage 3: Definitive sunset

	Notation
	Singular vs plural keys
	Sensors and entity addresses
	Entity address structure
	Types of sensor identification used in FlexMeasures

	Timeseries
	Describing flexibility
	Flex model
	Flex context

	Tracking the recording time of beliefs
	Querying by recording time
	Setting the recording time

	Frequency and resolution
	Sources
	Units
	Signs of power values

	Version 3.0
	Summary
	API Details

	Developer API
	Summary
	API Details

	API change log
	v3.0-13 | 2023-10-31
	v3.0-12 | 2023-09-20
	v3.0-11 | 2023-08-02
	v3.0-10 | 2023-06-12
	v3.0-9 | 2023-04-26
	v3.0-8 | 2023-03-23
	v3.0-7 | 2023-02-28
	v3.0-6 | 2023-02-01
	v3.0-5 | 2023-01-04
	v3.0-4 | 2022-12-08
	v3.0-3 | 2022-08-28
	v3.0-2 | 2022-07-08
	v3.0-1 | 2022-05-08
	v3.0-0 | 2022-03-25
	v2.0-7 | 2022-05-05
	v2.0-6 | 2022-04-26
	v2.0-5 | 2022-02-13
	v2.0-4 | 2022-01-04
	v2.0-3 | 2021-06-07
	v2.0-2 | 2021-04-02
	v2.0-1 | 2021-02-19
	v2.0-0 | 2020-11-14
	v1.3-14 | 2022-05-05
	v1.3-13 | 2022-04-26
	v1.3-12 | 2022-02-13
	v1.3-11 | 2022-01-05
	v1.3-10 | 2021-11-08
	v1.3-9 | 2021-04-21
	v1.3-8 | 2020-04-02
	v1.3-7 | 2020-12-16
	v1.3-6 | 2020-12-11
	v1.3-5 | 2020-10-29
	v1.3-4 | 2020-06-18
	v1.3-3 | 2020-06-07
	v1.3-2 | 2020-03-11
	v1.3-1 | 2020-02-08
	v1.3-0 | 2020-01-28
	v1.2-6 | 2022-05-05
	v1.2-5 | 2022-04-26
	v1.2-4 | 2022-02-13
	v1.2-3 | 2020-01-28
	v1.2-2 | 2018-10-08
	v1.2-1 | 2018-09-24
	v1.2-0 | 2018-09-08
	v1.1-8 | 2022-05-05
	v1.1-7 | 2022-04-26
	v1.1-6 | 2022-02-13
	v1.1-5 | 2020-06-18
	v1.1-4 | 2020-03-11
	v1.1-3 | 2018-09-08
	v1.1-2 | 2018-08-15
	v1.1-1 | 2018-08-06
	v1.1-0 | 2018-07-15
	v1.0-4 | 2022-05-05
	v1.0-3 | 2022-04-26
	v1.0-2 | 2022-02-13
	v1.0-1 | 2018-07-10
	v1.0-0 | 2018-07-10

	CLI Commands
	add - Add data
	show - Show data
	edit - Edit data
	delete - Delete data
	jobs - Job queueing
	db-ops - Operations on the whole database

	FlexMeasures CLI Changelog
	since v0.17.0 | November 8, 2023
	since v0.16.0 | September 29, 2023
	since v0.15.0 | August 9, 2023
	since v0.14.1 | June 20, 2023
	since v0.14.0 | June 15, 2023
	since v0.13.0 | May 1, 2023
	since v0.12.0 | January 04, 2023
	since v0.11.0 | August 28, 2022
	since v0.9.0 | March 25, 2022
	since v0.8.0 | January 26, 2022
	since v0.6.0 | April 2, 2021
	since v0.4.0 | April 2, 2021
	since v0.3.0 | April 2, 2021

	Running via Docker
	The flexmeasures image
	Getting the image
	Running
	Configuration and customization

	Postgres database
	Getting ready to use
	Install
	Make sure postgres represents datetimes in UTC timezone
	Create “flexmeasures” and “flexmeasures_test” databases and users
	Add Postgres Extensions to your database(s)
	Configure FlexMeasures app for that database
	Get structure (and some data) into place
	Import from another database
	Create data manually

	Visualize the data model
	Maintenance
	Make first migration
	Make another migration
	Get database structure updated
	Working with the migration history
	Check out database status

	Transaction management

	How to deploy FlexMeasures
	WSGI configuration
	Install the linear solver on the server

	Configuration
	Basic functionality
	LOGGING_LEVEL
	FLEXMEASURES_MODE
	FLEXMEASURES_ALLOW_DATA_OVERWRITE
	FLEXMEASURES_LP_SOLVER
	FLEXMEASURES_HOSTS_AND_AUTH_START
	FLEXMEASURES_PLUGINS
	FLEXMEASURES_DB_BACKUP_PATH
	FLEXMEASURES_PROFILE_REQUESTS

	UI
	FLEXMEASURES_PLATFORM_NAME
	FLEXMEASURES_MENU_LOGO_PATH
	FLEXMEASURES_EXTRA_CSS_PATH
	FLEXMEASURES_ROOT_VIEW
	FLEXMEASURES_MENU_LISTED_VIEWS
	FLEXMEASURES_MENU_LISTED_VIEW_ICONS
	FLEXMEASURES_MENU_LISTED_VIEW_TITLES
	FLEXMEASURES_HIDE_NAN_IN_UI
	RQ_DASHBOARD_POLL_INTERVAL
	FLEXMEASURES_ASSET_TYPE_GROUPS
	FLEXMEASURES_JS_VERSIONS

	Timing
	FLEXMEASURES_TIMEZONE
	FLEXMEASURES_JOB_TTL
	FLEXMEASURES_PLANNING_TTL
	FLEXMEASURES_JOB_CACHE_TTL
	FLEXMEASURES_DEFAULT_DATASOURCE
	FLEXMEASURES_PLANNING_HORIZON
	FLEXMEASURES_MAX_PLANNING_HORIZON

	Access Tokens
	MAPBOX_ACCESS_TOKEN
	SENTRY_SDN

	SQLAlchemy
	SQLALCHEMY_DATABASE_URI (**)
	SQLALCHEMY_ENGINE_OPTIONS
	SQLALCHEMY_TEST_DATABASE_URI

	Security
	SECRET_KEY (**)
	SECURITY_PASSWORD_SALT
	SECURITY_TOKEN_AUTHENTICATION_HEADER
	SECURITY_TOKEN_MAX_AGE
	SECURITY_TRACKABLE
	CORS_ORIGINS
	CORS_RESOURCES:
	CORS_SUPPORTS_CREDENTIALS

	Mail
	MAIL_SERVER (*)
	MAIL_PORT (*)
	MAIL_USE_TLS
	MAIL_USE_SSL
	MAIL_USERNAME (*)
	MAIL_DEFAULT_SENDER (*)
	MAIL_PASSWORD

	Monitoring
	SENTRY_DSN
	FLEXMEASURES_SENTRY_CONFIG
	FLEXMEASURES_TASK_CHECK_AUTH_TOKEN
	FLEXMEASURES_MONITORING_MAIL_RECIPIENTS

	Redis
	FLEXMEASURES_REDIS_URL (*)
	FLEXMEASURES_REDIS_PORT (*)
	FLEXMEASURES_REDIS_DB_NR (*)
	FLEXMEASURES_REDIS_PASSWORD (*)

	Demonstrations
	FLEXMEASURES_PUBLIC_DEMO_CREDENTIALS

	Sunset
	FLEXMEASURES_API_SUNSET_ACTIVE
	FLEXMEASURES_API_SUNSET_DATE
	FLEXMEASURES_API_SUNSET_LINK

	Redis Queues
	Requirements
	Run workers
	Inspect the queue and jobs
	Redis queues on Windows

	Error monitoring
	Monitoring the time users were last seen
	Monitoring task runs

	Modes
	Demo
	Play

	Writing Plugins
	How to make FlexMeasures load your plugin

	Plugin showcase
	Using other code files in your non-package plugin
	Notes on writing tests for your plugin

	Plugin Customizations
	Adding your own scheduling algorithm
	Deploying your plugin via Docker
	Adding your own style sheets
	Adding config settings
	Using a custom favicon icon
	Validating arguments in your CLI commands with marshmallow
	Customising the login page teaser

	Developing for FlexMeasures
	Getting started
	Virtual environment
	Download FlexMeasures
	Dependencies
	Configuration
	Database
	Loading data
	Run locally

	Logfile
	Tests
	Versioning
	Auto-applying formatting and code style suggestions
	Using Visual Studio, including spell checking
	A hint about using notebooks
	A hint for Unix developers

	Developing on the API
	Introducing a new API version
	Set up new module with routes
	Set up a new blueprint
	New or updated endpoint implementations
	Testing
	UI Crud
	Documentation

	Continuous integration
	Automate deployment via Github actions and Git
	Using git to deploy code (remote upstream)
	Authenticate at the deployment server (with an ssh key)
	(Re-)start FlexMeasures on the deployment server (install Post-Receive Hook)

	Custom authorization
	Permission-based authorization
	Account roles
	User roles

	Running a complete stack with docker-compose
	Build the compose stack
	Run the compose stack
	Configuration
	Data
	Seeing it work: Running the toy tutorial
	Scripting with the Docker stack
	Running tests

	Dependency Management
	Requirements
	Python versions

	flexmeasures.api
	flexmeasures.api.common
	flexmeasures.api.common.implementations
	flexmeasures.api.common.responses
	flexmeasures.api.common.routes
	flexmeasures.api.common.schemas
	flexmeasures.api.common.schemas.generic_assets
	flexmeasures.api.common.schemas.sensor_data
	flexmeasures.api.common.schemas.sensors
	flexmeasures.api.common.schemas.users

	flexmeasures.api.common.utils
	flexmeasures.api.common.utils.api_utils
	flexmeasures.api.common.utils.args_parsing
	flexmeasures.api.common.utils.deprecation_utils
	References
	References
	flexmeasures.api.common.utils.validators

	flexmeasures.api.dev
	flexmeasures.api.dev.sensors

	flexmeasures.api.play
	flexmeasures.api.play.implementations
	flexmeasures.api.play.routes

	flexmeasures.api.sunset
	flexmeasures.api.sunset.routes

	flexmeasures.api.v3_0
	flexmeasures.api.v3_0.accounts
	flexmeasures.api.v3_0.assets
	flexmeasures.api.v3_0.health
	flexmeasures.api.v3_0.public
	flexmeasures.api.v3_0.sensors
	flexmeasures.api.v3_0.users

	flexmeasures.app
	flexmeasures.auth
	flexmeasures.auth.decorators
	flexmeasures.auth.error_handling
	flexmeasures.auth.policy

	flexmeasures.cli
	flexmeasures.cli.data_add
	flexmeasures.cli.data_delete
	flexmeasures.cli.data_edit
	flexmeasures.cli.data_show
	flexmeasures.cli.db_ops
	flexmeasures.cli.jobs
	flexmeasures.cli.monitor
	flexmeasures.cli.utils

	flexmeasures.data
	flexmeasures.data.config
	flexmeasures.data.models
	flexmeasures.data.models.annotations
	flexmeasures.data.models.charts
	flexmeasures.data.models.charts.belief_charts
	flexmeasures.data.models.charts.defaults

	flexmeasures.data.models.data_sources
	flexmeasures.data.models.forecasting
	flexmeasures.data.models.forecasting.exceptions
	flexmeasures.data.models.forecasting.model_spec_factory
	flexmeasures.data.models.forecasting.model_specs
	flexmeasures.data.models.forecasting.model_specs.linear_regression
	flexmeasures.data.models.forecasting.model_specs.naive
	flexmeasures.data.models.forecasting.utils

	flexmeasures.data.models.generic_assets
	flexmeasures.data.models.legacy_migration_utils
	flexmeasures.data.models.parsing_utils
	flexmeasures.data.models.planning
	flexmeasures.data.models.planning.battery
	flexmeasures.data.models.planning.charging_station
	flexmeasures.data.models.planning.exceptions
	flexmeasures.data.models.planning.linear_optimization
	flexmeasures.data.models.planning.process
	Parameters
	flexmeasures.data.models.planning.storage
	flexmeasures.data.models.planning.utils

	flexmeasures.data.models.reporting
	flexmeasures.data.models.reporting.aggregator
	flexmeasures.data.models.reporting.pandas_reporter
	flexmeasures.data.models.reporting.profit
	Sign convention (by default)

	flexmeasures.data.models.task_runs
	flexmeasures.data.models.time_series
	flexmeasures.data.models.user
	flexmeasures.data.models.validation_utils
	flexmeasures.data.models.weather

	flexmeasures.data.queries
	flexmeasures.data.queries.annotations
	flexmeasures.data.queries.data_sources
	flexmeasures.data.queries.generic_assets
	flexmeasures.data.queries.sensors
	flexmeasures.data.queries.utils

	flexmeasures.data.schemas
	flexmeasures.data.schemas.account
	flexmeasures.data.schemas.attributes
	flexmeasures.data.schemas.generic_assets
	flexmeasures.data.schemas.io
	flexmeasures.data.schemas.locations
	flexmeasures.data.schemas.reporting
	flexmeasures.data.schemas.reporting.aggregation
	flexmeasures.data.schemas.reporting.pandas_reporter
	flexmeasures.data.schemas.reporting.profit

	flexmeasures.data.schemas.scheduling
	flexmeasures.data.schemas.scheduling.process
	flexmeasures.data.schemas.scheduling.storage

	flexmeasures.data.schemas.sensors
	flexmeasures.data.schemas.sources
	flexmeasures.data.schemas.times
	flexmeasures.data.schemas.units
	flexmeasures.data.schemas.users
	flexmeasures.data.schemas.utils

	flexmeasures.data.scripts
	flexmeasures.data.scripts.data_gen
	flexmeasures.data.scripts.visualize_data_model

	flexmeasures.data.services
	flexmeasures.data.services.accounts
	flexmeasures.data.services.annotations
	flexmeasures.data.services.asset_grouping
	flexmeasures.data.services.data_sources
	flexmeasures.data.services.forecasting
	Parameters

	flexmeasures.data.services.scheduling
	flexmeasures.data.services.sensors
	flexmeasures.data.services.time_series
	flexmeasures.data.services.timerange
	flexmeasures.data.services.users
	flexmeasures.data.services.utils

	flexmeasures.data.transactional
	flexmeasures.data.utils

	flexmeasures.ui
	flexmeasures.ui.crud
	flexmeasures.ui.crud.accounts
	flexmeasures.ui.crud.api_wrapper
	flexmeasures.ui.crud.assets
	flexmeasures.ui.crud.users

	flexmeasures.ui.error_handlers
	flexmeasures.ui.utils
	flexmeasures.ui.utils.chart_defaults
	flexmeasures.ui.utils.view_utils

	flexmeasures.ui.views
	flexmeasures.ui.views.control
	flexmeasures.ui.views.logged_in_user
	flexmeasures.ui.views.new_dashboard
	flexmeasures.ui.views.sensors

	flexmeasures.utils
	flexmeasures.utils.app_utils
	flexmeasures.utils.calculations
	flexmeasures.utils.coding_utils
	flexmeasures.utils.config_defaults
	flexmeasures.utils.config_utils
	flexmeasures.utils.entity_address_utils
	flexmeasures.utils.error_utils
	flexmeasures.utils.flexmeasures_inflection
	flexmeasures.utils.geo_utils
	flexmeasures.utils.grid_cells
	flexmeasures.utils.plugin_utils
	flexmeasures.utils.time_utils
	References

	flexmeasures.utils.unit_utils

	Python Module Index
	HTTP Routing Table
	Index

